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Abstract: In this paper, a novel approach to control end-tidal CO2 in mechanically ventilated patients is 
presented. Assuming a homogeneous lung model, a regulation of arterial CO2 tension in blood can be 

achieved non-invasively using L1 adaptive control with the aid of an extremum seeking method to set the 

proper respiratory rate. Using these integrated approaches, not only is end-tidal CO2 regulated at the 

specific level, but also muscular power for breathing is optimized to comfort the muscles involved in the 

respiratory system. The simulation of the control algorithms show the distinctive results based on linear 

and nonlinear Hammerstein models of the process. These were obtained from measurement data from a 

human volunteer. The algorithm is applicable under pressure-controlled ventilation and provides a 
practical solution in various clinical situations. 
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1. INTRODUCTION 

Carbon dioxide (CO2) is one of the by-products of 
metabolism in a living cell. In the human's respiratory 

system, the produced CO2 is transported through blood 

circulation and is removed by the lung to the air during 

expiration. End-tidal CO2 (etCO2) is defined as the CO2 

pressure (in mmHg) at the end of expiration. If a homogenous 

lung is assumed with no pulmonary disease, etCO2 can be 

used to estimate CO2 partial pressure in arterial blood 
(PaCO2) at steady state (Benallal and Busso, 2000). 

Therefore, the control of etCO2 yields a regulation of PaCO2 

and pH balance in blood. By keeping its value in the normal 

range, the avoidance of hypercapnia or hypocapnia can be 

non-invasively achieved for patients undergoing mechanical 

ventilation procedures. The application of closed-loop 

ventilation can be used in various clinical situations, for 

example intensive medicine, anaesthesia, and ventilation 

support during sleep. 

In order to comfort the muscles involved in the respiratory 
system, the extremum seeking method is primarily applied to 

minimize the power of breathing, so that the optimal 

respiratory rate (RR) is determined (Otis et al., 1950). The 

patient model is subsequently identified using linear and 

nonlinear Hammerstein models for the evaluation of the 
model structure and model parameters. The simplified single-

input single-output (SISO) model is used for a control system 

design in this complex patient-in-the-loop system. It is quite 

obvious that we are dealing with a nonlinear time-varying 

system (Pomprapa et al., 2013). It is therefore straightforward 

using an adaptive controller for this system, where challenges 

for feedback control are the nonlinear, time-varying system 

with uncertainties depending on patient age, size, and lung 

condition. 

Adaptive control has drawn the attention from many 
researchers because it requires less a priori knowledge about 

the bounds of the uncertain system (Feng and Lozano, 1999). 

Its principle is to adapt the control law to cope with the time-

varying system. The foundation is based on parameter 

estimation and guaranteed stability in order to synthesize a 

control law for the converged and bounded results. Many 

adaptive control schemes have been developed, namely 

model reference adaptive control (MRAC), self tuning 
regulator, extremum seeking control, iterative learning 

control, gain scheduling or L1 adaptive control. The aim of 

this article is to present a control system design for end-tidal 

carbon dioxide (etCO2) in mechanically ventilated patients 

using the state-of-the-art L1 adaptive control with output 

feedback.  

L1 adaptive control  has successfully been applied in flight 
control  for NASA AirSTAR aircraft (Gregory et al., 2009), 

in a flight simulator for the SIMONA 6DOF motion-based 

control (Stroosma et al., 2011), or in biomedical systems for 

anaesthesia control (Ralph et al., 2011 and Kharisov et al., 

2012). The structure of a L1 adaptive controller is similar to 

MRAC but it contains an additional low-pass filter. The 

mathematical proof of the L1 adaptive controller 

(Hovakimyan et al., 2011) clearly demonstrates that the error 
norm is inversely proportional to the square root of the 

adaptation gain. By introducing the high adaptation gain, 

asymptotic tracking can be achieved (Cao and Hovakimyan, 

2007b). The key feature of this methodology is to guarantee 

∞L -norms bounded transient response for the errors in model 

states and the control signals. A low-pass filter is used to get 

rid of the undesired high frequencies in the control signals 
and the bandwidth of this filter is determined by using the L1 

small gain theorem (Cao and Hovakimyan, 2006) to stabilize 

the whole system.  
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The subsequent sections of this contribution are organized as 
follows. It starts with the physiological description in section 

2 to provide the background for this particular process. 

