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Abstract: In the linear control theory, the observability Popov-Belevitch-Hautus (PBH) test
plays an important role in studying observability along with the observability rank condition and
observability Gramian. The observability rank condition and observability Gramian have been
extended to nonlinear systems and have found applications in the analysis of nonlinear systems.
On the other hand, there is no observability criterion for nonlinear systems corresponding to the
PBH test. In this study, we generalize the observability PBH test for nonlinear systems using
pseudo-linear transformation.
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1. INTRODUCTION

For linear systems, there are several criteria for observ-
ability such as the PBH (Popov-Belevitch-Hautus) test,
the observability rank condition, and the condition de-
scribed by the observability Gramian. Every condition
plays an important role in systems and control theory. For
nonlinear systems, observability is also studied, and the
rank condition and Gramian are generalized to the non-
linear system (Conte et al. [2007], Nijmeijer and van der
Schaft [1990], Scherpen [1993], Fujimoto and Scherpen
[2005]). The applications of the rank condition include the
decomposition of an unobservable nonlinear system into
an observable subsystem and an unobservable subsystem
(Conte et al. [2007], Nijmeijer and van der Schaft [1990]),
and the Gramian characterizes the balancing of nonlinear
systems (Scherpen [1993], Fujimoto and Scherpen [2005]).
Differently from the rank condition and Gramian, the PBH
test has not been extended to nonlinear systems.

Pseudo-linear transformation (PLT) (Jacobson [1937],
Leroy [1995], Bronstein and Petkovšek [1996]) helps in
studying structures of nonlinear systems (Zheng et al.
[2011], Lévine [2011], Halás [2008], Halás and Kotta
[2007]). In particular, the concept of a transfer function
of the nonlinear system is given using PLT (Halás [2008],
Halás and Kotta [2007]). Halás [2008], reported that the
PLT operates similarly to the Laplace transformation. The
Laplace transformation plays a key role in analyzing linear
systems. By using the Laplace transformation, not only
structures but also stability can be studied. On the other
hand, there is no application of PLT in analyses of stability
for the nonlinear system.

For a linear system described by a state-space represen-
tation, the eigenvalues of the system matrix are impor-
tant for analyzing the system, e.g., stability, observability

and controllability analyses. For PLT, the eigenvalues and
eigenvectors are defined (Leroy [1995], Lam et al. [2008])
and used in analyzing nonlinear systems (Aranda-Bricaire
and Moog [2004]). Aranda-Bricaire and Moog [2004] ex-
ploits the eigenvalues and eigenvectors of PLT to study the
existence of a coordinate transformation that transforms
a system into its feed-forward form, and in the linear
case showed that an eigenvalue of PLT is equivalent to
an eigenvalue of the system matrix. Their results indicate
that the eigenvalues and eigenvectors of PLT as well as
the eigenvalues and eigenvectors of the system matrix of
a linear system may be useful for analyzing nonlinear
systems.

In this study, we derive two observability conditions: a
necessary condition and a sufficient condition. In the linear
case, each condition is equivalent to the observability PBH
test. The observability PBH test on a linear system shows
that the eigenvalues of the system matrix characterize
observability. As in similarly the PBH test, our necessary
condition is described using the eigenvalues of PLT. That
is, our necessary condition shows that the eigenvalues
of PLT as well as the eigenvalues of the system matrix
of a linear system play important roles when testing
observability. In summary, our necessary condition can be
regarded as a generalization of the observability PBH test
for a nonlinear system.

Notation: Let N be the set of non-negative integers and
C be the field of complex numbers. Moreover, let K be
the field of the complex meromorphic functions defined
on Cn with the variables x1, x2, . . . , xn. For the matrix
A(x) ∈ Kn×m, rankKA(x) = s means that the rank of
A(x) over the field K is s. Thus, rankKA(x) = s does
not mean that rankCA(x) = s holds for all x ∈ Cn,
but rankCA(x) = s holds for almost all x ∈ Cn. The
Jacobian matrix of φ(x) ∈ Kn is denoted by Jφ :=
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(∂φ(x)/∂x) ∈ Kn×n. Let Diffn
K(C) ⊂ Kn be the set of

φ ∈ Kn such that rankKJφ = n. From the definition of
Diffn

K(C), each φ ∈ Diffn
K(C) is a locally diffeomorphic

mapping from an open and dense subset Mφ ⊂ Cn to Mφ,
where Mφ varies depending on φ. Let X be a vector space
over K generated by the one-forms dx1, dx2, . . . , dxn, i.e.,
X := spanK{dx1, . . . , dxn}. Note that {dx1, . . . , dxn} is a
basis of X .

