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Abstract: We address the discrete-time passivity-based control lawssynthesis within port-Hamiltonian
framework. We focus on IDA-PBC design for canonical port-Hamiltonian systems with separable energy
being quadratic in momentum. For this class of systems, we define a discrete Hamiltonian dynamics that
exactly satisfies a discrete energy balance. We then derive adiscrete controller following the IDA-PBC
procedure. The proposed methodology relies on an energy discretization scheme with suitable discrete
conjugate port variables. The main result is illustrated ontwo examples: a nonlinear pendulum in order
to compare with some simulation results of the literature, and the impact oscillator which requires robust
discretization scheme.

1. INTRODUCTION

Discrete-time control design is of fundamental interest when
considering control technics based on continuous-time model
properties. One motivation would be stated as follows: as nu-
merical integration scheme may not translate all model’s prop-
erties, the resulting discrete dynamics may differ from theex-
pected one. Therefore, information loss induced by the time-
discretization step has to be controlled in order to frame the
discrete behaviour. This is especially the case in the Hamilto-
nian framework considering passivity-based controllers.

Energy-based modeling, stemming from Lagrangian and Hamil-
tonian approaches in the field of mechanics, has provided a new
mathematical framework for the analysis of dynamical systems.
These approaches have been widely developed and extended
to many engineering areas such as electronics, electromagnet-
ics, mechatronics, etc. Subsequently, the concept of energy has
been brought to control design issues.

In this paper, the port-Hamiltonian framework (introducedin
[Maschke and van der Schaft, 1992]) is considered. It is known
to handle systems representation and analysis in various phys-
ical domains. By nature,Port-Hamiltonian systems(denoted
PHS) fit into the Dissipative systems theory [Willems, 1972].
This intrinsic property underlies theinterconnection damp-
ing assignment passivity-based controlmethod (denoted IDA-
PBC) developed in [Ortega et al., 2002b]. In this framework,
IDA-PBC appears crucial since it generates all asymptotically
stabilizing controllers. However, since simulation results are
obtained using a computer solver (regardless system proper-
ties), the discrete closed-loop behaviour may be not as efficient
as expected for the reason mentioned above.

A common method used to design a discrete controller relies on
sampling a continuous-time controller. Such a controller,called
emulation controller, is easy to compute but its performances
are inconstant. In practice, its implementation is done by eval-
uating the continuous-time controller at the computed discrete
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states. Its performance thus relies on the discretization scheme
accuracy.

Otherwise, discrete controller synthesis can be tackled from a
direct design viewpoint. In the Hamiltonian framework, this ap-
proach is based on the definition of a discrete port-Hamiltonian
dynamics (e.g., structure discretization [Talasila et al., 2006],
time-discretisation [Laila and Astolfi, 2006b], sampled-data
[Stramigioli et al., 2005, Monaco et al., 2009]). All these dis-
crete Hamiltonian dynamics have been derived with respect to
some initial intrinsic properties, such as passivity, (almost) en-
ergy balance. The direct discrete-time IDA-PBC design issues
have been treated in the case of separable Hamiltonian [Laila
and Astolfi, 2005] and for underactuated controlled Hamil-
tonian systems [Laila and Astolfi, 2006a, Gören-Sümer and
Yalçin, 2011]. The drawback of these results resides on an
almost energy balance equation (leading to numerical drift) that
may be overcome to improve the performance. Anyway, all
these references agree to the fact that emulation controller can
be enhanced.

Our contributions concern discrete IDA-PBC design generating
a closed-loop behaviour similar to the continuous one. To this
end, we focus on discrete systems intrinsic properties: lossless
characteristics and passivity. We first introduce a new definition
of a discrete port-Hamiltonian dynamics that exactly satisfies a
discrete energy balance. This definition is based on an energy-
preserving integrator [Greenspan, 1974] and suitable conjugate
port-output variables. The design is then derived for 2D fully
actuated canonical port-Hamiltonian systems with separable
energy being quadratic in momentum. Simulation results show
the improvement of the numerical behaviours with respect to
discrete controllers proposed in the literature.

