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Abstract: We address the discrete-time passivity-based control $gwthesis within port-Hamiltonian
framework. We focus on IDA-PBC design for canonical portatilionian systems with separable energy
being quadratic in momentum. For this class of systems, Vieada discrete Hamiltonian dynamics that
exactly satisfies a discrete energy balance. We then dediszeete controller following the IDA-PBC
procedure. The proposed methodology relies on an energgetimation scheme with suitable discrete
conjugate port variables. The main result is illustratedvem examples: a nonlinear pendulum in order
to compare with some simulation results of the literatunel, the impact oscillator which requires robust
discretization scheme.

1. INTRODUCTION states. Its performance thus relies on the discretizatibarae

accuracy.
Discrete-time control design is of fundamental interestemwh
considering control technics based on continuous-timeaho
properties. One motivation would be stated as follows: as n

merical integration scheme may not translate all modetppr dynamics €.g, structure discretization [Talasila et al., 2006],

erties, the resulting discrete dynamics may differ fromeke . . o = ; :
pected one. Therefore, information loss induced by the—timigg%'is%it'gfg?nZg‘gélaM%nnda CA(;SEIZ] Zgggg]])' SA?T]’?(L?;%
discretization step has to be controlled in order to franee t 9 " ' N y

discrete behaviour. This is especially the case in the Hamil crete Hamiltonian dynamics have been derived with resject t

; P o some initial intrinsic properties, such as passivity, @) en-
nian framework considering passivity-based controllers. ergy balance. The direct discrete-time IDA-PBC designessu

Energy-based modeling, stemming from Lagrangian and Hartilave been treated in the case of separable Hamiltoniare[Lail

tonian approaches in the field of mechanics, has provide@a nand Astolfi, 2005] and for underactuated controlled Hamil-

mathematical framework for the analysis of dynamical syste tonian systems [Laila and Astolfi, 2006a, Goren-Sumer and
These approaches have been widely developed and extendattin, 2011]. The drawback of these results resides on an
to many engineering areas such as electronics, electratragralmost energy balance equation (leading to numerical) dinit

ics, mechatronics, etc. Subsequently, the concept of giexgy may be overcome to improve the performance. Anyway, all
been brought to control design issues. these references agree to the fact that emulation comntoalfe

be enhanced.

dOtherwise, discrete controller synthesis can be tacklech fa
L(ilirect design viewpoint. In the Hamiltonian frameworksthp-
proach is based on the definition of a discrete port-Hanidton

In this paper, the port-Hamiltonian framework (introduded

[Maschke and van der Schaft, 1992]) is considered. It is knowOur contributions concern discrete IDA-PBC design gernmegat
to handle systems representation and analysis in variogs pha closed-loop behaviour similar to the continuous one. T th
ical domains. By naturePort-Hamiltonian systemgdenoted end, we focus on discrete systems intrinsic propertiesidas
PHS) fit into the Dissipative systems theory [Willems, 1972]characteristics and passivity. We first introduce a new digfin
This intrinsic property underlies thmterconnection damp- of a discrete port-Hamiltonian dynamics that exactly $iatsa
ing assignment passivity-based contmeéthod (denoted IDA- discrete energy balance. This definition is based on an gnerg
PBC) developed in [Ortega et al., 2002b]. In this frameworkpreserving integrator [Greenspan, 1974] and suitableucatg
IDA-PBC appears crucial since it generates all asymptlfica port-output variables. The design is then derived for 20yful
stabilizing controllers. However, since simulation résudre actuated canonical port-Hamiltonian systems with separab
obtained using a computer solver (regardless system propenergy being quadratic in momentum. Simulation resultsvsho
ties), the discrete closed-loop behaviour may be not asesffic the improvement of the numerical behaviours with respect to
as expected for the reason mentioned above. discrete controllers proposed in the literature.

A common method used to design a discrete controller reties dhe paper is organized as follows. In Section 2, we briefly
sampling a continuous-time controller. Such a controdlelied introduce port-Hamiltonian systems and IDA-PBC design in
emulation controlleris easy to compute but its performanceshis framework. Section 3 concerns our contributions: wienee
are inconstant. In practice, its implementation is donevual-e a discrete port-Hamiltonian dynamics which is consereativ
uating the continuous-time controller at the computedrdisc and the discrete IDA-PBC design is then derived. Two exasple
have been implemented and the simulation results are disdus
in Section 4. Section 5 concludes the paper.

