
Calibration of Parallel Hybrid Vehicles
Based on Hybrid Optimal Control Theory

Markus Schori ∗ Thomas J. Boehme ∗∗ Benjamin Frank ∗∗

Matthias Schultalbers ∗∗

∗University of Rostock, Institute of Automation, 18119 Rostock,
Germany (e-mail: markus.schori@uni-rostock.de)

∗∗ IAV automotive engineering, Department of Gasoline Engine
Systems, 38518 Gifhorn, Germany

Abstract: Most energy management systems for hybrid electric vehicles rely on information
stored in lookup tables, to define the current mode of operation under certain circumstances.
In this paper it is demonstrated how the theory of hybrid optimal control can be used to
calculate an initial parameter set for the calibration of parallel hybrid electric vehicles. After
solving a hybrid optimal control problem for the fuel optimal operation of the vehicle, taking
into account continuous as well as discrete dynamics, the results can be used to automatically
calculate lookup tables for optimal gear shifts, optimal torque-split between motor/generator
and internal combustion engine and the determination of the drive mode (electric or hybrid
mode). The algorithms proposed are easy in their application and can be used for other hybrid
vehicle configurations as well and therefore constitute a valuable tool for the initial calibration.
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1. INTRODUCTION

Increasing prices for crude oil and growing environmental
concerns give rise to the continuing development of hybrid
vehicles. This type of vehicle adds additional degrees of
freedom (DOF) to a conventional powertrain. In paral-
lel configurations of hybrid electric vehicles (HEV), the
addition of an electrical motor/generator (M/G) allows
the internal combustion engine’s (ICE) torque to be cho-
sen within certain limits independently from the driver
request. This degree of freedom can be used to improve
the overall efficiency of the system and is controlled by a
cascaded controller structure. The energy management of
an HEV has the task to supply reference trajectories to
this controller structure.

Many different strategies exist in the literature and in
practical applications to calculate the reference trajecto-
ries. Those can be distinguished in rule-based and analyti-
cal approaches. A promising analytical approach is the use
of optimal control theory. The fuel-optimal operation of an
HEV over a representative drive cycle can be formulated as
an optimal control problem (OCP) and this problem can
then be solved during the operation of the vehicle, using
the existing theory, e.g. Pontryagin’s Minimum Principle.
The solution of such OCPs is discussed in Kim et al.
[2009], Stockar et al. [2011], Kim et al. [2011] and is
also implicitly connected to the well developed theory of
equivalent consumption minimization strategies (ECMS)
proposed in Paganelli et al. [2002] and expanded by Chen
and Salman [2005], Musardo et al. [2005] among others.

However, the existence of both, continuous and discrete
controls, such as gear shifts and drive mode, make the
OCP much harder to solve. The mathematical derivation

of such a system can be classified as hybrid system and the
corresponding control problem as hybrid optimal control
problem (HOCP). A solution of this type of problem
contains continuous controls u(t) as well as a sequence
of discrete decisions that can be expressed formally by a
piecewise constant switching function σ(t). Furthermore,
the use of strategies based on online optimal control is
yet prevented by the limited performance of the electronic
control units (ECU) and the fact, that information on the
future driving profile is required to solve the OCP.

As a consequence, most HEVs still rely on rule-based
strategies. In this paper, it is demonstrated, how hybrid
optimal control theory can be used to calculate an initial
set of calibration parameters for a given HEV, considering
continuous controls as well as discrete decisions. This pa-
rameter set is stored in the form of lookup tables (LUT),
that are then evaluated during operation and the respec-
tive information is passed on to the lower layer controller
structure. Because of the wide range of possible parame-
ters, this analytical method of defining the paramters has
big advantages in contrast to often cumbersome heuristic
procedures.

An indirect variation of extremals algorithm is used to
solve the HOCP efficiently. It is shown that the costate
can be assumed to be constant without significant loss
of accuracy. This assumption is also widely made in the
literature (Kim et al. [2011]). In this paper we demonstrate
how the results, especially the constant costate, can then
be used to calculate LUTs for the optimal choice of

• torque-split between M/G and ICE
• gear choice
• drive mode.
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The paper is structured as follows: In section 2, we outline
the theory of hybrid optimal control problems and state
necessary conditions for optimality. In section 3, a compact
mathematical model for the underlying HEV is derived.
An HOCP for the fuel-optimal operation of the HEV over
a given cycle is defined in section 4. In section 5, the
algorithm used for the solution of the HOCP is formulated
and the results are analyzed. Section 6 shows the minor
optimization error of an assumed constant costate. Finally,
in section 7, it is demonstrated how the results can be used
to calculate the LUTs listed above.