The paper is organized as follows. In Section 2, we briefly
introduce port-Hamiltonian systems and IDA-PBC design in
this framework. Section 3 concerns our contributions: we define
a discrete port-Hamiltonian dynamics which is conservative,
and the discrete IDA-PBC design is then derived. Two examples
have been implemented and the simulation results are discussed
in Section 4. Section 5 concludes the paper.
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2. HAMILTONIAN FRAMEWORK & IDA-PBC DESIGN

In this section, we introduce the class of nonlinear systemsand
the associated control laws synthesis we are concerned with.

We first recall basics on the port-Hamiltonian framework
[Maschke and van der Schaft, 1992, van der Schaft, 1999]. In
particular, such systems satisfies a dissipative equality which
we aim at preserving at the discrete level.
In this framework, it has been proven that all asymptotically
stabilizing controllers can be generated by IDA-PBC design
[Ortega et al., 2002b]. We recall here the fully actuated case
that a discrete version will be derived in Section 3.

2.1 Port-Hamiltonian Systems (PHS)

We are interested in nonlinear systems with precise struc-
ture, the so-calledport-Hamiltonian systems(also denoted PHS
throughout the paper). More precisely, we consider canonical
PHS which dynamics writes [van der Schaft, 1999]











[

q̇
ṗ

]

=

[

0 Id
−Id 0

][

∇qH
∇pH

]

+

[

0
B(q)

]

u(t)

y(t) = B(q)T∇pH

(1)

where q ∈ R
n is the generalized displacement,p ∈ R

n the
generalized momenta,∇xH denotes the partial derivative ofH
with respect tox, B(q) ∈ R

n×m is the input force matrix, with
B(q)udenoting the generalized forces resulting from the control
inputsu ∈ R

m, andy ∈ R
m is the conjugate port-output of the

system.

The Hamiltonian (energy) functionH is supposed to be separa-
ble and quadratic inp, that is, of the form

H(q, p) =
1
2

pTM−1p+V(q) with MT = M > 0. (2)

The time derivative ofH along trajectories of (1) is
d
dt

H(q(t), p(t)) = yT(t)u(t) (3)

which by integration leads to the dissipative equality

H(t)−H(t0) =
∫ t

t0
yT(s)u(s)ds. (4)

Equation (4) characterizes a fundamental property of PHS (1):
the system is said to be conservative (i.e. lossless and passive).
It states that the stored energy of such systems equals the energy
supplied through the port variables.

Note that since the control laws synthesis we are considering
is based on system passivity, we paid a particular attentionto
preserve this property while deriving a discrete Hamiltonian
dynamics.

Furthermore, for control issues, two essentials cases haveto be
distinguished with respect to the rangem of the input vector
field. The PHS (1) is said to be fully actuated whenm= n, and
underactuated whenm< n. Since we aim at illustrating our new
discrete Hamiltonian dynamics for discrete controller design
issues, we shall restrict our investigations on the simplercase
of fully actuated systems. Thus,B is assumed to be invertible.

2.2 Continuous-time IDA-PBC design

We are concerned with control law synthesis following the
IDA-PBC design presented in [Ortega et al., 2002b]. In the

context of nonlinear systems given by (1), IDA-PBC technic
aims at designing the desired closed-loop energy as

Hd(q, p) =
1
2

pTM−1
d p+Vd(q) (5)

together with the closed-loop dynamics
[

q̇
ṗ

]

= [Jd −Rd]

[

∇qHd
∇pHd

]

(6)

where

Jd =−JT
d =

[

0 M−1Md

−MdM−1 J2(q, p)

]

and

Rd = RT
d =

[

0 0
0 BKdiB

T

]

.

To summarize, IDA-PBC design consists of two steps.

The first one, calledenergy shaping, fixes the desired energy
Hd which has a strict local minimum at the desired equilibrium.
The associated control inputues is obtained by solving the
model matching (1) = (6) without dissipative matrix
[

0 Id
−Id 0

][

∇qH
∇pH

]

+

[

0
B(q)

]

ues=

[

0 M−1Md

−MdM−1 J2(q, p)

][

∇qHd
∇pHd

]

.