* This work is supported by the ANR project entitled Approxtina of Infinite
Dimensional Systems financed by the French National Rdséagyency.
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2. HAMILTONIAN FRAMEWORK & IDA-PBC DESIGN context of nonlinear systems given by (1), IDA-PBC technic
aims at designing the desired closed-loop energy as

In this section, we introduce the class of nonlinear systanas 110
the associated control laws synthesis we are concerned with Ha(9,p) = 5P Mg~ p+Va(a) (5)
We first recall basics on the port-Hamiltonian frameworkogether with the closed-loop dynamics
[Maschke and van der Schaft, 1992, van der Schaft, 1999]. In q OgHa
particular, such systems satisfies a dissipative equaliigtw {p] = [Ju — Rd] |:DpHd:| (6)
we aim at preserving at the discrete level.
In this framework, it has been proven that all asymptotjcallWhere o
stabilizing controllers can be generated by IDA-PBC design Jg = —JJ _ { 0 » M Md}
[Ortega et al., 2002b]. We recall here the fully actuatececas ~MgM ™" Jo(q, p)
that a discrete version will be derived in Section 3. and
_pr_10 O
2.1 Port-Hamiltonian Systems (PHS) Ri=Ry = 0 BKgiB" | -

We are interested in nonlinear systems with precise stru€0 summarize, IDA-PBC design consists of two steps.

tﬁre, thﬁ so—%alledort-HamiItonian §ys|ten(also de_r(ljoted Pm:')S' The first one, calle@nergy shapingfixes the desired energy
throughout the paper). More precisely, we consider cambnic | hich has a strict local minimum at the desired equilibrium.

PHS which dynamics writes [van der Schaft, 1999] The associated control inpuks is obtained by solving the

[q} _ { 0 Id] {DqH} +[ 0 } t) model matching (1) = (6) without dissipative matrix
p| ~ |—Id 0| [OpH| T |B(q) (1) [ 0 Id} [DqH]+[ 0 ]u _[ 0 MlMd] [Dqu]
y(t) = B(q)T OpH =Id O] [TpH| " [B(@)] 7 | -MgM~ J(q,p) Dpl-éc;)'

where g € R" is the generalized displacememt,c R" the . .

genera?ized momentﬁgl]XH denotes theppartial drgrivative bf The energy shaping controllggs has to satisfy

with respect ta, B(q) € R™™M is the input force matrix, with B(q) Ues= {OgH — MgM ~10qHy +J0pHqg} - (8)

B(q)u denoting the generalized forces resulting from the contr@lere comes the restriction we are concerned with, that is the

inputsu € R™, andy € R™ is the conjugate port-output of the gy stem s fully actuated and the matiis assumed to be

system. invertible. Hence the control law is easily computed by left

The Hamiltonian (energy) functidd is supposed to be separa-multiplying both sides bya(q) .

ble and quadratic ip, that is, of the form Remark 1.In the case of underactuated systems, a matching
1 0.1 , T condition associated with the annihilator Bfarises. A set of

H(a,p) = 5P M™"p+V(q) with M' =M>0. (2) ppEs has to be solvable in order to derive the energy shaping

) o ) ) ) controller using the Moore-Penrose pseudo-inverse. Railde
The time derivative oH along trajectories of (1) is see [Ortega et al., 2002a,b].

d
g Ham, )= y' (tu(t) (3)  The second step, callethmping injectionconsists of adding
; ; : fecinati ; friction to the system in order to achieve asymptotic stzail

which by integration leads to thte dissipative equality tion of the desired equilibrium. The damping injection con-
H(t) —H(to) = / y' (s)u(s)ds. (4) trollerug; is constructed as

o Ugi = —Kgiy = —KqiB(q) "OpHg,  Kgi > 0. 9
Equation (4) characterizes a fundamental property of PHS (1 i aiy ai B(A)" pHa d ©
the system is said to be conservative.(ossless and passive). The complete control law writes= Ugs+ Ugi.
It states that the stored energy of such systems equalsengyen

supplied through the port variables. 3. MAIN RESULT

Note that since the control laws synthesis we are consigerin

is based on system passivity, we paid a particular attemtion As pointed out in [Laila and Astolfi, 2005], discretizing H&m
preserve this property while deriving a discrete Hamiltoni tonian equations and evaluating the continuous-time IB#GP
dynamics. controller at discrete states yield a closed-loop behawigthn