System identification is introduced in section 3 for the 

evaluation of the model structure, followed by the problem 

statement (section 4). The L1 adaptive control design is 

presented in section 5. A discussion follows in section 6 and 

the article ends with the conclusion. 

2. PHYSIOLOGICAL DESCRIPTION 

The complex physiological system of a patient undergoing 

mechanical ventilation can be simplified as a single-input 

single-output (SISO) system shown in Fig. 1. Minute 

ventilation (MV) denotes the volume given into the lung in 

one minute by a mechanical ventilator, which is computed by 

multiplying tidal volume (VT) and respiratory rate (RR). MV 
is applied to the system and regarded as an input while etCO2 

is considered as the system output. 

 

Fig. 1. SISO open-loop system for typical etCO2 control. 

In Fig. 2, the static nonlinearity of etCO2 is presented based 

on an experiment with a male volunteer with a normal body 

mass index (BMI = 21.5 kg/m2) at steady state. A ventilator 

(VENTIlogic LS, Weinmann Geraete fuer Medizin GmbH, 

Hamburg, Germany) was set in pressure controlled 

ventilation mode with a fixed positive end-expiratory 

pressure (PEEP) = 5 hPa and I:E ratio = 50%. Two variables 
i.e. peak inspiratory pressure (PIP) and RR were adjusted 

stepwise to change the MV. EtCO2 was measured by a 

capnography system with integrated pulse oximetry for 

monitoring peripheral oxygen saturation (SpO2) (CO2SMO+, 

Philips Respironics, Pittsburgh, USA).  
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Fig. 2. Static nonlinearity between MV and etCO2. 

The response of etCO2 shown in Fig. 2 represents a nonlinear 

function corresponding to the input MV. The output of the 

system (etCO2) is inversely proportional to the input. In other 

words, an increment of MV leads to a decrease of etCO2.  

For simplification, we consider the case of a homogeneous 

lung model where PEEP and I:E ratio are fixed as stated. 

Otherwise, it would result in much more complicated 

modelling of multivariate inputs. Nevertheless, our simplified 

SISO model can be applied in real clinical practice to support 

or assist ventilation in intensive care or for home care.  

The extremum seeking method (Tan et al., 2010)  is primarily 
carried out in order to identify the optimal RR. The 

computation of  the power of breathing is provided in eq. (1)  

and is computed from every breathstroke.  

   ∫ ⋅⋅= RR dttVtP
RR

Power

60

0
)()(

60
&                         (1) 

where Power  represents the power of one breathing (Watt), 

)(tP  symbolizes airway pressure (Nm-2) and )(tV& denotes 

airway flow (m3sec-1). The conversion of the units is required 

from hecto Pascal (hPa) to Pa or Nm-2 (1 hPa = 100 Pa) and 
from L/min to m3/sec. 
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Fig. 3. A relationship between the power of breathing and 

respiratory rate (RR). 

In Fig. 3, an initialization of the ventilation procedure is 

carried out to seek the optimal RR that optimizes the power 

of one breath cycle. By stepwise variation of RR, the power 

of breathing is computed and averaged for 5 consecutive 

breathing cycles at rest. The extremum seeking method is 

used to find the global minima for the power of one 

breathing. Based on the data from the volunteer, a RR of 14 

bpm is identified and it will be used for further processes in 

system identification, simulation and control throughout this 
paper.  
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The formulation of the mathematical model is shifted from a 

consideration of MV input to pressure difference ( P∆  = PIP-

PEEP). Since RR is predetermined to optimize the muscular 

power of breathing and PEEP is also fixed, P∆  has a direct 

impact on the tidal volume. Therefore,  P∆  is considered to 

be an equivalent (apart from a nonlinear gain factor) input 

into this system.  

3. SYSTEM IDENTIFICATION 

To extract the dynamics of the cardiopulmonary system, a 

step change of the pressure difference ( PEEPPIPP −=∆ ) 

was introduced for the mechanically ventilated patient. The 
range of pressure difference ( P∆ ) was set between 2 and 10 

hPa with PEEP of 5 hPa, I:E ratio of 50%, RR of 14 bpm and 

oxygen concentration (FiO2) of 0.21 or 21%. Using these 

settings, various minute ventilation steps were given into the 

system and it resulted in the output end-tidal CO2 (etCO2).  