2. MOTIVATING EXAMPLES

Consider a continuous-time nonlinear system described by{
dx/dt = f(x),
y = h(x),

(1)

where x ∈ Cn and y ∈ C denote the state and output,
respectively. The elements fi (i = 1, 2, . . . , n) and h are
complex meromorphic functions of x.

The observability PBH (Popov-Belevitch-Hautus) test is
one of the criteria for observability of linear systems.

Proposition 2.1. (Observability PBH test) Suppose that
f = Ax and h = cTx in (1), where A ∈ Cn×n and c ∈ Cn.
System (1) is observable if and only if

rankC

[
λIn −A

cT

]
= n, (2)

holds for all λ ∈ C.

In fact, it suffices to check condition (2) only for all
eigenvalues λ ∈ C of A.

Our aim is to generalize condition (2) to nonlinear system
(1). First, in Examples 2.1 and 2.2 below, we consider the
relations between observability and

rankK

[
λIn − ∂f(x)/∂x

∂h(x)/∂x

]
= n (3)

for all λ ∈ K. Note that differently from that considered
in condition (2), the field considered in condition (3) is
the field of meromorphic functions. It is not required that
condition (3) holds for all x ∈ Cn.

We investigate the relations between observability and
condition (3) in the following examples.

Example 2.1. Consider a nonlinear system described by ẋ1 = x2
1 + x2,

ẋ2 = x1x2,
y = x1.

(4)

It can be shown that the system is observable from
Definition 3.1 below. Condition (3) for system (4) holds
because we have

rankK

[
λ− 2x1 1
−x2 λ− x1

1 0

]

= rankK

[
0 1
0 λ− x1

1 0

]
= rankK

[
0 1
0 0
1 0

]
= 2.

Thus, in this example, an observable system satisfies
condition (3).

Example 2.2. Consider a nonlinear system described by ẋ1 = (x2
1 − x2

2)/2,
ẋ2 = (x1 − x2)x2,
y = x1 − x2.

(5)

It is possible to show that system (5) is not observable.
Condition (2) for system (5):

rankK

[
λ− x1 x2

−x2 λ− x1 + 2x2

1 −1

]
= 2

does not hold when λ = x1 − x2. This λ = x1 − x2

is an eigenvalue of the PLT introduced in Section 3.2.
In this example, an unobservable system does not satisfy
condition (3).

These two examples demonstrate that condition (3) is
potentially helpful for testing observability of a nonlinear
system as well as for the observability PBH test on a linear
system. From Example 2.2, an eigenvalue of PLT may play
an important role in testing observability of a nonlinear
system.

3. PRELIMINARIES

3.1 Observability of nonlinear system

In this paper, we consider the following observability
(Conte et al. [2007]).

Definition 3.1. A system (1) is said to be observable if
there exists an open and dense subset M ⊂ Cn such
that system (1) is locally weakly observable (Hermann and
Krener [1977]) at any initial state x0 ∈ M .

The observability rank condition is a criterion for observ-
ability (Conte et al. [2007], Nijmeijer and van der Schaft
[1990]).

Proposition 3.1. System (1) is observable if and only if the
following observability rank condition holds:

rankKOn−1(x) = n,

Oi(x) :=


∂h(x)/∂x

∂Lfh(x)/∂x
...

∂Li
fh(x)/∂x

 , (6)

where L0
fh(x) = h(x) and Li+1

f h(x) := (∂Li
fh(x)/∂x)f(x)

(i ∈ N).

In general, the observability rank condition is a sufficient
condition for local weak observability for all initial states
in Cn. By restricting Cn to an open and dense subset
M ⊂ Cn, the necessity is also guaranteed.