Furthermore, for control issues, two essentials casestbawe performance far from acceptable (compare the desired gnerg

distinguished with respect to the rangeof the input vector of the continuous controllemwith the emulation controllerin

. : : Figure 1). In the literature, there are only few referented t
field. The PHS (1) is said to be fully actuated whan-= n, and . . ) . .
underactuated whan < n. Since we aim at illustrating our new address discrete IDA-PBC design. Basically, those ingasti

discrete Hamiltonian dynamics for discrete controllerigies gons;ocus on ((j;.rf(.ecé (_jlicret?—tlme LDA'P?hC tco_ntrolltter @gsf .
issues, we shall restrict our investigations on the simplese 22S€d 0N & modiiied integration scheme that aims at satstyin

. : . an energy balance up to the second order [Laila and Astolfi,
of fully actuated systems. ThuB,is assumed to be invertible. 2005, 20063, Goren-Siimer and Yalcin, 2011].
2.2 Continuous-time IDA-PBC design We shall present here a discrete port-Hamiltonian dynamics
which exactly satisfies an energy balance equation. This for
We are concerned with control law synthesis following thenulation is used to design a discrete IDA-PBC controllehwit
IDA-PBC design presented in [Ortega et al., 2002b]. In thelosed-loop performance similar to the designed contisuou
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performance. In particular, we shall illustrate energysssn sampled-data [Stramigioli et al., 2005, Monaco et al., 2009
vation of the closed-loop system when only energy shaping ke discrete Hamiltonian dynamics (11) encodes two funda-
considered. mental properties: energy conservation and passivity.

Our result combines an energy-preserving discretizatibame Proposition 3. The d_iscrete PHS (11) is conservative w.r.t. the
introduced in [Greenspan, 1974] with a suitable definition ¢>2M€ storage functid.
discrete conjugate port variables. The IDA-PBC contralieT- ¢ The statement of the proposition is straightforward once

thesis is then considered as a model matching issue in the [&iced that on a time-mesh the energy balance writes
stricted case of a fully actuated controlled Hamiltoniasteyn. H(g B 1) — H (G, Pr) — Atyou
n+1, Mn+-1) — n, Pn) = nUn .

Remind that we only deal with the 2-dimensional fully acagat The discrete Hamiltonian dynamics (11) satisfies a dissipat
case, with separable energy being quadratic in momentum. equality (the system is lossless) with a storage functide ra

given as the input/output product (the system is passiv, i
3.1 Discrete port-Hamiltonian systems thus conservativdll

The energy-preserving scheme proposed in [Greenspan] 1934 Discrete IDA-PBC design

concerns canonical Hamiltonian systems with separablggne ) o ) ]

H(q, p) quadratic inp, as given in equation (1) withi = 0. Based on the discrete Hamiltonian dynamics defined by (11),
Notice that this scheme preserves the structure of the ieguatWe design a discrete-time controller following IDA-PBC.

(thatis, the structure matrik). It writes The open-loop discrete dynamics is given by (11), and the
Ont+1—0n V(Gn+1) —V(an) desired closed-loop discrete dynamics is considered as
A l O Il dnia—an . Gn1— Gn V(1) — Va(Gh)
Pni1— Pn -1 0 Pn+1+ Pn At = [J—Ry] On+1—0Gn : (12)
At 2 Pni1— Pn Pns1+ Pn
This descretiz_ation scheme exactly preserves the Harlon At 2
Indeed, on a time mesh, the energy variation writes which is the discrete version of (6) with desired enerigy(5).
AH, 2 H(0n+1, Pny1) —H(An, Pn) If we now translate the model matching equation (7) within

discrete dynamics, the energy shaping controller writes

_p1 V(A1) —V(an)  Va(Gn+1) —Va(an)
(Ueghn = Bt < On+1—0On On+1—0n ) '

— (3 n +Vanin) | - [3 (o +v(an)]