(7)
The energy shaping controllerues has to satisfy

B(q) ues=
{

∇qH −MdM−1∇qHd + J2∇pHd
}

. (8)

Here comes the restriction we are concerned with, that is the
system is fully actuated and the matrixB is assumed to be
invertible. Hence the control law is easily computed by left
multiplying both sides byB(q)−1.

Remark 1.In the case of underactuated systems, a matching
condition associated with the annihilator ofB arises. A set of
PDEs has to be solvable in order to derive the energy shaping
controller using the Moore-Penrose pseudo-inverse. For details
see [Ortega et al., 2002a,b].

The second step, calleddamping injection, consists of adding
friction to the system in order to achieve asymptotic stabiliza-
tion of the desired equilibrium. The damping injection con-
troller udi is constructed as

udi =−Kdi y=−Kdi B(q)
T∇pHd , Kdi > 0. (9)

The complete control law writesu= ues+udi.

3. MAIN RESULT

As pointed out in [Laila and Astolfi, 2005], discretizing Hamil-
tonian equations and evaluating the continuous-time IDA-PBC
controller at discrete states yield a closed-loop behaviour with
performance far from acceptable (compare the desired energy
of the continuous controllerwith the emulation controllerin
Figure 1). In the literature, there are only few references that
address discrete IDA-PBC design. Basically, those investiga-
tions focus on direct discrete-time IDA-PBC controller design
based on a modified integration scheme that aims at satisfying
an energy balance up to the second order [Laila and Astolfi,
2005, 2006a, Gören-Sümer and Yalçin, 2011].

We shall present here a discrete port-Hamiltonian dynamics
which exactly satisfies an energy balance equation. This for-
mulation is used to design a discrete IDA-PBC controller with
closed-loop performance similar to the designed continuous
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performance. In particular, we shall illustrate energy conser-
vation of the closed-loop system when only energy shaping is
considered.

Our result combines an energy-preservingdiscretization scheme
introduced in [Greenspan, 1974] with a suitable definition of
discrete conjugate port variables. The IDA-PBC controllersyn-
thesis is then considered as a model matching issue in the re-
stricted case of a fully actuated controlled Hamiltonian system.

Remind that we only deal with the 2-dimensional fully actuated
case, with separable energy being quadratic in momentum.

3.1 Discrete port-Hamiltonian systems

The energy-preserving scheme proposed in [Greenspan, 1974]
concerns canonical Hamiltonian systems with separable energy
H(q, p) quadratic inp, as given in equation (1) withu = 0.
Notice that this scheme preserves the structure of the equation
(that is, the structure matrixJ ). It writes









qn+1−qn

∆t

pn+1− pn

∆t









=

[

0 1

−1 0

]











V(qn+1)−V(qn)

qn+1−qn

pn+1+ pn

2











. (10)

This descretization scheme exactly preserves the Hamiltonian.
Indeed, on a time mesh, the energy variation writes

∆Hn
∆
= H(qn+1, pn+1)−H(qn, pn)

=

[

1
2
(pn+1)

2+V(qn+1)

]

−

[

1
2
(pn)

2+V(qn)

]

.

Rearranging the terms, it remains to see that

1
2

[

(pn+1)
2− (pn)

2
]

=

(

pn+1+ pn

2

)

(pn+1− pn)

(10)
=

(

qn+1−qn

∆t

)

(pn+1− pn)

and

V(qn+1)−V(qn)
(10)
= −

(

pn+1− pn

∆t

)

(qn+1−qn)

to conclude that∆Hn ≡ 0 regardless the time step∆t.

We now introduce port variables. The control inputu naturally
arises in the ˙p equation, whereas the conjugate port-outputy
can be defined by several manner. In the literature, following
the continuous-time definition of a PHS, a classical definition
of yn relies on the gradient ofH evaluated at(qn, pn). The slight
difference here resides on the use of a discrete gradient.

Let us now introduce our definition of discrete PHS dynamics.

Definition 2. A (canonical)discrete port-Hamiltonian dynam-
ics is defined by







































qn+1−qn

∆t
=

pn+1+ pn

2

pn+1− pn

∆t
= −

V(qn+1)−V(qn)

qn+1−qn
+B(qn)un

yn = B(qn)
qn+1−qn

∆t

(11)

Among the discrete Hamiltonian systems formulation that can
be found in the literature (e.g.structure discretization [Talasila
et al., 2006], time-discretisation [Laila and Astolfi, 2006b],

sampled-data [Stramigioli et al., 2005, Monaco et al., 2009]),
the discrete Hamiltonian dynamics (11) encodes two funda-
mental properties: energy conservation and passivity.
Proposition 3.The discrete PHS (11) is conservative w.r.t. the
same storage functionH.

