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Abstract: We study event-triggered control based on a reduced or simplified model of the
plant’s dynamics. In particular, we address two time-scale systems and we investigate whether
it is possible to synthesize a stabilizing event-triggered controller based only on an approximate
model of the slow dynamics given by singular perturbation theory, when the fast one is stable.
We highlight specific challenges which arise with the event-triggered implementation: the state
of the fast model experiences jumps at transmissions which induces non-trivial difficulties for
the stability analysis and the Zeno phenomenon may occur due to the fact that we neglect the
fast dynamics. We describe the overall problem as a hybrid singularly perturbed system. We
first provide a necessary condition on the triggering condition to avoid the Zeno phenomenon.
Afterwards, we propose two strategies which respectively use a dead-zone and a clock variable
and which ensure different asymptotic stability properties. The existence of a minimum inter-
transmission interval is guaranteed. Our results are illustrated by a physical example.

1. INTRODUCTION

Event-triggered control has a great interest in the develop-
ment of networked control systems because it may allow to
significantly reduce the usage of the communication chan-
nel. Indeed, although periodic sampling is appealing from
the analysis and implementation point of view, it may yield
a conservative solution when the communication resources
are limited as it may unnecessarily use the network. In
event-triggered control, it is the occurrence of an event,
typically a variation of the plant’s state, which closes the
loop. This translates into reducing the resources utilisa-
tion compared to the periodic implementation, see e.g.
Årzén [1999], Åström and Bernhardsson [1999], Tabuada
[2007], Wang and Lemmon [2011], Postoyan et al. [2011b],
Heemels et al. [2012], Donkers and Heemels [2012]. Avail-
able techniques rely on the knowledge of an accurate model
of the plant (which may be affected by uncertainties or
external disturbances). However, the controller is often
designed in practice based on a reduced or simplified model
of the plant’s dynamics which may be obtained by model
reduction or by neglecting the fast dynamics. For instance,
for the case of two time-scale systems, singular perturba-
tion theory can be used to approximate the slow and the
fast dynamics, see Khalil [2002]. In this context, when the
origin is stable for the fast model, it is possible to design
the controller based only on the slow model, like for linear
time-invariant (LTI) systems (see Kokotović et al. [1986]),
classes of nonlinear systems (see Khalil [2002]) and linear
time-varying sampled data systems with periodic sampling
(see Pan and Başar [1994]).

In this paper, we address two time-scale systems and we
investigate whether it is possible to synthesize a stabilizing
event-triggered controller based only on an approximate

model of the slow dynamics given by singular perturbation
theory, when the fast one is stable. We highlight specific
challenges which arise with the event-triggered implemen-
tation:

• The state of the fast model experiences jumps at
transmissions which induces non-trivial difficulties for
the stability analysis. It is due to the change of vari-
ables we introduce in order to separate the slow and
the fast dynamics using the singular perturbation the-
ory. That is not the case for available results on event-
triggered control where only the sampling-induced
error is reset to zero at each transmission, see e.g.
Tabuada [2007]. This characteristic of the problem
makes existing results not directly applicable.

• The Zeno phenomenon may occur due to the fact that
we neglect the fast dynamics.

We show that the problem we are interested in can be
casted as a hybrid singularly perturbed system with the
formalism of Goebel et al. [2012]. Unlike Sanfelice and
Teel [2011] where such systems are analysed, we define
the flow and jump sets, we conclude different stability
properties and we ensure the existence of a minimum inter-
transmission interval.

We follow an emulation-like approach to design the event-
triggered controllers (see Tabuada [2007]). We first synthe-
size a stabilizing controller for the approximate slow model
obtained by singular perturbation theory, in the absence
of communication constraints. Afterwards, we take into
account the effect of the network and we propose two
event-triggering conditions to ensure asymptotic stability
properties for the overall system. The first policy consists
of modifying the triggering condition of Tabuada [2007]
by including a dead-zone in order to guarantee that all
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inter-execution times are bounded from below by a strictly
positive constant. We show that this strategy ensures a
semiglobal practical stability property. The second strat-
egy consists in merging the event-triggered implementa-
tion of Tabuada [2007] with the time-triggered results in
Nešić et al. [2009]. The idea is to allow transmissions only
after a fixed amount of time T ∗ has elapsed since the last
control update. In that way, the minimum amount of time
between two jumps is lower bounded by the constant T ∗

and we guarantee global asymptotic stability properties.
This policy relies on an additional assumption compared to
the first strategy. Our results are applied to the autopilot
control of an F-8 aircraft.