Rearranging the terms, it remains to see that

2 [tonen? = o0?] = (P EPY) (s o) o
2 [P " 2 L The damping injection controller given by (9) is computethwi
(10) { On+1—0On the suitable discrete conjugate output defined in (11) éwisl
= Ta )PP Gn1— Gn
(Ugi)n = —KdiYn = —Kqgi B(Oh) —— . (14)
and At
(10 _ (Pn+1—Pn Finally, the discrete control law writeg = (u Ugi)n. Let
vV -V =) _ (Pl — Y, &% = (Ues)n + (Udi)n
(Gns2) (Gn) ( At ) (Gn+-1 = ) us now state the closed-loop property obtained with
to conclude thaf\H,, = 0 regardless the time stéy. Proposition 4. Consider the discrete dynamics (11) and the

desired closed-loop dynamics (12) whéfg has an isolated

We now introduce port variables. The control inputaturally minimum atg’. Then

arises in thep ‘equation, whereas the conjugate port-output
can be defined by several manner. In the literature, follgwin (i) (g*,0) is a (locally) stable equilibrium of the closed-loop

the continuous-time definition of a PHS, a classical definiti system withun = (Ues)n given by (13).

of yn relies on the gradient ¢ evaluated atqn, pn). The slight (i) (g*,0) is an asymptotically stable equilibrium of the

difference here resides on the use of a discrete gradient. closed-loop system witty, = Ues(N) 4 Ugi(n) given by (13)
and (14).

Let us now introduce our definition of discrete PHS dynamics.
Definition 2. A (canonical)discrete port-Hamiltonian dynam- Proof. Notice first that, by construction, the control lauy

icsis defined by applied to the system (11) leads to the closed-loop syst@in (1
Onei—0n  Prst—+ Pn We shall use Lyapunov’s second theorem to prove the statemen
At = 2 of the proposition. Lek(x) = Hq(X) — Hq(X*) be the Lyapunov

candidate, wher&* = (g*,0). Then L is positive definite in a
neighborhood ok* andAL,, = (AHg)n. It follows

- \ -V
Pri1—Pn _ V(Ohi1) (qn)—i-B(qn)Un

At On+1—Gn (1) (i) ALn= 0 inthe casel, = (Ues)n, hencex* is stable
_B On+1—0n (i) ALn < O in the caseln, = (Ues)n + (Ugi)n SiNce a straight-
Yn = B(0h) At forward calculation leads to
Aln 2 L(On+1, Pny1) — L(Gn, Pn)
Among the discrete Hamiltonian systems formulation that ca _ _i( —gn)TBKgi BT( — ) (15)
be found in the literaturee(g.structure discretization [Talasila = ap G 15 {Gn+1 7 0
et al., 2006], time-discretisation [Laila and Astolfi, 2@06 Hencex* is asymptotically stable for argy; > 0. B
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Notice that, as in the continuous setting, the dissipatiopgrty

of the discrete closed-loop system is an intrinsic propefrtie 450 ‘
system. Contingous ;
400 - — % — Emulation controller #
+ - Literature controller | ,
4. EXAMPLES 350+ —O— - Proposed controller | ¥ -
#
We shall now illustrate the performances of the proposed . . #
discrete-time design method. Two classical examples hees b 3 250 *
implemented: the nonlinear pendulum which has been studied ¢ a0l a
in the literature, and the impact oscillator which is coesét B o
to have a very rich dynamic (its momenta has to change very § 150 *
rapidly on a short time interval). 100/ ﬁ%*
In order to compare numerical results, a reference curve is sol **** ]
needed, namely the continuous-time solution. Generadiplsp o ‘Mﬁﬁiﬁﬁﬁiﬁwwmﬂ++++++
ing, no analytical solution is available, thus we shall ¢des o
our reference, the taggentinuouscurves, as the numerical 50 ‘ ‘ ‘ ‘ ‘ ‘ ‘
solution obtained with high order accuracy solver and small S
time step.
4.1 Nonlinear pendulum Fig. 1. Energy of the closed-loop witks controllers (i4; = 0).

the chosen energy shaping and damping gains, all trajestori
r"(l,onverge to the equilibrium point (the origin). However toa-
vergence rates differ. The closed-loop behaviour obtaividd

Consider the nonlinear pendulum given in Hamiltonian for
(1) with energy function

