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Abstract: We prove that a nonlinear control system with periodic dynamics in the generalized
triangular form (GTF) which is affected by external disturbances can be uniformly input-to-
state stabilized by means of a periodic feedback and the gain can be chosen arbitrarily small
in some sense. This allows us to stabilize such a system in presence of unmeasured dynamic
uncertainties.

1. INTRODUCTION

The concept of input-to-state stability introduced in Son-
tag [1989] and the theory developed later within this
framework has become a powerful tool for solving numer-
ous problems of robust and adaptive nonlinear control. For
instance, initially the idea of backstepping Coron et al.
[1991], Kanellakopoulos et al. [1991], Krstic et al. [1995]
was applied mainly to strict-feedback forms Freeman et al.
[1998], Seto et al. [1994], which were introduced as early
as Korobov [1973]. After the small-gain theorems had been
proved Jiang et al. [1994], the above-mentioned recursive
designs of robust and adaptive controllers became appli-
cable to more general classes of nonlinear systems Jiang
et al. [1994, 1997], Tsinias et al. [1999], Liu et al. [2012].

On the other hand a natural extension of the strict-
feedback form is the so-called generalized (or general)
triangular form, which possesses many properties of the
strict-feedback form: global robust controllability Korobov
et al. [2008], global asymptotic stabilizability Pavlichkov
et al. [2009], and even uniform input-to-state stabiliz-
ability with respect to external disturbances Dashkovskiy
et al. [2012].

However the generalized triangular form (GTF) describes
an essentially larger class of systems in comparison with
the strict-feedback form systems which leads to many
differences in the corresponding properties. For example
the GTF does not satisfy the well-known Respondek-
Jakubczyk conditions and therefore is not feedback lin-
earizable in general. In this context, one open problem is
that of feedback triangulation of a nonlinear system in the
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“singular case”, i.e., when the triangular canonical form
is not feedback linearizable. Some promising results were
obtained in Celikovsky et al. [1996], however they are local
and are based on the assumption that the set of regular
points is open and dense in the state space. Another chal-
lenging open problem is to extend all the above mentioned
theory on the design of robust and adaptive controllers to
the case of GTF systems. Since the “input-output maps”
xi+1(·) 7→ xi(·) of a GTF system are not continuously
invertible, the standard backstepping designs become not
applicable, because they lead to getting discontinuous vir-
tual controllers at each step of the backstepping algorithm
whereas one needs to take their derivatives at the next
step.

Following the latter line, the current paper addresses the
same problem of partial state stabilizing feedback design
for a nonlinear system with dynamic uncertainties as
considered in Jiang et al. [1994], Tsinias et al. [1999]. In
contrast to these works, we assume that the system under
consideration is not in strict-feedback form but is of GTF.
This makes us to develop and apply another technique in
order to construct the desired controllers and to comply
with the small gain condition.

2. PRELIMINARIES

First we recall that a function α : R+ → R+ is said to
be of class N if it is continuous and nondecreasing; it is of
class K if it is continuous, strictly increasing and α(0) = 0,
and it is of class K∞ if it is of class K and it is unbounded.
A function continuous β : R+ × R+ → R+ is said to be of
class KL if for each fixed t ≥ 0 the function β(·, t) is of
class K and for each fixed s ≥ 0, we have β(s, t) → 0 as
t→ +∞ and t 7→ β(s, t) is decreasing.
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For any x ∈ RN with some N ∈ N, by Br(x) and Br(x) we
denote the open and closed balls Br(x) := {y ∈ RN| |y −
x| < r} and Br(x) := {y ∈ RN| |y − x| ≤ r} respectively
(if the value of N is not clear from the context, we will
mention in which space we work).

Consider the nonlinear system

Ẋ(t) = Φ(t,X(t), D(t)), t ∈ R (1)

with states X ∈ Rn, and external disturbances D(·) in
L∞(R;Rl0). We assume that Φ is piecewise continuous
w.r.t (t,X,D) and Lipschitz continuous w.r.t. (X,D).

For every D(·) ∈ L∞(R;Rl0), we denote by ‖D(·)‖ its
L∞ - norm on R, and for each X0 ∈ Rn, each t0 ∈ R
by t 7→ X(t, t0, X

0, D(·)) we denote the solution of the
Cauchy problem X(t0) = X0 for system (1) with this D(·).
The following definition can be found in Lin et al. [2005]
(for the case of the equilibrium at X∗ = 0) and is a natural
extension of the original notion of the ISS introduced in
Sontag [1989].