Proof. The statement of the proposition is straightforward once
noticed that on a time-mesh the energy balance writes

H(qn+1, pn+1)−H(qn, pn) = ∆t ynun .

The discrete Hamiltonian dynamics (11) satisfies a dissipative
equality (the system is lossless) with a storage function rate
given as the input/output product (the system is passive), it is
thus conservative.�

3.2 Discrete IDA-PBC design

Based on the discrete Hamiltonian dynamics defined by (11),
we design a discrete-time controller following IDA-PBC.

The open-loop discrete dynamics is given by (11), and the
desired closed-loop discrete dynamics is considered as









qn+1−qn

∆t

pn+1− pn

∆t









= [J−Rd]











Vd(qn+1)−Vd(qn)

qn+1−qn

pn+1+ pn

2











, (12)

which is the discrete version of (6) with desired energyHd (5).

If we now translate the model matching equation (7) within
discrete dynamics, the energy shaping controller writes

(ues)n = B−1(qn)

(

V(qn+1)−V(qn)

qn+1−qn
−

Vd(qn+1)−Vd(qn)

qn+1−qn

)

.

(13)

The damping injection controller given by (9) is computed with
the suitable discrete conjugate output defined in (11) as follows

(udi)n =−Kdi yn =−Kdi B(qn)
qn+1−qn

∆t
. (14)

Finally, the discrete control law writesun = (ues)n+(udi)n. Let
us now state the closed-loop property obtained withun.
Proposition 4.Consider the discrete dynamics (11) and the
desired closed-loop dynamics (12) whereVd has an isolated
minimum atq∗. Then

(i) (q∗,0) is a (locally) stable equilibrium of the closed-loop
system withun = (ues)n given by (13).

(ii) (q∗,0) is an asymptotically stable equilibrium of the
closed-loop system withun= ues(n)+udi(n) given by (13)
and (14).

Proof. Notice first that, by construction, the control lawun
applied to the system (11) leads to the closed-loop system (12).
We shall use Lyapunov’s second theorem to prove the statement
of the proposition. LetL(x) = Hd(x)−Hd(x∗) be the Lyapunov
candidate, wherex∗ = (q∗,0). Then L is positive definite in a
neighborhood ofx∗ and∆Ln = (∆Hd)n. It follows

(i) ∆Ln ≡ 0 in the caseun = (ues)n, hencex∗ is stable
(ii) ∆Ln < 0 in the caseun = (ues)n+(udi)n since a straight-

forward calculation leads to

∆Ln
∆
= L(qn+1, pn+1)−L(qn, pn)

= −
1
∆t

(qn+1−qn)
TBKdi B

T(qn+1−qn)
(15)

Hencex∗ is asymptotically stable for anyKdi > 0.�
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Notice that, as in the continuous setting, the dissipative property
of the discrete closed-loop system is an intrinsic propertyof the
system.

4. EXAMPLES

We shall now illustrate the performances of the proposed
discrete-time design method. Two classical examples have been
implemented: the nonlinear pendulum which has been studied
in the literature, and the impact oscillator which is considered
to have a very rich dynamic (its momenta has to change very
rapidly on a short time interval).

In order to compare numerical results, a reference curve is
needed, namely the continuous-time solution. Generally speak-
ing, no analytical solution is available, thus we shall consider
our reference, the taggedcontinuouscurves, as the numerical
solution obtained with high order accuracy solver and small
time step.