The remainder of the paper is organised as follows. The
problem is stated in Section 2. In Section 3, we present
the main results. In Section 4, we show that the proposed
control strategies are applicable to LTI systems and an
illustrative example is provided.

Notation. We denote R = (−∞,∞), R≥0 = [0,∞),
Z≥0 = {0, 1, 2, ..}. The Euclidean norm will be denoted as
|.|. We use also the notation (x, y) to represent the vector
[xT , yT ]T for x ∈ R

n, y ∈ R
m. A continuous function

γ : [0,∞) → R≥0 is of class K if it is zero at zero, strictly
increasing, and it is of class K∞ if in addition γ(s) → ∞
as s → ∞. A continuous function γ : R≥0 × R≥0 → R≥0

is of class KL if for each t ∈ R≥0, γ(., t) is of class
K, and, for each s ∈ R≥0, γ(s, .) is decreasing to zero.
We denote the minimum and maximum eigenvalues of
the symmetric positive definite matrix A as λmin(A) and
λmax(A) respectively. We use In to denote the identity
matrix of dimension n.

2. PROBLEM STATEMENT

Consider the following nonlinear time-invariant singularly
perturbed system

ẋ = f(x, z, u) (1)

ǫż = g(x, z, u) (2)

where x ∈ R
nx and z ∈ R

nz are the states, u ∈ R
nu

is the control input and ǫ > 0 is a small parameter. We
use singular perturbation theory to approximate the slow
and the fast dynamics, see Khalil [2002]. We rely on the
following standard assumption.

Assumption 1. The equation g(x, z, u) = 0 has n ≥ 1
isolated real roots

z = hi(x, u), i = 1, 2, ..., n (3)

where hi is continuously differentiable. 2

In that way, the substitution of the ith root z = h(x, u)
into (1) yields the corresponding approximate slow model

ẋ = f(x, h(x, u), u). (4)

To separate the slow and the fast dynamics, we write the
system (1)-(2) with the coordinates (x, y) where

y := z − h(x, u) (5)

represents the deviation of z from the quasi-steady-state
manifold {(x, z, u) : z− h(x, u) = 0}. Then, we derive the
approximate fast dynamics

dy

dτ
= g(x, y + h(x, u), u) (6)

where τ := (t − t0)/ǫ is a new time variable and x ∈ R
nx

is treated as a fixed parameter, see Khalil [2002].

In this study, we investigate whether we can design an
event-triggered controller based only on the approximate
slow model (4) to stabilize the overall system. We follow
an emulation-like approach as we first assume that a
controller of the form u = k(x) has been designed to
stabilize (4) in the absence of communication constraints.
We then implement this controller over a digital platform
so that

u(t) = k(x(ti)) ∀t ∈ [ti, ti+1]. (7)

The sequence of transmission instants ti, i ∈ Z≥0 will
be defined by the event-triggering condition we will de-
sign. We introduce the sampling-induced error ex, as in
Tabuada [2007],

ex(t) = x(ti)− x(t) ∀t ∈ [ti, ti+1] (8)

which is reset to zero at each transmission instant. The
state feedback controller (7) is given by

u = k(x+ ex). (9)

Hence, in view of (5), the variable y becomes

y := z − h(x, k(x+ ex)). (10)

We note that the variable y experiences a jump at each
transmission as ex is reset to zero after each transmission.
Hence, system (1)-(2) in the (x, y) coordinates becomes

ẋ=f
(
x, y + h(x, k(x+ ex)), k(x+ ex)

)
=:fx(x, y, ex)

(11)

ǫẏ = g
(
x, y + h(x, k(x+ ex)), k(x+ ex)

)

− ǫ
(∂h
∂x

+
∂h

∂u

∂u

∂x
−

∂h

∂u

∂u

∂ex

)
fx(x, y, ex)