2. HYBRID OPTIMAL CONTROL PROBLEMS

We follow the definition of a hybrid system in Sager [2005],
where the vector field f : Rn+m × Z × [t0, tf ] → Rn,
governing the evolution of the system’s state, besides the
state x(t) ∈ Rn and the continuous control u(t) ∈ Rm, also
depends on the piecewise constant function σ(t) ∈ Z:

ẋ(t) = f(x(t), u(t), σ(t), t) (1)

x(t0) = x0. (2)

In this case we assume a given initial state x0. The time
just before a change in the switching function σ(t) occurs
is defined by t−j and the time just after a change by

t+j . In this paper, we regard systems with continuous
states and controlled switchings, meaning that the vector
field f changes discontinuously only in response to a
commanded change in σ(t) (Branicky and Mitter [1995]).
The continuous control u(t) as well as the discrete control
σ(t) are constrained by the functions

cu(u(t), t) ≤ 0, t ∈ [t0, tf ] (3)

cσ(σ(t), t) ≤ 0, t ∈ [t0, tf ]. (4)

The set of feasible continuous controls can then be defined
as U = {u|cu(u(t), t) ≤ 0} and the set of feasible discrete
controls as Θ = {σ|cσ(σ(t), t) ≤ 0}.
With the cost-function φ : Rn → R, the HOCP can then
be defined as

min
u(t)∈U,σ(t)∈Θ

φ(x(tf )). (5)

The functions cx : Rn × [t0, tf ] → Rn and ψ : Rn → Rn
impose general and final state constraints

cx(x(t), t) ≤ 0, t ∈ [t0, tf ] (6)

ψ(x(tf )) = 0 (7)

on the dynamical system.

To allow for a compact description of necessary conditions
for optimality, the Hamiltonian function is defined as

H(x(t), u(t), σ(t), λ(t), t) := λT (t)f(x(t), u(t), σ(t), t)
(8)

where the time dependent multiplier λ ∈ Rn is called the
costate. The following necessary conditions for optimality
can be stated (Bryson and Ho [1975], Riedinger et al.

[1999], Shaikh [2004]) for any t ∈ [t0, tf ] for an uncon-
strained arc (cx(x(t), t) ≤ 0):

• There is a costate λ(t) governed by the differential
equation

λ̇(t) = −∇TxH(x(t), u(t), σ(t), λ(t), t) (9)

• For almost all t ∈ [t0, tf ] the Hamiltonian function
fulfills

H(t) = min
u∈U,σ∈Θ

H(x(t), u(t), σ(t), λ(t), t) (10)

• The transversality conditions

λi(tf ) =
∂φ(x(tf ))

∂xi(tf )
− νi

∂ψ(x(tf ))

∂xi(tf )
(11)

apply for all i = 1, . . . , n, where νi are additional
Lagrange-multipliers

• At a switching time tj for a controlled switching

λ(tj+) = λ(tj−) (12)

H(tj+) = H(tj−) (13)

holds.

3. SYSTEM DESCRIPTION

The parallel hybrid powertrain configuration, for which
the HOCP is to be solved, adds an additional electrical
M/G to the conventional powertrain consisting of ICE,
clutch, gearbox and differential. The M/G is installed
between clutch and gearbox. Thus, pure electric driving
and hybrid driving are possible. Figure 1 depicts the
underlying powertrain.