Definition 1 System (1) is input-to-state stable (ISS) at
point X∗ ∈ Rn if there are β ∈ KL, Υ0 ∈ N and γ ∈ K
such that for each t0, each X0 and each D(·)∈L∞ we have

|X(t,X0, t0, D(·))−X∗|≤

max{β(Υ0(t0)|X0−X∗|, t−t0), γ(||D(·)‖L∞[t0,+∞[)}, t≥t0.

System (1) is semi-uniformly ISS at point X∗ ∈ Rn if it
is ISS at point X∗ and ∃Υ(·) ∈ K s.t. for each X0 ∈ Rn,
each t ≥ t0 and each D(·) in L∞ we have

|X(t,X0, t0, D(·))−X∗| ≤ max{Υ(|X0−X∗|),Υ(||D(·) ‖)}.

System (1) is said to be uniformly input-to-state stable
(ISS) at point X∗ ∈ Rn if there are β ∈ KL and γ ∈ K
such that for each t0 ∈ R, each X0 ∈ Rn and each
D(·) ∈ L∞(R;Rl0) we have

|X(t, t0, X
0, D(·))−X∗| ≤

max{β(|X0 −X∗|, t−t0), γ(‖ D(·)‖L∞[t0,+∞[)}, t ≥ t0.

Note that, if (1) is ISS at X∗ ∈ Rn, then by this definition
X∗ is an equilibrium of (1) with D(·) = 0. For any N ∈ N
by 〈·, ·〉 we denote the scalar product in RN and for ξ∈RN

let |ξ| denote its Euclidean norm, i.e., |ξ|=〈ξ, ξ〉 12 .

In the current paper, we use the following immediate
corollary of Theorem 3 from Lin et al. [2005] (see also
earlier related result Jiang et al. [1997]).

Theorem 1 Consider the following interconnected T -
periodic time-varying system

Ẋ1(t) = Φ1(t,X1(t), X2(t), D(t))

Ẋ2(t) = Φ2(t,X1(t), X2(t), D(t)),
t ∈ R (2)

(with Φ1, Φ2 of class C1 and with some T > 0) composed

of two subsystems Ẋ1 = Φ1(t,X1, X2, D) with states
X1 ∈ Rn1 and with inputs [X2, D] ∈ Rn2 × RN and

Ẋ2 = Φ2(t,X1, X2, D) with states X2 ∈ Rn2 and with
inputs [X1, D] ∈ Rn1 × RN. Suppose both the subsystems
are uniformly ISS at 0 ∈ Rn1 and 0 ∈ Rn2 , so that there

are βi(·, ·) ∈ KL, γi(·) ∈ K, γi,D(·) ∈ K, i = 1, 2, such
that all their trajectories satisfy the following inequalities:

|X1(t)| ≤ max{β(|X1(t0)|, t−t0), γ1(‖ X2(·)‖L∞
),

γ1,D(‖ D(·)‖L∞
)}, t ≥ t0, (3)

and

|X2(t)| ≤ max{β(|X2(t0)|, t−t0), γ2(‖ X2(·)‖L∞
),

γ2,D(‖ D(·)‖L∞
)}, t ≥ t0. (4)

If the small gain condition (γ1 ◦ γ2)(r) < r holds true for
all r > 0, then the interconnected system (2) is uniformly
ISS w.r.t. the external disturbance D(t).

(Our main result deals with T -periodic systems and we
take into account that for the periodic systems semi-
uniform ISS property implies uniform ISS property).

3. MAIN RESULT

We consider a control system of the following form
ξ̇ = F (x1, ξ,D(t)),
ẋ1 = f1(t, x1, x2) + ϕ1(t, x1, ξ,D(t)),
ẋ2 = f2(t, x1, x2, x3) + ϕ2(t, x1, x2, ξ,D(t)),
. . .
ẋν=fν(t, x1, . . . , xν , u)+ϕν(t, x1, . . . , xν , ξ,D(t)),

(5)

where u ∈ Rm = Rmν+1 is the control, x = [xT1 , . . . , x
T
ν ]
T ∈

Rn are measured components of the state vector with
xi ∈ Rmi , mi ≤ mi+1, n = m1 + . . . + mν and ξ =

[ξ1, . . . , ξN ]
T ∈ RN are unmeasured components of the

state vector and D(·) ∈ L∞(R;Rl0) are external distur-
bances.