 

 

Fig. 4. Input-output measurements for system identification. 

The model describing this system is identified using various 

model structures of both linear and non-linear models 
(Pottmann and Pearson, 1998). The results of parameter 

estimation are shown in Fig. 4, with a summary of 

performance results given in Table 1. The evaluation of 

different model structures is listed for 2 data sets, which are 

estimation and validation data. The mathematical forms of 

each particular model structure and the parameter estimation 

technique are provided in Appendix A. Based on a validation 

data set, a 1st order Hammerstein model gives the best result 

among all listed models. The 1st order linear model also 

offers the best RMS error among all linear models. Controller 

design and simulation are conducted with the 1st order linear 

model for the whole range of nonlinear operation in the 

following sections. 

Table 1.  Evaluation of model structure 

 RMS error from 

estimation data 

RMS error from 

validation set 

1
st
 order model

 
2.2475 2.2880 

2
nd

 order model 2.2116 2.2988 

2
nd

 order with one zero 2.1597 2.4093 

1
st
 order Hammerstein 2.1988 1.6709 

2
nd

 order Hammerstein 2.1680 1.7804 

2
nd

 order Hammerstein 

with one zero 
2.1351 1.8085 

Concerning the capnography for etCO2 measurement, its 
accuracy is ±2 mmHg within the range for 0 - 40 mmHg, 5% 

of the reading for 41 - 70 mmHg and 8% of the reading for 

71 - 150 mmHg. Considering this, the results of parameter 

estimation are in an acceptable range for the description of 

this system.  

4. PROBLEM STATEMENT 

The system to be controlled can be described as a SISO 
system. 

  ))()()(()( sdsusAsy +=                          (2)                                                

,where )(sy is the Laplace transform of the measured etCO2, 

)(sA  represents a strictly proper transfer function, )(su  is 

the Laplace transform of the control input or P∆  in this 

system and )(sd  is the Laplace transform of the time-varying 

nonlinear uncertainties and disturbances )(td  and generally 

assumed that ))(,()( tytftd = , where ))(,( tytf satisfies 

Lipschitz continuity expressed in eq. (3) with Lipschtiz 

constant L  > 0 and  0L  > 0. 

2121 ),(),( yyLytfytf −≤− , 0),( LyLytf +≤       (3) 

The control objective is to design a low frequency adaptive 

controller )(tu  using output feedback in a way that the 

system output )(ty  tracks the given reference input )(tr . 

Using a first-order reference model 
ms

m
sM

+
=)(  for 

0>m , the output provided in eq. (4) can be estimated by a 

multiplication between reference model and the reference 

signal. 

   )()()( srsMsy ≈          (4) 

Rewriting eq. (4) with the aid of eq. (2), we obtain 

   ))()()(()( ssusMsy σ+=         (5) 
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,where
)(

)()()()()()(
)(

sM

susMsdsAsusA
s

−+
=σ . 

Subsequently, the closed-loop adaptive control system can be 

formed based on the model reference )(sM . 

5. L1 ADAPTIVE CONTROLLER 

The L1 adaptive controller comprises 3 main components, 

namely an output predictor, an adaptive algorithm and a low-

pass filter. Its performance is expected to be accurate, 
adaptive and robust for the control of etCO2 in a wide range 

of P∆  inputs. The closed-loop structure of the L1 adaptive 

control scheme is presented in Fig. 5.   

 

Fig. 5. Patient-in-the-loop configuration with L1 adaptive 

controller. 

Output predictor: The output predictor is designed to 

observe the predicted output )(ˆ ty  with an  adaptive 

mechanism from )(ˆ tσ  , where )(ˆ tσ is the adaptive estimator. 

   ))(ˆ)(()()(ˆ ttumtmyty σ++−=& , 0)0(ˆ =y         (6) 

Eq. 6 corresponds to the desired stable model reference 

system )(sM , which is designed using a first order 

differential equation. 