=: fy(x, y, ex), (12)

and we have

x(t+i+1) = x(ti+1) (13)

y(t+i+1) = z(t+i+1)− h
(
x(t+i+1), k(x(t

+
i+1) + ex(t

+
i+1))

)

= z(ti+1)− h
(
x(ti+1), k(x(ti+1) + 0)

)

= y(ti+1) + h
(
x(ti+1), k(x(ti+1) + ex(ti+1))

)

− h
(
x(ti+1), k(x(ti+1))

)

=: hy(x(ti+1), y(ti+1), ex(ti+1)). (14)

We model the problem using the hybrid formalism of
Goebel et al. [2012] (like in Donkers and Heemels [2012],
Postoyan et al. [2011a]). In that way, we obtain

q̇ = F (q) q ∈ C, q+ = G(q) q ∈ D, (15)

where q = (x, y, ex) ∈ R
nq and

F (q) :=




fx(x, y, ex)
1

ǫ
fy(x, y, ex)

−fx(x, y, ex)


 , G(q) :=




x

hy(x, y, ex)

0


 .

(16)
The sets C and D in (15) are defined according to the
event-triggering condition which we will synthesize in the
following. These sets are closed and represent the flow
and jump sets respectively. Typically, the system flows
on C where the triggering condition is not satisfied and
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experiences a jump on D where the triggering condition
is verified. When q ∈ C ∩D, the system can either jump
or flow, the latter only if flowing keeps q in C. For more
detail on hybrid systems of the form of (15) see Goebel
et al. [2012].

Problem: Our objective is to define an appropriate trig-
gering condition for system (15) which is equivalent to
defining appropriate C andD sets to guarantee asymptotic
stability properties for system (15). Moreover, we want the
triggering condition to only depend on the slow variables
x and ex so that we can ignore the fast dynamics when
they are stable. It is important to note that the state
variable y experiences a jump on the set D, see (16),
which is not the case for all available results on event-
triggered control where only the sampling-induced error
(which corresponds to ex in (15)) is reset to zero at jumps.
This is a characteristic feature of singularly perturbed
systems which comes from the definition of the variable
y in (10).

3. MAIN RESULTS

3.1 A necessary condition

Before presenting the main results of the paper, we first
give a necessary condition the event-triggering condition
must satisfy in order to avoid the Zeno phenomenon. As-
sume that we have designed an event-triggering condition
such that the sets C and D in (15) are of the form

C = {q : Γ(x, ex) ≤ 0}, D = {q : Γ(x, ex) = 0}, (17)

where Γ : R
2nx → R≥0 is continuous. It is shown

in Postoyan et al. [2011b] how various event-triggering
conditions lead to a hybrid model with flow and jump sets
like in (17). Consider the scenario where Γ(0, 0) = 0. This
is the case for the technique in Tabuada [2007] for instance
which gives Γ(x, e) = γ(|ex|)−σα(|x|) where α, γ ∈ K and
σ ∈ (0, 1). The problem here is that the Zeno phenomenon
may occur as it suffices to have x(0, 0) = 0 and ex(0, 0) = 0
(and y(0, 0) 6= 0) for the system (15) to permanently jump.
Indeed, we then have q ∈ C ∩D and G(q) ∈ D. We cannot
allow such solutions in practice. It is therefore mandatory
to design triggering conditions Γ such that

Γ(0, 0) 6= 0. (18)

Note that a similar remark has been made in Mazo Jr. and
Cao [2012] in a different context, namely for decentralized
systems.

3.2 Assumptions

We present the assumptions made on system (15). We will
show in Section 4 that all the conditions are satisfied by
LTI systems. We first note that the approximate slow and
fast models (4) and (6) respectively, are now in view of
(11) and (12),

ẋ=f
(
x, h(x, k(x + ex)), k(x + ex)

)
=:fxs

(x, 0, ex)

(19)

dy

dτ
= g

(
x, y + h(x, k(x + ex)), k(x + ex)

)
. (20)

In that way, we view system (15) as the interconnection of
the approximate slow and fast systems above with the ex-
system. We independently construct Lyapunov functions

for the slow and fast models then we will investigate the
overall stability of the original system, like in continuous-
time in Khalil [2002]. First, we assume that the slow
system (19) is input-to-state stable (ISS) with respect to
ex.