Fig. 1. Configuration of the parallel hybrid powertrain

A quasi-stationary model is sufficient for modeling the
vehicle with appropriate accuracy. The active drive modes
at given time t will be denoted by the binary variable

ζ(t) =

{
0 , pure electric mode

1 , hybrid mode.
(14)

The vehicle has an automatic gearbox with six gears,
whose gear-numbers are included in the set
K = {1, 2, .., 6}. The active gear at time t is given by
the discrete function κ(t) ∈ K. Consequently, the discrete
decisions at time t can be identified by the function
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σ(t) = 6 · ζ(t) + κ(t), (15)

that assigns a unique value σ(t) ∈ Θ = {1, 2, . . . , 12} to
every possible combination of gear and drive mode. The
required wheel torque Treq can be calculated with the help
of a longitudinal vehicle dynamics model (see Mitschke and
Wallentowitz [2004]). The input torque of the gearbox Tclth
is obtained as follows:

Tclth =
Treq(t)

igbx(κ(t))
+ Tloss(κ(t), Treq(t), nwh(t)), (16)

with the wheel speed nwh, the gearbox ratio igbx and
the powertrain friction losses Tloss. For the corresponding
speed nclth = nwh · igbx(κ) applies. Tclth needs to be
supplied in sum by ICE and M/G at any time:

Tclth(t) = Tice(t) + Tmg(t). (17)

Within its limits, the torque-split between ICE and M/G
is variable. Hence, the control u(t) is defined as

u(t) = Tice(t). (18)

During pure electric drive mode, the ICE is disconnected
from the powertrain by a clutch and switched off. In this
case

u(t) = Tice(t)
!
= 0 (19)

applies. The corresponding speeds are

nmg(t) = nclth(t) (20)

nice(t) =

{
0 , ζ(t) = 0

nclth , ζ(t) = 1.
(21)

The electrical system of the hybrid vehicle can be modeled
as follows: The lithium ion battery is modeled using a
simple circuit consisting of an ideal voltage source and
an internal resistance. The open circuit voltage VOC is a
function of the battery state of charge (SoC(t)). The inter-
nal battery resistance Ri is assumed to be constant in the
allowed SoC-range. This assumption holds for the most
modern battery types for hybrid vehicles. Considering the
power losses caused by the battery’s internal resistance Ri,
one obtains

Pbatt −Ri · I2 = VOC · I, (22)

where I is the battery current and Pbatt is the sum of the
electrical power Pmg of the M/G and the power required
to supply the electrical on board system, Pon

Pbatt = −Pmg(Tmg, nmg)− Pon. (23)

Pmg(Tmg(t), nmg(t)) is given by a smooth map. Solving
this equation for the battery current I yields

I =
−VOC +

√
V 2
OC + 4Ri · Pbatt
2Ri

. (24)

The differential equation for the SoC can then be written
using (24) as

˙SoC =
100

Qbatt
· I(SoC(t), u(t), σ(t), t), (25)

where Qbatt is the maximal battery capacity. The fuel
consumption can be calculated by the differential equation

β̇ = γ · bsfc(Tice(t), nice(t)) · Tice(t) · nice(t) (26)

β(t0) = 0, (27)

with the brake specific fuel consumption bsfc and γ being
a product of natural constants. Both differential equations
are concatenated as state x(t), governed by the differential
equation system

ẋ =

[
˙SoC

β̇

]
, x(t0) =

[
SoC0

0

]
. (28)

The initial state SoC0 is predefined.

4. PROBLEM FORMULATION

Given the dynamical system (28) with continuous and
discrete dynamics, the optimization task is

min
u(t)∈U,σ(t)∈Θ

β(tf ) (29)

in compliance with the final state constraint

ψ(SoC(tf )) = SoC(tf )− SoC(t0) = 0, (30)

the general state constraints

cx(SoC(t)) =

(
cx1(t)
cx2(t)

)
:=

(
SoC(t)− SoCmax
SoCmin − SoC(t)

)
(31)

and the control restraints

cu(u(t), t) :=

(
u(t)− umax(t)
umin(t)− u(t)

)
. (32)

5. SOLVING THE HOCP

The algorithm used to solve the HOCP is a variation
of extremals algorithm as in Oberle and Grimm [1989]
expanded for HOCPs. The algorithm is explained in detail
in Schori et al. [2013]. Evaluating condition (8) and the
transversality conditions (11) for the given system, results
in the Hamiltonian

H = γ · bsfc · Tice · nice + λ · 100

Qbatt
I. (33)

Evaluating the transversality conditions, the costate vari-
able for the first term in the Hamiltonian function results
to 1 and is therefore omitted. Applying the necessary
conditions for optimality to the given system, a two-point
boundary value problem (TBVP) results. With an initial
guess λ0 of λ(t0), the problem is reduced to an initial value
problem (IVP) of the form