As regards the x - subsystem of the overall system (5), we
assume that the following conditions hold true:

A1: f = [f1, . . . , fν ]
T

and ϕ = [ϕ1, . . . , ϕν ]
T

are of class
Cν+1(R × Rn × Rm;Rn) and Cν+1(R × Rn × RN ×
Rl0 ;Rn) respectively and are T -periodic, i.e., there
is T > 0 such that f(t + T, x, u) = f(t, x, u) and
ϕ(t + T, x, ξ,D) = ϕ(t, x, ξ,D) for all [t, x, u, ξ,D] in
R× Rn × Rm × RN × Rl0 .

A2: For each i = 1, . . . , ν and each [t, x1, . . . , xi] in [0, T ]×
Rm1 × . . . × Rmi we have fi(t, x1, . . . , xi,Rmi+1) =
Rmi , i.e., fi(t, x1, . . . , xi, ·) is a surjection.

A3: There are x∗i ∈ Rmi , 1 ≤ i ≤ ν, and u∗ = x∗ν+1 ∈
Rm such that rank ∂fi

∂xi+1
(t, x∗1, . . . , x

∗
i+1) = mi, and

fi(t, x
∗
1, ..., x

∗
i+1) = ϕi(t, x

∗
1, ..., x

∗
i , 0, 0) = 0 ∈ Rmi for

all t ∈ [0, T ], i = 1, . . . , ν.

Note that A1-A3 are standard conditions characterizing
GTF when solving a stabilization problem - see Pavlichkov
et al. [2009], Dashkovskiy et al. [2012], Tsinias [1995]. In
our case the x-subsystem is of GTF and is interconnected
with the ξ-subsystem. We also assume that the latter
satisfies the following conditions:

A4: F is of class C1, F (x∗1, 0, 0) = 0 ∈ RN and ∂F
∂ξ (x∗1, 0, 0)

is an asymptotically stable matrix.
A5: The system

ξ̇ = F (x1, ξ,D) (6)

is ISS with known gain w.r.t. [x1(·)−x∗1, D(·)] as the
input.
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Note that A4 and A5 are also quite natural assumptions -
see, for instance Jiang et al. [1994].

While ξ ∈ RN is assumed to be unmeasured, we suppose
that the local and global gains of system (6) obtained from
Assumptions A4, A5 respectively are known as well. Our
goal is to find a feedback u = u(t, x), which depends
on the measured states x only and globally input-to-
state stabilizes the overall system (5) w.r.t. the external
disturbances D(·). The main result of the current paper is
as follows.

Theorem 2 Assume that (5) satisfies conditions A1-A5.
Then there exists a T -periodic feedback law u = u(t, x)
of class C1(R × Rn;Rm) such that u∗ = u(t, x∗1, ..., x

∗
ν)

and such that the closed-loop system (5) with u = u(t, x)
is uniformly ISS at point [x∗, 0] = [x∗1, ..., x

∗
ν , 0] ∈ Rn ×

RN w.r.t. the external disturbances D(t). Furthermore, if
D(t) = 0 a.e. on R, then system (5) is not only GAS but
also locally exponentially stable at point [x∗, 0] ∈ Rn×RN .
Remark 1 Let us note that work Tsinias et al. [1999]
deals with the same problem but for the case of strict-
feedback systems. Our Theorem 2 addresses the class
of GTF systems, and, in this sense, Theorem 2 is an
extension of the result of Tsinias et al. [1999]. However,
we consider the T -periodic systems only, while Tsinias
et al. [1999] deals with time-varying systems which are not
necessarily T -periodic but satisfy some other restrictions,
e.g., bounded growth in time - see [Tsinias et al. , 1999,
Assumptions A1),A2)]

The rest of the paper is devoted to the proof of our main
result.