Assumption 2. There exist a smooth function Vx : Rnx →
R≥0 and class K∞ functions αx, αx, a continuously differ-
entiable class K∞ function γ1 and α1 > 0 such that for all
(x, ex) ∈ R

2nx the following is satisfied

αx(|x|) ≤ Vx(x) ≤ αx(|x|)
∂Vx

∂x
fxs

(x, 0, ex) ≤ −α1Vx(x) + γ1(|ex|).
(21)

2

Condition (21) is similar to (11.39) in Khalil [2002]. We
assume the following stability property holds for the fast
model (20) like in Khalil [2002].

Assumption 3. There exist a smooth function Vy : Rny →
R≥0 and class K∞ functions αy, αy and α2 > 0 such that
for all (x, y, ex) ∈ R

nq

αy(|y|) ≤ Vy(x, y) ≤ αy(|y|)
∂Vy

∂y
g
(
x, y + h(x, k(x + ex)), k(x + ex)

)
≤ −α2Vy(x, y).

(22)
2

Assumption 3 implies that the origin of the fast dynamics
(20) is globally asymptotically stable. Note that Assump-
tion 3 does not imply that the origin of the fast dynamics
(20) is globally exponentially stable as the functions αy, αy

can be nonlinear. We impose the following conditions on
the interconnections between the slow and fast dynamics
(19), (20).

Assumption 4. There exist a class K∞ function γ2 and
β2, β3 > 0 such that for all (x, y, ex) ∈ R

nq the following
holds

∂Vx

∂x
[fx(x, y, ex)−fxs

(x, 0, ex)]≤β1

√
Vx(x)Vy(x, y)[

∂Vy

∂x
−

∂Vy

∂y

(∂h
∂x

+
∂h

∂u

∂u

∂x
−

∂h

∂u

∂u

∂ex

)]
fx(x, y, ex) ≤

β2

√
Vx(x)Vy(x, y) + β3Vy(x, y) + γ2(|ex|),

(23)
where Vx, Vy, β1, γ1 come from Assumptions 2 and 3. In
addition, there exists L > 0 such that, for all s ≥ 0

γ2 ◦ γ
−1
1 (s) ≤ Ls. (24)

2

Conditions (23) represent the effect of the deviation of the
original system (15) from the slow and fast models (19),
(20) respectively and are related to (11.43) and (11.44) in
Khalil [2002].

Remark : It is possible to relax condition (24) by adding a
strictly positive constant to the right-hand side of (24). It
can then shown that a practical stability property holds for
the event-triggered controlled system with respect to this
constant by slightly modifying the proofs of the theorems.

2

Finally, we assume that the dynamics of Vy along jumps
of the states x, y satisfy the following condition.
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Assumption 5. There exist λ1, λ2 > 0 such that for all
q ∈ R

nq

Vy(x, hy(x, y, ex)) ≤ Vy(x, y) + λ1γ1(|ex|)

+ λ2

√
γ1(|ex|)Vy(x, y), (25)

where Vx, Vy, γ1 come from Assumptions 2 and 3 respec-
tively. 2

We are now ready to present the main results of this paper.
The proofs are omitted due to space constraints.

3.3 Semiglobal practical stabilization

In view of Assumption 2, a first attempt would be to define
a triggering condition of the form γ1(|ex|) ≥ σα1Vx(x)
where σ ∈ (0, 1) like in Tabuada [2007]. Unfortunately, we
cannot choose this condition as the Zeno phenomenon may
occur as discussed in Section 3.1. To overcome this issue,
we consider the event-triggering condition below

γ1(|ex|) ≥ max{σα1Vx(x), ρ}, (26)

where ρ > 0 is a design parameter. In view of (17),
Γ(x, ex) := γ1(|ex|) − max{σα1Vx(x), ρ} and Γ(0, 0) =
−ρ 6= 0, then the condition (18) is satisfied. Consequently,
we define the flow and jump sets of (15) as

C = {q : γ1(|ex|) ≤ max{σα1Vx(x), ρ}}

D = {q : γ1(|ex|) = max{σα1Vx(x), ρ}}.
(27)

Although this type of triggering conditions has already
been used in Donkers and Heemels [2012], Mazo Jr. and
Cao [2012], Miskowicz [2006], Otanez et al. [2002] for
example, the fact that the state y experiences jumps has a
potentially destabilizing effect and requires to fully modify
the stability analysis.