ẏ =

[
˙SoC

λ̇

]
, y(t0) =

[
SoC0

λ0

]
(34)

with the time-derivative λ̇ given by (9). The IVP can then
be solved numerically by an appropriate solver, e.g. Euler’s
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method, on a time-grid. The controls u(tk) and σ(tk) at
each step are calculated as follows: For each σ ∈ Θ the
optimal continuous controls

uσ(tk) =


arg minu∈U H, cx(tk) < 0

arg minu∈U,I≤0H, cx1(tk) ≥ 0

arg minu∈U,I≥0H, cx2(tk) ≥ 0

(35)

and the corresponding values of the Hamiltonian function
H(SoC(tk), uσ(tk), σ(tk), tk) are calculated. σ(tk) is then
chosen such that Hσ takes on the lowest possible value
and hence condition (10) is fulfilled. Once the IVP has
been solved, the function

ψ(λ0) = SoC(tf )− SoC(t0) = 0 (36)

can be evaluated. An optimal λ(t0) is then found by itera-
tively improving the initial guess of λ0 such that condition
(36) is satisfied. This is done numerically by finding a
sequence λ0,k, k = 1, 2, . . . such that ψ approaches 0 up to
a desired exactness. The scalar equation (36) can robustly
be solved with methods of the regula-falsi class, i.e. the
Pegasus method (Dowell and Jarrat [1972]).

Figures 2 and 3 show the results obtained for the New
European Driving Cycle (NEDC). In particular, Fig. 2
depicts the operation points of the ICE in the brake
specific fuel-consumption map. It can clearly be noted that
the discrete DOFs, namely gear-choice and drive mode are
used to completely avoid the operation of the ICE at low
load and hence at low efficiency. Experiments, where only
the continuous control u(t) was optimized with a fixed
switching function σ(t), obtained from a measurement of
a near mass-production car, have shown to be less effective.

Fig. 2. Operation points of the ICE

Fig. 3. Drive mode ζ(t) and gear choice κ(t) over the
NEDC (green dashed line)

6. CONSTANT COSTATE

In general, the costate is time-dependent and its time
derivative is given by (9). For the HOCP stated in this
paper, the time derivative on an unconstrained arc would
yield

λ̇ = −λ · 100

Qbatt
· ∂I

∂SoC
(37)

= −λ · 100

Qbatt
· ∂I

∂VOC
· dVOC
dSoC

. (38)

For most battery types, VOC changes only slightly in the
allowed SoC range and hence the assumption

dVOC
dSoC

≈ 0 (39)

holds. As a consequence the costate remains constant over
the time-interval [t0, tf ]. To demonstrate the negligible
effect of this assumption, the HOCP was solved with and
without the constant costate assumption for two different
parallel HEV configurations and drive cycles. The resulting
fuel consumptions can be seen in Table 1. However, by
violating a necessary condition for optimality, the solution
cannot be referred to as optimal but only as suboptimal.

HEV drive cycle fuel con-
sumption [l] for
continuous λ

fuel con-
sumption[l]
for constant λ

HEV1 NEDC 0.4055 0.4058
HEV1 FTP 0.3362 0.3366
HEV2 NEDC 0.3498 0.3498
HEV2 FTP 0.2914 0.2918

Table 1. Effect of the constant costate assump-
tion

7. ENERGY MANAGEMENT PARAMETER
CALCULATION

In Fig. 4, a sketch of the LUT-based energy management
is depicted. The reference values κ, ζ and Tmg, supplied
to the lower level controller structure will be determined
by LUTs. In this section it is demonstrated, how the
corresponding LUTs can be calculated automatically from
the HOCP solution.

Fig. 4. Schematic of a lookup table based energy manage-
ment

An important result of the optimization is the value of
the constant costate λ. Once the costate is known, the
value of the Hamiltonian function only depends on the
clutch torque Tclth, the clutch speed nclth and the control
Tice. Consequently, a LUT with suboptimal values of
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Tice(nclth, Tclth) during hybrid mode can be generated by
calculating

LUT1 : T̂ice := û = arg min
u∈U

H(nclth, Tclth, λ, u) (40)

on a grid of (nclth, Tclth). In automotive practice, it is
common to store the desired torques Tmg in a LUT instead
of Tice. This transformation can easily be performed with
the help of equation (17). One LUT is exemplarily shown
in Fig. 5.