4. PROOF OF THEOREM 2

The proof is based on application of the same technique as
in Pavlichkov et al. [2009], Dashkovskiy et al. [2012] and
since the detailed proof of the main results of Dashkovskiy
et al. [2012] takes more than 15 pages, we provide a
sketched proof of our main results and refer to these works
when necessary. Without loss of generality we assume that
x∗=0 and u∗=0.

Given any t0 ∈ R, any ξ0 ∈ RN , any x1(·) in L∞(R;Rm1)
and any D(·) in L∞(R;Rl0), let t 7→ ξ(t, t0, ξ

0, x1(·), D(·))
denote the trajectory, of system (6), that is defined by the
input [x1(·), D(·)] and by the initial condition ξ(t0) = ξ0.

From Assumptions A4, A5 it follows that there are β̄(·, ·) ∈
KL, γ̄(·) ∈ K∞ and γ̄D(·) ∈ K∞ such that

∀t0∈R ∀ξ0∈RN ∀x1(·)∈L∞(R;Rm1) ∀D(·)∈L∞(R;Rl0)

∀t ≥ t0 |ξ(t, t0, ξ0, x1(·), D(·))| ≤ max{β̄(|ξ0|, t−t0),

γ̄(‖ x1(·)‖L∞[t0,+∞[), γ̄D(‖ D(·)‖L∞[t0,+∞[)}. (7)

and such that for some ε̄ > 0 and some c1 > 0, c2 > 0,
c3 > 0 we have

γ̄(ε) = c1ε, whenever ε ∈ [0, ε̄[; (8)

β̄(s, t) = e−c2tc3s, whenever s ∈ [0, ε̄[ and t ≥ 0 (9)

4.1 Plan of the Proof of Theorem 2

To prove Theorem 2, we consider the control system


ẋ1 = f1(t, x1, x2) + ϕ1(t, x1, ξ,D(t)),
ẋ2 = f2(t, x1, x2, x3) + ϕ2(t, x1, x2, ξ,D(t)),
. . .
ẋν=fν(t, x1, . . . , xν , u)+ϕν(t, x1, . . . , xν , ξ,D(t)),

(10)

with states x = [xT1 , . . . , x
T
ν ]
T ∈ Rn, controls u ∈

Rm = Rmν+1 and with external disturbances η(·) :=
[ξ(·), D(·)]T ∈ L∞(R;RN × Rl0).

Our goal is to find a global state transformation of the
form

Z1 = x1

Z2 = x2 − α1(t, x1)
. . .
Zν = xν − αν−1(t, x1, . . . , xν−1),

(11)

where αi ∈ Cν−i+1(R×Rm1+...+mi ;Rmi+1) are T -periodic
w.r.t. the time variable t and αi(t, 0, ..., 0) = 0, t ∈ R and
to find a T -periodic feedback u = u(t, x1, ..., xν) of class
C1(R×Rn;Rm) such that u(t, 0, ..., 0) = 0, t ∈ R and such
that the trajectories t 7→ Z(t, t0, Z

0, u(·, ·), ξ(·), D(·)), of
system (10) written in the new coordinates Z = [Z1, ..., Zν ]
that are defined by (11), satisfies the inequality

∀t≥t0 |Z(t, t0, Z
0, u(·, ·), ξ(·), D(·))|≤max{β(|Z0|, t−t0),

γsm(||ξ(·)‖L∞([t0,+∞[;RN )), γD(||D(·)‖L∞([t0,+∞[;Rl0 ))},(12)

with β ∈ KL, γD ∈ K∞, γsm ∈ K∞ such that the following
small gain condition holds:

(γ̄ ◦ γsm)(r) < r for all r > 0. (13)

Since Z1 = x1, we combine (7) and (13) and apply
Theorem 1. Then system (5) with u = u(t, x) becomes
uniformly ISS w.r.t. D(·) as the input.

To do this, we will design the desired controller which
satisfies the small gain condition for the system
ẋ1 = f1(t, x1, x2) + ϕ1(t, x1, ξ,D(t)),
ẋ2 = f2(t, x1, x2, x3) + ϕ2(t, x1, x2, ξ,D(t)),
. . .
ẋi=fi(t, x1, . . . , xi, xi+1)+ϕi(t, x1, . . . , xi, ξ,D(t)),

(14)

with states [x1, ..., xi]∈Rm1+...+mi , controls xi+1∈Rmi+1

and disturbances [ξ,D]∈RN+l0 by induction on i =
1, . . . , ν.