15 the discrete controller of proposition 4(ii) and the contins
H(@.p) 2p cosa)- (16) one are similar, and they do have the same convergence rate.
The dynamics then explicitly writes But the two remaining discrete approaches are less satisyac
q=p Indeed, as the latter dynamics do not fully satisfy the eperg
{ p= —sin(q) +u(t) . (17) balance, the controller has to compensate the trajectooyser
y=p due to the energy drift at any time mesh, hence the conveegenc
The desired closed-loop energy is chosen as rate decrease.
Hq(a, p) = %p2—008(q>+K7e‘°‘q2+ 1. (18)
The continuous-time IDA-PBC design, as recalled in equiatio 15 S
(8) and (9), yields the control laws e — % — Emulation controller
Ues(t) = —Kesq(t) and ugi(t) = —Kgip(t)  (19) AN 3 Proposed conoler |
whereas the discrete-time IDA-PBC derived in this papddgie
the control laws(ues)n and (ugi)n given equations (13) and ?}
(14) respectively. The simulation results are comparel thie N ‘f‘\\
closed-loop behaviours obtained with: 1) the emulation-con g i
troller, that is evaluating (19) at stage and 2) the controller £ e
presented in [Laila and Astolfi, 2005, 2006a] based on a modi- = JF
fied Euler scheme. N
)é/
All numerical results concern the same initial conditions g
(do, po) = (0.51—0.2,0.5). The taggedontinuousurves have
been obtained with MATLABODEA4S solver with fixed time ‘ ‘ ‘ ‘ ‘
stepAt = 10-%(s), and the remaining curves have been imple- E -05 0 05 1 15 2

mented with a time stefit = 0.35(s). Displacement g

We first consider the energy shaping controllegs The Figure Fig. 2. Trajectories of the pendulum with conttk-+ U

1 shows the closed-loop energitdg computed with the differ- - . . .

ent schemes. One notiges thgt the em%lation and the "teratuFurth(_armore, Itis worth noting that, if the _d_lscrete enebgy
controllers are not energy preserving. In contrast, thégdes 21C€ IS not satisfied, the control law stabilizes the eqiifo
method proposed in this paper exactly preserves the enérgy2gy If the damping injection gain is able to compensate the
the closed-loop system. This feature relies on the contesva energy drift at any time mesh. The explanation is the follow-

property of the discrete Hamiltonian dynamics (11) as etate "'9: The continuous-time closed-loop energy balance el
Proposition 4. a skew-symmetric product (associated wigh minus a sym-

metric non-negative product (associated viRf). The first one

is zero by skew-symmetry, and the energy variation is thus
Consider now the whole IDA-PBC steering laws+ ugi. The negative. However, in discrete settings, preserving thetire
Figure 2 shows the orbits in the phase plane. Clearly, withf the equation (that is th& matrix) is no longer sufficient to
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guarantee energy conservation. As an illustration, focuthe

Continuous — * — Emulation + - Literature - —O— Proposed
T

one mesh detail presented in the Figure 1. It is there obvious 4 ‘ P
that if (ugi)n is not able to compensate the numerical growth x/ . oo
of energy, the desired energy will not converge (to zero & th ¥ e /J;:,ﬂ . N,
present case) and the associate control law will not belitabi Al % \&\Q\+ AN
ing. So, if the energy is not conserved, there exists a atitic i N L ¥
damping gain depending on the choice of the discretization it 1 %\ \
scheme and on the time step (as the scheme and the step siz § i ¥> X
characterize the numerical growth of energy on a mesh). élenc e ® J‘ . i
dissipativity is no longer an intrinsic property of the diste =l b oo 1
dynamics. Stabilizing neither. This will be illustrated ihe . / h
following example. Sl /@/@/@ + !
N\ - !
. -3 " o + /* ,
4.2 Impact oscillator N //
4l L Lt +, VA
Let us now consider the so-callémpact oscillatorwhich is ° ° Dispiacementq 2

considered to have rich dynamics [Hairer et al., 2002]. Its

Hamiltonian function is given by Fig. 3. Orbits of the impact oscillator with contnads (ug; = 0).