Theorem 1. Consider system (15) with the flow and jump
sets defined in (27). Suppose that Assumptions 1-5 hold.
Then, for any ∆, ρ > 0, there exist β∆ ∈ KL, γ∆ ∈ K
and ǫ∗(∆) > 0 such that for any ǫ(∆) ∈ (0, ǫ∗(∆)) and
any solution φ = (φx, φy, φex) with |φ(0, 0)| ≤ ∆ and
φex(0, 0) = 0, φ is complete 1 and it satisfies

|(φx(t, j), φy(t, j))| ≤ β∆(|(φx(0, 0), φy(0, 0))|, t+ j)

+ γ∆(ρ) ∀(t, j) ∈ domφ. (28)

Moreover, all inter-transmission times are lower bounded
by a semiglobal uniform strictly positive constant. 2

The condition that φex(0, 0) = 0 in Theorem 1 is reason-
able as it simply means that the control input is updated
at the initial time. Theorem 1 ensures a semiglobal prac-
tical stability property for system (15). Indeed, given an
arbitrary (large) ball of initial conditions centered at the
origin and of radius ∆ and any constant ρ, there exists ǫ
sufficiently small such that φx and φy converge towards a
neighbourhood of the origin whose ‘size’ can be rendered
arbitrarily small by reducing ρ.

Remark : In the proof of Theorem 1, which has been
omitted in this version, a semiglobal uniform lower bound
on the inter-transmission intervals have been shown to
exist. This lower bound has been estimated by the time
it takes for γ1(|ex|) to evolve from 0 to ρ. 2

1 A solution φ to (15) is complete if its domain dom φ is unbounded.
The domain of φ is the subset of R≥0 × Z≥0 where φ is defined, see
Goebel et al. [2012] for more detail.

3.4 Global asymptotic stabilization

We may want in some cases to ensure a stronger stability
property than the one guaranteed by Theorem 1. We thus
propose a method to design the event-triggering condition
to ensure a global asymptotic stability property under
an extra assumption. The idea is to combine the event-
triggered technique of Tabuada [2007] with the time-
triggered results of Carnevale et al. [2007] such that we
allow transmission only after a fixed amount of time T ∗ has
elapsed since the last jump. We thus augment the original
hybrid system (15) with a clock variable τ ∈ R≥0 as follows

q̇ = F (q) τ̇ = 1 (q, τ) ∈ C̃,

q+ = G(q) τ+ = 0 (q, τ) ∈ D̃,
(29)

where the flow and jump sets are respectively defined as

C̃ := {(q, τ) : γ1(|ex|) ≤ σα1Vx(x) or τ ∈ [0, T ∗]}

D̃ :=
{
(q, τ) :

(
γ1(|ex|) = σα1Vx(x) and τ ≥ T ∗

)
or(

γ1(|ex|) ≥ σα1Vx(x) and τ = T ∗
)}

.

(30)
While the idea of merging event-triggered and time-
triggered techniques is intuitive, the stability analysis is
non-trivial as we need to build a common hybrid Lyapunov
function for the two approaches. It has to be emphasized
that the constant T ∗ allows us to directly tune the mini-
mum inter-transmission interval provided it is smaller than
the bound given below. This is typically not done in the
literature (except for linear systems in Yu and Antsaklis
[2012]) where the lower bound on the inter-transmission
time is often subject to some conservatism and it cannot
be directly selected. We note that the condition (18) which
becomes here Γ(0, 0, 0) 6= 0 is satisfied with Γ(x, ex, τ) =
min{Γ1(x, ex),Γ2(τ)} and Γ1(x, ex) = γ1(|ex|)− σα1V (x)
and Γ2(τ) = τ − T ∗ as Γ(0, 0, 0) ≤ −T ∗ < 0, see (30).
Inspired by Carnevale et al. [2007], we make the following
additional assumption on system (29).