Adaptive algorithm: The adaptive algorithm is used to adapt 

the reference signal for eliminating the output error and is 

defined by 

   ))(~),(ˆ(Pr)(ˆ tymPtojt −⋅Γ= σσ& , 0)0(ˆ =σ         (7) 

where +∈Γ R  is the adaptation gain corresponding to the 

lower bound 
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(Hovakimyan and Cao, 2010), ojPr  denotes the projection 

operator, which ensures that the signal )(ˆ tσ  is restricted in a 

compact convex set with a smooth boundary (Cao and 

Hovakimyan, 2007a), )()(ˆ)(~ tytyty −= , and P  is obtained 

by solving the well-known Lyapunov equation. 

A low-pass filter is introduced to eliminate high frequency 
components in the control signal. An abrupt change of the 

pressure difference will be avoided by this filter. The control 

law is computed by eq. (8). 

   ))(ˆ)()(()( ssrsCsu σ−=           (8) 

where 
ω

ω
+

=
s

sC )(  and is subject to the L1 gain stability 

requirement (Cao and Hovakimyan, 2007a). Therefore, our 

choices to design )(sM  and )(sC are limited by 

   
)())(1()()(

)()(
)(

sMsCsAsC

sMsA
sH

−+
=                      (9) 

is stable and  

    1)(
1

<LsG
L

          (10) 

where ))(1)(()( sCsHsG −= . 

The proof (Hovayakim et al., 2011) shows that the error 

norm is inversely proportional to the square root of the 

adaptation gain. Therefore, the design of high adaptation gain 

Γ will minimize the error norm )(~ ty . A high Γ  will be used 

in design of our control system. However, it is not possible to 

introduce an extremely high adaptation gain because of the 

computational limitation of the processor being used for the 

controller.  

6. SIMULATION RESULTS AND DISCUSSION 

The models from system identification obtained from section 
3 are analyzed for the control system design using linear and 

Hammerstein models. A limitation of P∆  between 2 and 40 

hPa is introduced for safety reasons. The parameters of the L1 

adaptive controller are designed by 40000=Γ and different 

low-pass filters at 03.0=ω , 0.05 and 0.1 rad/sec are 

evaluated in our study. The desired etCO2 is set at 35 mmHg 

and the results of the control signal P∆  and the output signal 
etCO2 are shown in Fig. 6. 

 

 

Fig. 6. Simulation results of control input and etCO2 output 
based on a 1st order linear model with different cut-off 

frequencies of the low-pass filter. 
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The higher the bandwidth of the low-pass filter, the faster the 

response.  The bandwidth at 10.0=ω  rad/sec provides us the 

settling time of 90 sec with no steady state error. There is no 

chattering effect on the control channel for all of the selected 

bandwidths in the simulation. Furthermore, Gaussian white 
noise with a standard deviation of 1 mmHg was introduced 

into the system to observe the control performance and 

disturbance rejection of the L1 adaptive controller. Further 

investigation are carried out based on disturbances with 

different power and in various conditions of pole uncertainty. 

The simulation results are shown in Fig. 7. The L1 adaptive 

controller shows good robustness at disturbance power up to 

1.5 mmHg2sec/rad. The control can tolerate a pole 

uncertainty between -28% and 23%. If the uncertainty 

beyond this range is introduced, loss of control can occur.  

 

 

Fig. 7. Simulated output response of etCO2 with disturbance 
and pole uncertainty using a 1st order linear process model. 

When the pole moves further into the left-half plane (pole 
uncertainty changes from -28% to 23%), a faster output 

response of etCO2 can be observed by a shorter settling time 

with no steady state error. The success or failure of this 

controller relies mainly on pole uncertainty of the output 

predictor. 

 

Fig. 8. Block diagram for the simulation using a 1st order 
Hammerstein model as a plant with the designed L1 adaptive 

controller using a 1st order linear model. 