Fig. 5. LUT with suboptimal reference values for M/G-
torque

In the next step, the LUT for the suboptimal choice of
drive mode ζ(nclth, Tclth) can be calculated by

LUT2 : ζ̂ = arg min
ζ∈{0,1}

H(nclth, Tclth, λ, Tice), (41)

on the same grid. Since now the drive mode ζ is not
regarded as fixed, Tice has the arguments
(nclth, Tclth, ζ). For ζ = 1, Tice(nclth, Tclth) is determined
from LUT1, otherwise Tice = 0 applies. The results can be
seen in Fig. 6.

Fig. 6. LUT with suboptimal values for drive mode

For both driving modes, recommended gears κ(Treq, nwh)
can be calculated over a grid of (Treq, nwh) as follows:

LUT3,4 : κ̂ = arg min
κ∈K

H(nclth, Tclth, λ, Tice), (42)

where nclth depends on the wheel speed and the chosen
gear and hence has the arguments (nwh, κ). Tclth has the
arguments (Treq, κ). Tice(nclth, Tclth) for ζ = 1 is again
determined from LUT1 (40). Figures 7 and 8 depict LUTs

of recommended gears over the grid of Treq and the vehicle
velocity v in electric and hybrid drive mode.

Fig. 7. LUT with suboptimal gear recommendation (hy-
brid mode)

Fig. 8. LUT with suboptimal gear recommendation (elec-
tric mode)

Practical experience has shown that the LUTs 1 and 2
can usually be implemented in a HEV without further
modification and have yielded significant reductions in
fuel consumption. To determine the recommended gears
however, additional constraints such as limitations due to
driving comfort apply. These factors are hard to account
for in a mathematical model. As a consequence the sub-
optimal recommendations cannot always be followed. In
this case, it has shown to be helpful to evaluate the effect
of deviating from the recommended LUT. If the values
from the calculated LUTs are used, in general, equation
(13) holds and the Hamiltonian is continuous during a
change in the piecewise constant switching function σ,
that is a transition from one drive mode to another or
at gear changes. When deviating from the recommended
transitions, a difference in the Hamiltonian

∆H = H(t+j )−H(t−j ) (43)

occurs. The meaning of this difference is twofold: On the
one hand, it constitutes a deviation from the optimality
conditions. On the other hand, with the interpretation of
the Hamiltonian as weighted sum of battery current and
fuel mass flow, it is indicated that a control with lower
value of this weighted sum exists, but cannot be used.
This is illustrated in Fig. 9, where the minimal values of the
Hamiltonian in hybrid mode for gears 2 and 3 are depicted.
The best point of switching from gear 2 to gear 3 would
be at t1 such that at any time H(t) has the lowest value.
However, because of some unknown constraint, a switching
cannot occur until t2. Therefore, a difference ∆H in the
Hamiltonians exists at the switching time.
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Fig. 9. Deviance from suboptimal switching

Since, with the constant costate assumption, the value
of the Hamiltonian does not explicitly depend on time,
but on the current driving situation, this view can be
transferred to depictions of torque and speed. Figure 10
shows the absolute value |∆H| depending on the wheel
torque Treq and wheel speed nwh for a change from gear
2 to gear 3. The recommended switching is, where the
difference vanishes. If this recommended switching cannot
be followed, the Figure allows for evaluation of the effects.
A deviation from the recommended switching is more
acceptable, when the value of |∆H| is low.

Fig. 10. |∆H| between gears 2 and 3

8. CONCLUSION

This paper proposes a calculation method for lookup ta-
bles, needed to define the energy management of a HEV by
first solving a HOCP to find the costate of the Hamiltonian
function. The costate is assumed to be constant and hence
the solution becomes suboptimal but this hardly affects
the quality of the solution obtained. With the Hamiltonian
only depending on the continuous controls u, and the
discrete controls σ, for any driving situation suboptimal
values for these controls can be stored in LUTs. Using
the calculations proposed in this paper, a toolbox for
the initial calibration of HEVs has been developed and
successfully tested on several projects. Compared to itera-
tive approaches, the analytical approach presented in this
paper has shown the capability of dramatically reducing
the time needed to obtain an initial calibration. Additional
constraints, such as warm-up phases of the ICE can easily
be implemented as fixed constraints.
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