Assumption 6. There exist M,N ≥ 0 such that, for all
(x, y) ∈ R

nx+ny and for almost all ex ∈ R
nx

〈∇|ex|,−fx(x, y, ex)〉 ≤ M |ex|+N(
√
Vx(x) +

√
Vy(x, y)),

where Vx, Vy come from Assumptions 2 and 3. 2

The constant T ∗ in (30) is selected such that T ∗ < T , like
in Carnevale et al. [2007], where

T :=





1

Mr
arctan(r) M2 <

2N2

α1
(γ̃1 + γ̃2)

1

M
M2 =

2N2

α1
(γ̃1 + γ̃2)

1

Mr
arctanh(r) M2 >

2N2

α1
(γ̃1 + γ̃2)

(31)

with r :=

√∣∣∣ 2N2

α1

γ2

M2 − 1
∣∣∣, where M,N come from As-

sumption 6 and α1, γ̃1, γ̃2 come from Assumptions 2 and
4 which are respectively assumed to hold with γ1(|ex|) =
γ̃1|ex|

2, γ2(|ex|) = γ̃2|ex|
2 where γ̃1, γ̃2 ≥ 0. We obtain the

following result.

Theorem 2. Consider system (29) with the flow and jump
sets defined in (30) and suppose the following hold.

(1) Assumptions 1, 3, 5 and 6 hold.
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(2) Assumptions 2 and 4 are satisfied with γ1(s) = γ̃1s
2

and γ2(s) = γ̃2s
2 with γ̃1, γ̃2 ≥ 0, for s ≥ 0.

(3) The constant T ∗ in (30) is such that T ∗ ∈ (0, T ).

Then there exist β ∈ KL and ǭ > 0 such that for any
ǫ ∈ (0, ǭ) and any solution φ = (φx, φy, φex , φτ ) with

φ(0, 0) ∈ C̃ ∪ D̃ is complete and satisfies

|(φx(t, j), φy(t, j))| ≤ β(|φ(0, 0)|, t+ j) ∀(t, j) ∈ domφ.
(32)

2

The property (32) requires the initial condition to lie in

C̃ ∪ D̃. That condition adds no conservatism. Indeed,
it suffices to set the initial condition of τ and ex to
zero which means that the clock variable starts from
zero and that the control input is updated at the initial
time. We see that Theorem 2 ensures a global asymptotic
stability property which is stronger than the conclusions
of Theorem 1. However, it requires an addition condition,
namely Assumption 6, to hold. The two classes of event-
triggered controllers are compared on a physical example
at the end of the next section.

4. ILLUSTRATIVE EXAMPLE

We apply the results of Sections 3.3 and 3.4 to the
autopilot control of the longitudinal motion of an F-
8 aircraft. We borrow the model from Chapter 4 in
Kokotović et al. [1986] which is of the form

ẋ = A11x+A12z +B1u (33)

ǫż = A21x+A22z +B2u, (34)

where x ∈ R
2 represents the slow ‘phugoid mode’ and

z ∈ R
2 represents the fast ‘short period mode’ of the

longitudinal motion of an airplane. The parameter ǫ is
equal to 0.0336 and

A11 :=

[
−0.195378 −0.676469

1.478265 0

]
B1 :=

[
−0.023109

−16.945030

]

A12 :=

[
−0.917160 0.109033

0 0

]
B2 :=

[
−0.048184

−3.810954

]

A21 :=

[
−0.051601 0

0.013579 0

]
A22 :=

[
−0.367954 0.438041

−2.102596 −0.214640

]
.