1 0.15 1
H(d,p) = > PP+ qu +—., 4#0, (20)  Consider now the whole IDA-PBC steering laws+ ugi. The
i ) q trajectories are presented in the Figure 4. Once again, the
generating the dynamics continuous-time controller and that one of Proposition)4(i
g=p lead to similar closed-loop dynamics. For the remainingesy
. 2 representing the closed-loop behaviours obtained wittcdime
p=-015g+ @ +u(t) . (21) trollers taken from the literature, the orbits diverge. pitssof

y=p adding damping in the system, the amount of added dissipa-
tion is not enough to compensate the discretization andydesi

1 3 errors. Dissipativity is thus no longer an intrinsic prapesf
Hq(a, p) = H(q, p) + 0.35 cogq) — > In(q) — §q (22) the discrete dynamics. The discretization step did notteae

_ ) ) this genuine fundamental property which is essential tedast
As previously, one computes the continuous-time IDA-PB@jscrete closed-loop behaviour.

control laws following the equations (8) and (9)

The desired closed-loop energy is chosen as

. 1 3
Ues(t) = 0.35sinq(t —— 4= 5 ‘ :
d eS( ) r(q( )) i zq(t) i 2 (23) - ¥ 7(E:r?1r21tli;yiglgiontroller
an 4r iterature controller |
Udi(t) = —Kyi p(t) He *g* II;:opotsed conttrollller
The discrete energy shaping control design of Proposition 4 i
writes .l Sk
(ues)n _ _035C051qn+1) - Coiqn) ; \\
On+1—0n (24) 5 1 *
IN(On+1) — In(an) +§ 32 A N L
2(On+1—0n) 2 !
which has been solved using a fixed point method. As in the Al N *
previous example, we shall compare the simulation restiits w /
the discrete controllers proposed in the literature. -2t K
All numerical results concern the same initial conditions Sl ‘ ‘ ‘ ‘ ]
(do, po) = (4,—0.75), damping gairKg; = 0.05, and simulation 4 6 8 10 12 14 16 18 20

Displacement q

time teng = 150(s). The taggedontinuouscurves have been
obtained with MATLAB ODE23T solver (as specifically rec-
ommended in [Leimkuhler and Reich, 2005]) and the remaininigig. 4. Trajectories of the impact oscillator with contrgk+
curves have been implemented with a time gtep- 0.8(s). Ugi.

To emphasize the role of the discrete system propertiegl{res
We first consider the energy shaping controllags All the ing from the choice of the discretization scheme and the defin
computed orbits are presented in figure 3. As expected, otien of suitable conjugate port output), let us apply thedite
notices that the continuous-time controller and the discrecontrollers proposed in the literature to a discrete Hamiéin
controller proposed here (Proposition 4(i)) have a sintiler dynamics derived by an energy-preserving integrator ssch a
haviour. As the proposed discrete Hamiltonian dynamics {€.0). The trajectories are presented in the Figure 5. The tra
conservative, its orbit winds around the continuous one. Agsctories associated with the discrete controllers takemf
expected, the trajectories computed with the discretaolherts  the literature are no longer divergent (compare with Fighre
taken from the literature suffer from discretization andiga  They both converge to a limit cycle. Again, the control law
errors, hence the divergent orbits. proposed in [Laila and Astolfi, 2005] seems more efficientain
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it steers the system closer to the desired equilibrium. dgoti REFERENCES
that these results still depend on the step size. Howevi, it
worth noting that each controller generates its own limiley
the trajectories actually converge to distinct limit cygtl@he
discrete closed-loop behaviour is thus highly connectati¢o
controller settings (and the step size) although the deisign
originally based on intrinsic system properties. Thissitates a
severe drawback of such discrete controller design. Treedlo
loop behaviour analysis becomes no more systematic and has t
be studied case-by-case. Indeed, Greenspan integratoesias
stable energetic behaviour (hence convergent trajestoam-
pared to Figure 4), but design error remains. The obserxed i
cycles precisely correspond to the exact balance of thgesi
error by the stable energetic behaviour. Therefore, one may
translate a limit cycle as the numerical energy level assedi -
with the design error.
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dynamics which exactly satisfies a discrete energy balatiee.

then use this discrete Hamiltonian dynamics to design aetisc

controller following the IDA-PBC procedure. It has beenwho

that the desired equilibrium is (asymptotically) stabléhwhis

discrete controller. Then, the efficiency of this design et

has been discussed on two examples. The first one illustregtes

efficiency improvement with respect to discrete contrslf@o-

posed in the literature, especially concerning its corsecg

rate. In the second one, we stress that discretization and/o

design errors disrupt discrete dynamics properties andrgésn

aleatory behaviours (in the sense that they have to be studie

case-by-case). We point out the intrinsic system propettiat

have to be carried out to the discrete system in order to &stec

its closed-loop behaviour.
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