4.2 The Base Case: i = 1

Define

γ :=
1

4
(2γ̄)−1. (15)

Then we have

∀r > 0 (γ ◦ (2γ̄)) (r)<
1

2
r and ((2γ̄) ◦ (2γ)) (r)<r (16)

and ∀r ∈ [0, c1ε̄[ γ(r) =
1

8c1
r (17)

Our goal is to design a controller which satisfies the small
gain condition (13) with γsm(r) = γ(2r) for all r ≥ 0.

Take and fix any λ0 ≥ 1 and any γ0 > 0 such that

4

√
3γ0

λ0
<

1

8c1
and 4

√
3γ0

λ0
<

1

8
(18)
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and 64γ0c
2
1 <

λ0e
−3λ0T

2
. (19)

Let us remark that the goal of inequalities (18) is to pro-
vide the desired small gain condition (13) with γsm(r) =
γ(2r) locally, around the origin by using (8), (17) (and the
goal of (19) is to achieve below (26) for all q ∈ Z).

Fix any Dmax > 0. Then, using the implicit function
theorem and Assumption A3, we obtain the existence of
ρ(λ0, γ0) > 0 and a T - periodic feedback ω1(·, ·) of class

Cν(R×Bρ(λ0,γ0)(0);Rm2), where Bρ(λ0,γ0)(0) denotes the
closed ball in Rm1 with its center at 0 ∈ Rm1 and radius
ρ(λ0, γ0), such that

〈2x1, f1(t, x1, ω1(t, x1)) + ϕ1(t, x1, ξ,D)〉 ≤ −λ0〈x1, x1〉
+γ0〈ξ, ξ〉+ γ0〈D,D〉, whenever

[t, x1, ξ,D] ∈ R× Rm1 × RN+l0 satisfies

|x1| ≤ ρ(λ0, γ0) and |ξ|2 + |D|2 ≤ D2
max (20)

Without loss of generality we assume that

ρ(λ0, γ0) < γ(Dmax)e−
λ0T

2 and 8ρ(λ0, γ0) < ε̄

and 8ρ(λ0, γ0) < c1ε̄ (21)

(otherwise we take a smaller ρ(λ0, γ0) > 0). Take any

sequence {ρq}+∞q=−∞ ⊂]0,+∞[ such that

0 < ρ4 < ρ(λ0, γ0) and ρq = e
λ0T

8 ρq−1 for all q ∈ Z(22)

Then we define the sequences {rq}+∞q=−∞ ⊂]0,+∞[ and

{Dq}+∞q=−∞ ⊂]0,+∞[ by

rq = ρqe
−λ0T16 for all q ∈ Z (23)

(in particular 0 < ρq < rq+1 < ρq+1) and by

Dq := γ−1(ρq+4) ⇔ (γ(Dq))
2

= ρ2
q+4 for all q ∈ Z (24)

Consider the system

ẋ1 = f1(t, x1, x2) + ϕ1(t, x1, ξ,D), t ∈ R (25)

where x1 ∈ Rm1 is the state, x2 ∈ Rm2 is the control and
η := [ξ,D] ∈ RN × Rl0 is the external disturbance.

For each t0 ∈ R, each x0
1 ∈ Rm1 , each η(·) in L∞(R;RN+l0)

and each controller v(·, ·) of class C1(R × Rm1 ;Rm2),
by t 7→ x1(t, t0, x

0
1, η(·), v(·, ·)) denote the trajectory, of

system (25), that is defined by these initial condition
x1(t0) = x0

1, disturbance η = η(t) and control x2 =
v(t, x1).

Then, arguing as in Pavlichkov et al. [2009], Dashkovskiy
et al. [2012], we obtain the existence of a T - periodic
feedback v1(·, ·) of class Cν(R× Rm1 ;Rm2) such that

(a) v1(t, x1) = ω1(t, x1) for all [t, x1] ∈ R×Bρ4(0)
(b) for each x0

1 ∈ Rm1 , each t0 ∈ [0, T ], each η(·) =
[ξ(·), D(·)]T in L∞([t0, t0 + T ];RN × Rl0) and each
q ∈ N we have:(

|x0
1|2 ≤ r2

q+2 and |ξ(t)|2 + |D(t)|2 ≤ D2
q

a.e. on [t0, t0 + T ])⇒
(
|x1(t, t0, x

0
1, η(·), v1(·, ·))|2

≤ ρ2
q+2 −

t− t0
T

(ρ2
q+2 − ρ2

q) for all t ∈ [t0, t0 + T ])(26)

Using (19), (20) and condition (a), we easily obtain that
(26) holds for all q ∈ Z.