We notice that A22 is invertible and Hurwitz with the
eigenvalues −8.6696± 28.4712i. By following similar lines
as in Section 2, the approximate slow model (4) is here
ẋ = A0x + B0u, where A0 := A11 − A12A

−1
22 A21 and

B0 := B1−A12A
−1
22 B2. The approximate fast model (6) is

dy
dτ

= A22y. The origin of the open-loop system is globally
exponentially stable. Nevertheless, the eigenvalues of the
approximate slow system are −0.0977 ± 0.9952i and, as
a result, the overall system solutions exhibit large oscilla-
tions and a slow convergence as shown in Figure 1. Hence,
we design the controller u = Kx to improve the closed-loop
response. The gainK is selected to place the eigenvalues of
Λs := A0+B0K at (−2,−3) which is possible since the pair
(A0, B0) is controllable. We select Vx(x) = xTP1x for x ∈
R

nx and Vy(x, y) = yTP2y for y ∈ R
nz as the Lyapunov

functions for the slow and fast models respectively, where
P1 and P2 are the positive definite symmetric matrices

0 2 4 6 8 10 12 14 16 18 20

−10
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0
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15

Time[s]

 

 
x
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x
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Fig. 1. Open-loop state trajectories of the slow dynamics

such that ΛT
s P1 + P1Λs = −I2 and AT

22P2 + P2A22 = −I2

(which do exist since Λs and A22 are Hurwitz). Hence,
Assumptions 2, 3 hold with αx(s) = λmin(P1)s

2, αx(s) =
λmax(P1)s

2, γ1(s) = 2|P1B0K|2s2, αy(s) = λmin(P2)s
2,

αy(s) = λmax(P2)s
2 for s ≥ 0 and α1 = 1

2λmax(P1)
, α2 =

1
λmax(P2)

. The first two conditions of Assumption 4 are

satisfied with β1 = 2|P1A12|
√

1
λmin(P1)λmin(P2)

, γ2(s) = s2

for s ≥ 0, β2 = 2|P2ΓΛs|
√

1
λmin(P1)λmin(P2)

, and β3 =

2|P2ΓA12|+|P2ΓB0K|2

λmin(P2)
. The third condition is verified with

L = 1
2|P1B0K|2 . Assumption 5 holds with λ1 =

|Γ2

2
P2|

2|P1B0K|2

and λ2 = |Γ2P2|
|P1B0K|

√
2

λmin(P2)
. Assumption 6 is verified with

M = |B0K| and N = max{ |Λs|
λmin(P1)

, |A12|
λmin(P2)

}. Thus, all

conditions of Assumptions 1-6 hold.

We then consider the scenario where the controller is
implemented over a digital platform and we use the results
of Section 3 to design the event-triggering condition. We
synthesize the triggering condition (26) with γ1 = 1.7795,
α1 = 0.3104 and we set σ = 0.05 and ρ = 0.0001.
We take σ small in order to maintain the performance
of the continuous-time controller. Second, we apply the
technique of Section 3.4 with the same parameter values
and T ∗ = 0.0041 (which has been computed using (31)).
The trajectories of the slow state x in both cases are
plotted in Figure 2.

We see that the event-triggered controllers ensure similar
performances as in the absence of communication con-
straints. The strategy in Section 3.3 makes the solutions
converge into a ball of radius 0.003 centered at the origin
while the state trajectories asymptotically converge to the
origin with the technique of Section 3.4. We compare the
minimum and the average inter-transmission intervals of
the proposed event-triggered strategies which are respec-
tively denoted τmin and τavg. Table 1 shows the obtained
values for 200 initial conditions randomly distributed in
the ball centered at the origin of radius 100.

We note that, the event-triggered controllers generate a
similar amount of transmissions. Nevertheless, the tech-
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Fig. 2. Closed-loop trajectories of the slow variables

Section 3.3 Section 3.4

τmin 9.2052 × 10−5 0.0041

τavg 0.0302 0.0301

Table 1. Minimum and average inter-execution
times for 200 initial conditions for a simulation

time of 2 s.

nique in Section 3.4 exhibits a much larger minimum inter-
transmission interval which may be essential in practice.

5. CONCLUSION

We have investigated the event-triggered stabilization of
nonlinear singularly perturbed systems based only on the
slow dynamics. First, we show that semi-global practical
stabilization can be obtained using a modified version of
the classical triggering condition. Second, under an extra
assumption, we prove that global asymptotic stability
property can be guaranteed. The presented work will be
further extended to the general case where the controller
takes into account both the slow and the fast variables.
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