The observability rank condition has some applications in
analyzing observability of nonlinear systems. For example,
a system not satisfying rank condition (6) can be decom-
posed into an observable subsystem and an unobservable
subsystem (Conte et al. [2007], Nijmeijer and van der
Schaft [1990]).

Proposition 3.2. For system (1), let rankKOn−1(x) = r <
n. Thus, there exists the coordinate transformation z =
φ(x) ∈ Diffn

K(C) such that
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

dz1/dt = f̂1(z1, . . . , zr)
...

dzr/dt = f̂r(z1, . . . , zr)

dzr+1/dt = f̂r+1(z)
...

dzn/dt = f̂n(z)
y = h(z1, . . . , zr)

(7)

holds.

3.2 PLT defined by the system

In this resarch, we study observability using PLT (Bron-
stein and Petkovšek [1996], Jacobson [1937], Leroy [1995]).

We give the definition of PLT. The derivation δ on the
field K is an additive mapping δ : K → K such that

δ(a+ b) = δ(a) + δ(b), ∀a, b ∈ K, (8)

δ(ab) = a · δ(b) + b · δ(a), ∀a, b ∈ K. (9)

A field K is a differential field if K is closed under a
derivation δ.

Let V be a vector space over K.

Definition 3.2. A mapping θ : V → V is called PLT if

θ(u+ v) = θ(u) + θ(v),

θ(au) = aθ(u) + δ(a)u

hold for any a ∈ K and u, v ∈ V .

We show a PLT defined by system (1). Let δ : K → K be
the mapping

δ(a) :=

n∑
i=1

∂a

∂xi
fi, a ∈ K. (10)

Note that δ(a) is the Lie derivative of a function a along
f in (1), which implies that δ depends on system (1). The
mapping δ satisfies conditions (8) and (9). Thus, δ is a
derivative of K, and K is a differential field because of
δ(a) ∈ K for any a ∈ K.

Next, let d : K → X be the mapping

da =

n∑
i=1

∂a

∂xi
dxi.

Finally, we define the mapping s : X → X .

s ∗ ε :=
n∑

i=1

(δ(ai)dxi + aidδ(xi)) , ε =
n∑

i=1

aidxi. (11)

For simplicity, we omit the symbol ∗ from (11). Note that
s ∗ ε is the Lie derivative of the one-form ε along f in
system (1). Thus, s depends on system (1).

From (11), for any a ∈ K and ε ∈ X , we have

s(aε) = asε+ δ(a)ε.

This equality implies that s : X → X is a PLT.

For the PLT s : X → X defined in (11), an eigenvalue and
an eigenvector are defined as follows (Leroy [1995], Lam
et al. [2008]).

Definition 3.3. λ ∈ K and ε ∈ X are called an eigenvalue
and an eigenvector of the PLT s : X → X if sε = λε holds.

Since the PLT defined in (11) depends on system (1), an
eigenvalue and eigenvector of the PLT s : X → X are
determined by system (1).

Example 3.1. Consider the same system as Example 2.2.
For instance, x1−x2 and d(x1−x2) are an eigenvalue and
eigenvector of the PLT defined by the system, respectively.
Actually, we have

sd(x1 − x2) = sdx1 − sdx2

= d

(
x2
1 − x2

2

2

)
− d ((x1 − x2)x2)

= (x1dx1 − x2dx2)− (x2dx1 + (x1 − 2x2)dx2)

= (x1 − x2)d(x1 − x2).

In Example 2.2, an unobservable system does not satisfy
condition (3) at an eigenvalue λ = x1 − x2 of PLT. In
Section 4.1, we clarify the relations between observability
and the eigenvalues of PLT.

4. OBSERVABILITY CONDITIONS

4.1 Nonlinear case

An eigenvalue of PLT (11) characterizes observability of
the nonlinear system.

Theorem 4.1. If system (1) is observable, then (s− λ)In
λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

 vε ̸= 0 (12)

holds for all φ ∈ Diffn
K(C), λ ∈ K, v ∈ Kn \ {0} and

ε ∈ X \ {0}.

Proof. We prove this by contraposition. If there exist
φ ∈ Diffn

K(C), λ ∈ K, v ∈ Kn \ {0} and ε ∈ X \ {0}
such that (s− λ)In

λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J
−1
φ

(∂h(x)/∂x)J−1
φ

 vε = 0 (13)

holds, then we have[
sIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

]
vε = 0.