For every q ∈ Z define

βq+1(τ) :=

(
ρ2

(q−κ)+2 −
τ − κT
T

(ρ2
(q−κ)+2 − ρ

2
q−κ)

) 1
2

and γq(τ) :=

(
ρ2
q+2 −

τ − κT
T

(ρ2
q+2 − ρ2

q)

) 1
2

and

β(rq+1, τ):=

(
ρ2

(q−κ)+2−
τ−κT
T

(ρ2
(q−κ)+2−ρ

2
(q−κ)+1)

) 1
2

,

whenever τ ∈ [κT, (κ+ 1)T [, κ ∈ Z+ (27)

and then define

β(r, τ) := β(rq, τ) +
r − rq

rq+1 − rq
(β(rq+1, τ)− β(rq, τ)),

whenever r ∈ [rq, rq+1[, with q ∈ Z for all τ ≥ 0, (28)

and

γ̂(D) :=

(
ρ2
q+2 +

D −Dq−1

Dq −Dq−1
(ρ2
q+3 − ρ2

q+2)

) 1
2

,

whenever D ∈]Dq−1, Dq)], q ∈ Z (29)

Then we define functions β(·, ·) ∈ KL and γ̂ ∈ K∞ by
β(0, τ) := 0, τ ≥ 0 and γ̂(0) := 0 for r = 0, D = 0 and by
(28), (29) for r > 0, D > 0. Note that by the construction,
more specifically by (24), (29), we have

γ̂(D) < γ(D) for all D > 0. (30)

Take and fix arbitrary κ ∈ Z+, t0 ∈ R, x0
1 ∈ Rm1 and η(·)

in L∞(R;RN+l0). Without loss of generality assume that
x0

1 6= 0 ∈ Rm1 and η(·) 6= 0 ∈ L∞(R;RN+l0) (the cases
x0

1 = 0 or η(·) = 0 are studied similarly).

Define q̄ ∈ Z and q̂ ∈ Z by r2
q̄+1 < |x0

1|2 ≤ r2
q̄+2 and by

Dq̂−1 <‖ η(·) ‖L∞([t0,t0+κT ];RN+l0 )≤ Dq̂.

If q̂ ≤ q̄, then for all t ∈ [t0, t0 + κT ] we have

|x1(t, t0, x
0
1, η(·), v1(·, ·))|2 ≤ max{β2

q̄+1(t− t0), γ2
q̂ (t− t0)}

≤ max{β2(|x0
1|, t− t0), ρ2

q̂+2} ≤ max{β2(|x0
1|, t− t0),

γ̂2(‖ η(·) ‖L∞([t0,t0+κT ];RN+l0 ))} ≤
≤ max{β2(|x0

1|, t− t0), γ2(‖ η(·) ‖L∞([t0,t0+κT ];RN+l0 ))}.

If q̂ > q̄, then for all t ∈ [t0, t0 + κT ] we have

|x1(t, t0, x
0
1, η(·), v1(·, ·))|2 ≤ γ2

q̂ (t− t0) ≤ ρ2
q̂+2

≤ max{β2(|x0
1|, t− t0), ρ2

q̂+2}
≤ max{β2(|x0

1|, t− t0), γ̂2(‖ η(·) ‖L∞([t0,t0+κT ];RN+l0 ))} ≤
≤ max{β2(|x0

1|, t− t0), γ2(‖ η(·) ‖L∞([t0,t0+κT ];RN+l0 ))}.