Further investigation is carried out with a 1st order 
Hammerstein plant based on the designed parameters using a 

first order linear model for the design of the L1 adaptive 

controller. The structure of this simulation is presented in 

Fig. 8. It closely imitates the real application of this controller 

for the nonlinear time-varying plant or the mechanically 

ventilated patient. However, in some cases, a loss of control 

in etCO2 can be observed in the simulation. The control 

signal P∆  is delivered at the maximum of the saturated 

safety range and it holds the unsatisfying value for a longer 

duration. Therefore, a retuning is necessary if we apply the L1 

adaptive controller under these realistic situation. Thus, the 

initial condition of σ̂ in the projection of the adaptive 

algorithm is adjusted as well as the cut-off frequency of the 

low-pass filter is reduced. The simulation result with additive 

Gaussian white noise of power 0.5 is shown in Fig. 9. The 

desired reference )(tr  is set at 35 mmHg at the simulation 

time 200<t sec and a step is introduced at 40 mmHg at 

200≥t sec. 

 

Fig. 9. Simulation result for the tracking performance of L1 
adaptive controller for a nonlinear Hammerstein model with 

)(tr  = 35 mmHg for 200<t sec and )(tr  = 40 mmHg for 

200≥t sec. 

Fig. 9 shows that the etCO2 response reaches the desired 
reference signal approximately 100 sec after the step change. 

The pole of the model is located in the left half plane close to 

the origin of the complex plane at -0.0334 and the response is 

relatively slow but acceptable for the cardiopulmonary 

system. Concerning the control signal P∆ , the overshoot is 

also in an acceptable range for implementation. The 

controller can successfully tolerate the disturbance introduced 
into the system. The L1 adaptive controller can be considered 

as a promising solution for the control of etCO2 for the 

nonlinear time-varying plant. However, the disturbance may 

cause a fast change of P∆  and result in a frequent change in 

tidal volume. To test this controller with the patient, a fine 

tuning might be necessary during the experiment. 

In the future, a more generalized approach should be 
introduced for the model formulation of different PEEP 

values. The model should describe patients with various 

physiological properties (large vs. small, sick lung vs. 

healthy) and with different PEEP setting. Basically, the PEEP 
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parameter influences functional residual capacity (FRC). 

More PEEP will definitely give a larger lung volume at the 

end of expiration and it causes a change in etCO2. In this 

study, a simplification is made for a fixed PEEP at 5 hPa. 

Secondly, it should be noted that our control method can be 

applied for inhomogeneous lung model e.g. a lung with a 

restrictive disease (Acute Respiratory Distress Syndrome - 

ARDS). But it may cause overdistension of aerated alveoli 

and volutrauma, just targeting etCO2 and not minimizing 

shear stress in the alveoli. Also, the control of etCO2 in 

diseased lungs has an even more complicated relationship to 
the physiological target value of PaCO2 in blood, which 

depends on individuality and the severity of the disease. 

7. CONCLUSION 

This article presents the design of L1 adaptive controller to 
control etCO2 for a patient undergoing mechanical ventilation 

with a homogeneous lung model. Using pressure-controlled 

ventilation, a patient model from a male volunteer is 

identified using linear and nonlinear Hammerstein models. 

Based on the obtained models, the tracking performance and 

robustness of the controller are evaluated by a simulation 

with dynamic disturbance injection and pole uncertainty. The 

nonlinear Hammerstein extension is made for the feasibility 

study of real clinical implementation. The controller showed 

stability and good performance in terms of adaptation to the 

uncertain, perturbed system, thus good results in the clinical 
application scenario can be expected. The L1 adaptive 

controller provides a practical solution for the control of 

etCO2 to deal with the nonlinear time-varying system and as 

a secondary effect optimizes the muscular power of the 

respiratory system as well. 
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Appendix A. MODEL STRUCTURE  

The model structures in this paper are given in this section for 

a 1st  order linear model, 2nd order linear model, 2nd order 

linear model with zero, 1st  order Hammerstein model, 2nd 

order Hammerstein model and 2nd order Hammerstein model 

with zero as stated in (11) - (16), respectively. The model 

parameters can be estimated from data by a least squares 

algorithm.  

  )()()( tbutayty +=&          (11) 

  )()()()( 21 tbutyatyaty ++= &&&&          (12) 

  )()()()()( 2121 tubtubtyatyaty +++= &&&&&         (13) 

  )]([)()( tubNtayty +=&          (14) 

  )]([)()()( 21 tubNtyatyaty ++= &&&         (15) 

  )]([)]([)()()( 2121 tuNbtuNbtyatyaty +++= &&&&       (16) 
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