Let u ∈ Kn be J−1
φ v. The nonsingularity of Jφ implies

u ̸= 0, and we have v = Jφu. By substituting v = Jφu
into the above equation, we obtain[

Jφ(sIn − (∂f(x)/∂x))
(∂h(x)/∂x)

]
uε = 0,

and consequently, from the nonsingularity of Jφ,[
sIn − (∂f(x)/∂x)

(∂h(x)/∂x)

]
uε = 0. (14)

Next, we show that equation (14) implies
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∂Li
fh

∂x
uε = 0, ∀i ∈ N (15)

by induction. Equation (14) yields(
sIn − ∂f

∂x

)
uε = 0, (16)

∂h

∂x
uε = 0. (17)

When i = 0, equation (15) is nothing but (17).

Suppose that (15) holds when i = k, i.e.,

∂Lk
fh

∂x
uε = 0 (18)

holds. By premultiplying (∂Lk
fh/∂x) by (16), we have

∂Lk
fh

∂x

(
sIn − ∂f

∂x

)
uε = 0. (19)

Also, by premultiplying s by (18), we have

s
∂Lk

fh

∂x
uε =

(
δ

(
∂Lk

fh

∂x

)
+

∂Lk
fh

∂x
s

)
uε = 0. (20)

By subtracting the left-hand side of (19) from the second
left-hand side of (20), we obtain(

δ

(
∂Lk

fh

∂x

)
+

∂Lk
fh

∂x
s−

∂Lk
fh

∂x

(
sIn − ∂f

∂x

))
uε = 0

The left-hand side can be computed as follow(
δ

(
∂Lk

fh

∂x

)
+

∂Lk
fh

∂x
s−

∂Lk
fh

∂x

(
sIn − ∂f

∂x

))
uε

=

(
∂2Lk

fh

∂x2
f +

∂Lk
fh

∂x

∂f

∂x

)
uε

=

(
∂

∂x

(
∂Lk

fh

∂x
f

))
uε =

∂Lk+1
f h

∂x
uε.

Thus, we have

∂Lk+1
f h

∂x
uε = 0.

Therefore, (15) holds.

Finally, we show that if (15) holds for u ∈ Kn \ {0} and
ε ∈ X \{0}, then the observability rank condition does not
hold. Equation (15) implies that

On−1uε = 0, (21)

where Oi ∈ K(i+1)×n is defined in (6). For any ε ∈ X ,
there exists a vector a ∈ Kn such that

ε = aTdx (22)

holds, where ε ̸= 0 implies aT ̸= 0 because {dx1, . . . , dxn}
is a basis of the K-vector space X . By substituting (22)
into (21), we have

On−1ua
Tdx = 0,

and consequently

On−1ua
T = 0,

where u ̸= 0 and a ̸= 0 imply that (uaT) ∈ Kn×n

is a nonzero matrix. Therefore, On−1 is singular. That
is, the observability rank condition does not hold. From
Proposition 3.1, system (1) is not observable. 2

From Theorem 4.1, if nonlinear system (1) is not observ-
able, then (13) holds for some φ ∈ Diffn

K(C), λ ∈ K,
v ∈ Kn \ {0} and ε ∈ X \ {0}. Condition (13) can be
decomposed into

(s− λ)vε = 0 (23)[
λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

]
vε = 0. (24)

Condition (23) implies that λ ∈ K and all viε ∈ X
(i = 1, . . . , n) are eigenvalues and eigenvectors of the
PLT s : X → X . That is, Theorem 4.1 shows that
the eigenvalues of PLT play important roles when testing
observability of nonlinear systems. For linear systems, the
observability PBH test shows that the eigenvalues, in the
sense of linear algebra, of a system matrix characterize
observability. Therefore, in Theorem 4.1, the eigenvalues
of PLT operate like those of a system matrix.

In Section 4.2 below, it is shown that the condition of
Theorem 4.1 is equivalent to the observability PBH test
in the linear case. Thus, Theorem 4.1 can be viewed as a
generalization of the observability PBH test on nonlinear
systems.