Since κ ∈ Z+ is chosen arbitrarily, we obtain

∀t ≥ t0 (t, t0, x
0
1, η(·), v1(·, ·))|2 ≤ max{β(|x0

1|, t− t0),

γ(‖ η(·)‖L∞([t0,+∞[;RN+l0 ))} ≤ max{β(|x0
1|, t− t0),

γ(‖ 2ξ(·)‖L∞([t0,+∞[;RN )), γ(‖ 2D(·)‖L∞([t0,+∞[;Rl0 ))},

Thus for the Base Case i = 1, i.e., for system (25), we
have designed the controller v1(·, ·) that satisfies (13) with
γsm(r) := γ(2r), r ≥ 0 (this is because of (16)).
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4.3 Inductive Step: Adding an Integrator

To design the desired controller for system (14) by induc-
tion over i = 1, . . . , ν, we need the following Theorem 3
given below.

Consider a control system of the form{
ż = g(t, z, w) + ϕ(t, z, η(t))
ẇ = h(t, z, w, v) + φ(t, z, w, η(t)),

t ∈ R (31)

with states y = [z, w]T ∈ Rk × Rq, controls v ∈ Rm,
where q ≤ m, and with external disturbances η(·) =
[ξ(·), D(·)]T ∈ L∞(R;RN+l0). We assume that the follow-
ing conditions hold:

(C1) g ∈ Cµ+1(R × Rk × Rq;Rk); ϕ ∈ Cµ+1(R × Rk ×
RN+l0 ;Rk); h ∈ Cµ+1(R × Rk+q × Rm;Rq); φ ∈
Cµ+1(R × Rk+q × RN+l0 ;Rq) with some µ ∈ N
and there is T > 0 such that g(t + T, z, w) =
g(t, z, w), ϕ(t+T, z, η) = ϕ(t, z, η), h(t+T, z, w, v) =
h(t, z, w, v), φ(t + T, z, w, η) = φ(t, z, w, η) for all
t ∈ R, z ∈ Rk, w ∈ Rq, v ∈ Rm, η ∈ RN+l0 .

(C2) g(t, 0, 0) = ϕ(t, 0, 0) = 0 ∈ Rk and h(t, 0, 0, 0) =

φ(t, 0, 0, 0) = 0 ∈ Rq for all t ∈ R; and rank∂h(t,0,0,0)
∂v =

q for all t ∈ R.
(C3) h(t, z, w,Rm) = Rq for every [t, z, w] in [0, T ]×Rk+q.

Given a controller v(·, ·) : R× Rk+q → Rm, a disturbance
η(·) ∈ L∞(R;RN+l0) and an initial state y0 ∈ Rk+q

for system (31), by t 7→ y(t, t0, y
0, v(·, ·), η(·)) denote the

trajectory, of (31), defined by y(t0) = y0, v = v(t, y),
η = η(t) on the maximal possible interval (by definition,
we deal only with the controllers that provide the existence
and the uniqueness of the solution of the Cauchy problem;
in our Theorem 3 given below, the constructed controllers
are of class C1 at least; if within the proof, which is
a modification of those of [Dashkovskiy et al. , 2012,
Theorem 2] and [Pavlichkov et al. , 2009, Theorem 3.1],
one obtains discontinuous controllers, then the existence
and uniqueness are provided anyway).

Similarly, for the “subsystem”

ż = g(t, z, w) + ϕ(t, z, η(t)), t ∈ R, (32)

where z ∈ Rk is treated as the state, w ∈ Rq is the
control, and η(·) is the disturbance signal, we denote by
t 7→ z(t, t0, z

0, w(·, ·), η(·)) its (maximal) trajectory defined
by the initial condition z(t0) = z0, by the controller
w = w(t, z) and by η = η(t) for every z0 ∈ Rk, every
η(·) ∈ L∞(R;RN+l0) and every suitable (in sense of
existence and uniqueness) w(·, ·) : R× Rk → Rq.

Define the Lyapunov functions for (31) and (32) by

∀y=[z, w]
T∈Rk×Rq V (y):=〈y, y〉 and W (z):=〈z, z〉

The last Condition that we assume is as follows (it means
the same property for system (32) with w = 0 as that
which we achieved in the Base Case for system (25) with
x2 = v1(t, x1); thus, roughly speaking, this condition is the
inductive hypothesis).

(C4) There are sequences {r?q}
+∞
q=4 ⊂]0,+∞[ and {ρ?q}

+∞
q=3 ⊂

]0,+∞[ with 0 < ρ?q < r?q+1 < ρ?q+1 → +∞ as q → +∞
such that ρ?4 < ρ(α0, γ0) and ρ?q+3 < γ(Dq) ≤ ρ?q+4 for all
q ∈ N and there are λ? ∈]0, λ0[ and γ? ≥ γ0 such that

(i) The following inequalities hold:

4

√
3γ?