4.1 Nonlinear pendulum

Consider the nonlinear pendulum given in Hamiltonian form
(1) with energy function

H(q, p) =
1
2

p2− cos(q) . (16)

The dynamics then explicitly writes
{

q̇= p
ṗ=−sin(q)+u(t)
y= p

. (17)

The desired closed-loop energy is chosen as

Hd(q, p) =
1
2

p2− cos(q)+
Kes

2
q2+1. (18)

The continuous-time IDA-PBC design, as recalled in equations
(8) and (9), yields the control laws

ues(t) =−Kesq(t) and udi(t) =−Kdi p(t) (19)
whereas the discrete-time IDA-PBC derived in this paper yields
the control laws(ues)n and (udi)n given equations (13) and
(14) respectively. The simulation results are compared with the
closed-loop behaviours obtained with: 1) the emulation con-
troller, that is evaluating (19) at stagen, and 2) the controller
presented in [Laila and Astolfi, 2005, 2006a] based on a modi-
fied Euler scheme.

All numerical results concern the same initial conditions
(q0, p0) = (0.5π−0.2,0.5). The taggedcontinuouscurves have
been obtained with MATLABODE45 solver with fixed time
step∆t = 10−4(s), and the remaining curves have been imple-
mented with a time step∆t = 0.35(s).

We first consider the energy shaping controllersues. The Figure
1 shows the closed-loop energiesHd computed with the differ-
ent schemes. One notices that the emulation and the literature
controllers are not energy preserving. In contrast, the design
method proposed in this paper exactly preserves the energy of
the closed-loop system. This feature relies on the conservative
property of the discrete Hamiltonian dynamics (11) as stated in
Proposition 4.

Consider now the whole IDA-PBC steering lawues+udi. The
Figure 2 shows the orbits in the phase plane. Clearly, with
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Fig. 1. Energy of the closed-loop withues controllers (udi = 0).

the chosen energy shaping and damping gains, all trajectories
converge to the equilibrium point (the origin). However thecon-
vergence rates differ. The closed-loop behaviour obtainedwith
the discrete controller of proposition 4(ii) and the continuous
one are similar, and they do have the same convergence rate.
But the two remaining discrete approaches are less satisfactory.
Indeed, as the latter dynamics do not fully satisfy the energy
balance, the controller has to compensate the trajectory errors
due to the energy drift at any time mesh, hence the convergence
rate decrease.
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Fig. 2. Trajectories of the pendulum with controlues+udi.

Furthermore, it is worth noting that, if the discrete energybal-
ance is not satisfied, the control law stabilizes the equilibrium
only if the damping injection gain is able to compensate the
energy drift at any time mesh. The explanation is the follow-
ing. The continuous-time closed-loop energy balance involves
a skew-symmetric product (associated withJd) minus a sym-
metric non-negative product (associated withRd). The first one
is zero by skew-symmetry, and the energy variation is thus
negative. However, in discrete settings, preserving the structure
of the equation (that is theJd matrix) is no longer sufficient to
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guarantee energy conservation. As an illustration, focus on the
one mesh detail presented in the Figure 1. It is there obvious
that if (udi)n is not able to compensate the numerical growth
of energy, the desired energy will not converge (to zero in the
present case) and the associate control law will not be stabiliz-
ing. So, if the energy is not conserved, there exists a critical
damping gain depending on the choice of the discretization
scheme and on the time step (as the scheme and the step size
characterize the numerical growth of energy on a mesh). Hence
dissipativity is no longer an intrinsic property of the discrete
dynamics. Stabilizing neither. This will be illustrated inthe
following example.

4.2 Impact oscillator

Let us now consider the so-calledimpact oscillatorwhich is
considered to have rich dynamics [Hairer et al., 2002]. Its
Hamiltonian function is given by

H(q, p) =
1
2

p2+
0.15

2
q2+

1
q2 , q 6= 0, (20)

generating the dynamics










q̇= p

ṗ=−0.15q+
2
q3 +u(t)

y= p

. (21)

The desired closed-loop energy is chosen as

Hd(q, p) = H(q, p)+0.35 cos(q)−
1
2

ln(q)−
3
2

q (22)

As previously, one computes the continuous-time IDA-PBC
control laws following the equations (8) and (9)

ues(t) = 0.35sin(q(t))+
1

2q(t)
+

3
2

and
udi(t) =−Kdi p(t)

(23)

The discrete energy shaping control design of Proposition 4
writes

(ues)n = −0.35
cos(qn+1)− cos(qn)

qn+1−qn

+
ln(qn+1)− ln(qn)

2(qn+1−qn)
+

3
2

(24)

which has been solved using a fixed point method. As in the
previous example, we shall compare the simulation results with
the discrete controllers proposed in the literature.