Condition (24) is equivalent to[
λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

]
v = 0. (25)

Theorem 4.2 below shows that condition (25) also helps
in testing the observability of nonlinear system (1). Con-
dition (25) implies that λ ∈ K and v ∈ Kn \ {0} are an
eigenvalue and right eigenvector of the matrix (δ(Jφ) +
Jφ(∂f(x)/∂x))J

−1
φ ∈ Kn×n, respectively, in the linear

algebraic sense. Note that, the eigenvalues of (δ(Jφ) +
Jφ(∂f(x)/∂x))J

−1
φ depend on the coordinate transforma-

tion φ ∈ Diffn
K(C

n) due to the nonlinearity of system (1).
On the other hand, the eigenvalues of the PLT s : X → X
are invariant with respect to a coordinate transformation.
Therefore, to check the condition of Theorem 4.1, we need
to find a coordinate transformation φ such that an eigen-
value of (δ(Jφ)+Jφ(∂f(x)/∂x))J

−1
φ becomes an eigenvalue

of PLT.

Condition (25) is also important in its own right when
testing observability of system (1).

Theorem 4.2. System (1) is observable if[
λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

]
v ̸= 0 (26)

holds for all φ ∈ Diffn
K(C), λ ∈ K and v ∈ Kn \ {0}.
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Proof. We prove this by contraposition. That is, we show
that if a system is not observable then there exist φ ∈
Diffn

K(C), λ ∈ K and v ∈ Kn \ {0} such that (25) holds.

From Proposition 3.1, if system (1) is not observable,
then the observability rank condition does not hold. Let
rankKOn−1(x) = r < n. Proposition 3.2 shows that
system (1) can be transformed into (7) by a coordinate
transformation z = φ̂(x) ∈ Diffn

K(C). By choosing φ as φ̂,
condition (25) becomes λIr − (∂f̄1(z̄1)/∂z̄1) 0

−(∂f̄2(z)/∂z̄1) λIn−r − (∂f̄2(z)/∂z̄2)
(∂h̄(z̄1)/∂z̄1) 0

 v = 0,

(27)

where z̄1 = [z1, . . . , zr]
T ∈ Kr, z̄2 = [zr+1, . . . , zn]

T ∈
Kn−r, f̄1 = [f̂1, . . . , f̂r]

T ∈ Kr and f̄2 = [f̂r+1, . . . , f̂n]
T ∈

Kn−r.

It suffices to show the existence of λ ∈ K and v ∈ Kn \{0}
satisfying condition (27). Let λ̂ ∈ K and v̂ ∈ Kn−r \{0} be
an eigenvalue and eigenvector of the matrix (∂f̄2(z)/∂z̄2) ∈
Kn×n in the sense of linear algebra. Then, for λ := λ̂ ∈ K
and v := [0 v̂]T ∈ Kn \ {0}, condition (27) holds. 2

The condition of Theorem 4.2 holds if and only if

rankK

[
λIn − (δ(Jφ) + Jφ(∂f(x)/∂x))J

−1
φ

(∂h(x)/∂x)J−1
φ

]
= n (28)

holds for all φ ∈ Diffn
K(C) and λ ∈ K. When φ ∈ Diffn

K(C)
is the identity mapping, i.e., Jφ ∈ Kn×n is the identity
matrix, condition (28) is nothing but condition (3). Thus,
condition (3) is a necessary condition for Theorem 4.2.

4.2 Linear Case

In the linear case, we show that the conditions of Theorems
4.1 and 4.2 are equivalent. The condition of Theorem
4.2 is a sufficient condition for observability, and that of
Theorem 4.1 is a necessary condition. Thus, the condition
of Theorem 4.2 is a sufficient condition for that of Theorem
4.1. Here, the converse is shown in the linear case.

Proposition 4.1. Suppose that f = Ax and h = cTx in (1),
where A ∈ Cn×n and c ∈ Cn. If condition (12) holds for
all φ ∈ Diffn

K(C), λ ∈ K, v ∈ Kn \ {0} and ε ∈ X \ {0},
then condition (26) holds for all φ ∈ Diffn

K(C), λ ∈ K and
v ∈ Kn \ {0}.

Proof. We prove this by contraposition. That is, we show
that if there exist φ ∈ Diffn

K(C), λ ∈ K and v ∈ Kn \ {0}
satisfying condition (25), then there exists ε ∈ X \{0} such
that condition (13) holds for the same φ, λ and v.

In condition (25), let φ ∈ Diffn
K(C) be the identity

mapping. Then, Jφ ∈ Kn×n is the identity matrix. In the
linear case, λ ∈ C ⊂ K and v ∈ (Cn \ {0}) ⊂ (Kn \
{0}) satisfying (25) are one of the eigenvalues and right
eigenvectors of the matrix A in the sense of linear algebra.

It suffices to show the existence of ε ∈ X \ {0} such that
(13) holds for the above φ, λ and v. Condition (13) can
be decomposed into (23) and (25). Since (25) holds for the
above φ, λ and v, we show the existence of ε ∈ X \ {0}

satisfying (23) for the same φ, λ and v. Let ε ∈ X \ {0}
be aTdx, where a ∈ (Cn \ {0}) ⊂ (Kn \ {0}) is a left
eigenvector of matrix A corresponding to the eigenvalue
λ. By substituting ε = aTdx into the left-hand side of
(23), we have

(s− λ)vaTdx = vaT(A− λIn)dx = 0.

That is, condition (23) holds. 2

In the linear case, the conditions of Theorems 4.1 and
4.2 are equivalent, and the condition of Theorem 4.2 is
equivalent to the observability PBH test. Therefore, the
condition of Theorem 4.1 is equivalent to the observability
PBH test.

5. EXAMPLE

By using our results, we test the observability of the
following system.

dx

dt
=

 x2 + x2
3

x2
1x3

−x2
1/2

 ,

y = x1.

We check the necessary condition of Theorem 4.1 for this
system. Here, we consider finding φ ∈ Diffn

K(C), λ ∈ K,
v ∈ Kn \ {0} and ε ∈ X \ {0} such that condition (13)
holds. First, we find an eigenvalue and an eigenvector of
the PLT defined by the system. One of the eigenvalues
and one of the eigenvectors of such PLT are 0 ∈ K and
d(x2 + x2

3) ∈ X , respectively.

Next, we find a coordinate transformation φ ∈ Diffn
K(C)

such that an eigenvalue of the matrix (δ(Jφ)+Jφ(∂f/∂x))
J−1
φ becomes 0 ∈ K. For instance, by choosing φ(x) as

[x1 x2 + x2
3 x3], we have

Jφ :=

[
1 0 0
0 1 2x3

0 0 1

]
, δ(Jφ) :=

 0 0 0
0 0 −x2

1
0 0 1

 ,

and thus(
δ(Jφ) + Jφ

∂f(x)

∂x

)
J−1
φ =

[
0 1 0
0 0 0

−x1 0 0

]
.

Then, 0 is an eigenvalue of (δ(Jφ) + Jφ(∂f/∂x))J
−1
φ , and

one of its right eigenvectors is v := [0 0 1]T.

Finally, we check condition (12) for φ := [x1 x2 + x2
3 x3],

λ := 0, v := [0 0 1]T and ε := d(x2 + x2
3). We obtain (s− λ)I3

λI3 − (δ(Jφ) + Jφ(∂f(x)/∂x))J
−1
φ

(∂h(x)/∂x)J−1
φ

 vε

=


sI3[
0 1 0
0 0 0

−x1 0 0

]
[ 1 0 0 ]


[
0
0
1

]
d(x2 + x2

3) = 0.

Therefore, condition (12) does not hold. From Theorem
4.1, the system is not observable.
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6. CONCLUSION

In this paper, we have derived two observability conditions
for the nonlinear system: a necessary condition and a
sufficient condition. Our necessary condition shows that
observability of the nonlinear system is characterized by
the eigenvalues of the PLT defined by the system. In
the linear case, each eigenvalue of the PLT is nothing
but an eigenvalue, in the sense of linear algebra, of the
system matrix. Both our conditions are equivalent to the
observability PBH (Popov-Belevitch-Hautus) test in the
linear case. Therefore, our necessary condition can be
viewed as a generalization of the observability PBH test
for the nonlinear system.
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