All numerical results concern the same initial conditions
(q0, p0) = (4,−0.75), damping gainKdi = 0.05, and simulation
time tend = 150(s). The taggedcontinuouscurves have been
obtained with MATLAB ODE23T solver (as specifically rec-
ommended in [Leimkuhler and Reich, 2005]) and the remaining
curves have been implemented with a time step∆t = 0.8(s).

We first consider the energy shaping controllersues. All the
computed orbits are presented in figure 3. As expected, one
notices that the continuous-time controller and the discrete
controller proposed here (Proposition 4(i)) have a similarbe-
haviour. As the proposed discrete Hamiltonian dynamics is
conservative, its orbit winds around the continuous one. As
expected, the trajectories computed with the discrete controllers
taken from the literature suffer from discretization and design
errors, hence the divergent orbits.
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Fig. 3. Orbits of the impact oscillator with controlues (udi = 0).

Consider now the whole IDA-PBC steering lawues+udi. The
trajectories are presented in the Figure 4. Once again, the
continuous-time controller and that one of Proposition 4(ii)
lead to similar closed-loop dynamics. For the remaining curves,
representing the closed-loop behaviours obtained with thecon-
trollers taken from the literature, the orbits diverge. Despite of
adding damping in the system, the amount of added dissipa-
tion is not enough to compensate the discretization and design
errors. Dissipativity is thus no longer an intrinsic property of
the discrete dynamics. The discretization step did not translate
this genuine fundamental property which is essential to forecast
discrete closed-loop behaviour.
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Fig. 4. Trajectories of the impact oscillator with controlues+
udi.

To emphasize the role of the discrete system properties (result-
ing from the choice of the discretization scheme and the defini-
tion of suitable conjugate port output), let us apply the discrete
controllers proposed in the literature to a discrete Hamiltonian
dynamics derived by an energy-preserving integrator such as
(10). The trajectories are presented in the Figure 5. The tra-
jectories associated with the discrete controllers taken from
the literature are no longer divergent (compare with Figure4).
They both converge to a limit cycle. Again, the control law
proposed in [Laila and Astolfi, 2005] seems more efficient since
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it steers the system closer to the desired equilibrium. Notice
that these results still depend on the step size. However, itis
worth noting that each controller generates its own limit cycle:
the trajectories actually converge to distinct limit cycles! The
discrete closed-loop behaviour is thus highly connected tothe
controller settings (and the step size) although the designis
originally based on intrinsic system properties. This illustrates a
severe drawback of such discrete controller design. The closed-
loop behaviour analysis becomes no more systematic and has to
be studied case-by-case. Indeed, Greenspan integrator ensures a
stable energetic behaviour (hence convergent trajectories com-
pared to Figure 4), but design error remains. The observed limit
cycles precisely correspond to the exact balance of the design
error by the stable energetic behaviour. Therefore, one may
translate a limit cycle as the numerical energy level associated
with the design error.
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Fig. 5. Trajectories of the impact oscillator with controlues+udi
computed with Greenspan scheme.

5. CONCLUSION

In this paper, the discrete IDA-PBC design has been addressed.
In continuous-time, this design relies on intrinsic systemprop-
erties (such as energy conservation and passivity). The idea is
thus to preserve these properties while deriving a discretedy-
namics. We give here a definition of a discrete port-Hamiltonian
dynamics which exactly satisfies a discrete energy balance.We
then use this discrete Hamiltonian dynamics to design a discrete
controller following the IDA-PBC procedure. It has been shown
that the desired equilibrium is (asymptotically) stable with this
discrete controller. Then, the efficiency of this design method
has been discussed on two examples. The first one illustratesthe
efficiency improvement with respect to discrete controllers pro-
posed in the literature, especially concerning its convergence
rate. In the second one, we stress that discretization and/or
design errors disrupt discrete dynamics properties and generate
aleatory behaviours (in the sense that they have to be studied
case-by-case). We point out the intrinsic system properties that
have to be carried out to the discrete system in order to forecast
its closed-loop behaviour.
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