λ?
<

1

8c1
and 4

√
3γ?

λ?
<

1

8
and

64γ?c21 <
λ?e−3λ?T

2

(ii) For every t ∈ [0, T ], every z ∈ Rk and every η ∈
RN+l0 , if |z| ≤ r?4 and γ(|η|) ≤ ρ?8, then

∂W (z)

∂z
(g(t, z, 0) + ϕ(t, z, η)) ≤ −λ?W (z) + γ?〈η, η〉

(iii) For every q≥3, q∈Z, every z0∈Rk, every t0∈[0, T ], and
every η(·) ∈ L∞([t0, t0 + T ];RN+l0) the inequalities
|z0|≤r?q+2 and ‖ η(·)‖L∞([t0,t0+T ];RN+l0 ) ≤ Dq imply

|z(t, t0, z0, 0, η(·))|2 ≤ ρ?q+2
2 − t− t0

T
(ρ?q+2

2 − ρ?q
2)

for all t ∈ [t0, t0 + T ].

Define:

r?3 := ρ?3e
−λ?T16 ; and r?q := r?q+1e

−λ?T8 ,

ρ?q := ρ?q+1e
−λ?T8 for all q ≤ 2, q ∈ Z (33)

The Inductive Step is based on the following Theorem
on “adding an integrator”. As we noted above, it is a
modification of [Dashkovskiy et al. , 2012, Theorem 2]
and [Pavlichkov et al. , 2009, Theorem 3.1] and for better
understanding we underlined the words with the principal
distinction that allows us to provide arbitrarily small
gains.

Theorem 3 Suppose (C1)-(C4) hold true. Then, for each

sequence {Rq}+∞q=−∞ such that ρ?q < Rq < r?q+1 and Rq+3 <

γ(Dq) ≤ Rq+4 for all q ∈ Z and such that R4 ≤ ρ(λ0, γ0),
there is q0 ∈ N, there is ε ∈]0, λ∗[ such that

4

√
3(γ? + ε)

λ? − ε
<

1

8c1
and 4

√
3(γ? + ε)

λ? − ε
<

1

8
and

64(γ? + ε)c21 <
(λ? − ε)e−3(λ?−ε)T

2
(34)

and there is a feedback v(·, ·) of class Cµ(R × Rk+l;Rm)
such that v(t, 0) = 0 ∈ Rm and v(t+ T, y) = v(t, y) for all
[t, y] ∈ R × Rk+q and such that the following conditions
hold true:

(I) For every t ∈ [0, T ], every y = [z, w]
T ∈ Rk+q and

every η ∈ RN+l0 , the inequalities |z| ≤ r?−q0+4 and
γ(|η|) ≤ R−q0+8 imply

∂V (z, w)

∂z
(g(t, z, w) + ϕ(t, z, η))

+
∂V (z, w)

∂w
(h(t, z, w, v(t, z, w)) + φ(t, z, w, η)) ≤

−(λ? − ε)V (z, w) + (γ? + ε)〈η, η〉
(II) For each q≥−q0+3, q∈Z, each y0∈Rk+q, each t0∈[0, T ],

and each η(·) in L∞([t0, t0+T ];RN+l0) the inequal-
ities |y0|≤r?q+2 and ‖ η(·)‖L∞([t0,t0+T ];RN+l0 ) ≤ Dq

imply

|y(t, t0, y
0, v(·, ·), η(·))|2 ≤ R2

q+2 −
t− t0
T

(R2
q+2 −R2

q)

for all t ∈ [t0, t0 + T ]
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Indeed, having designed the controller v1(·, ·) for system
(25), we define:

k:=m1, q:=m2, m:=m+3, z:=x1, w:=x2−v1(t, x1),

v:=x3, where t∈R, x1∈Rm1 , x2∈Rm2 , x3∈Rm3 ; (35)

g(t, z, w) := f1(t, z, w + v1(t, z)); ϕ(t, z, η) := ϕ1(t, z, η);

h(t, z, w, v) := f2(t, z, w + v1(t, z), v)− ∂v1(t, z)

∂t

−∂v1(t, z)

∂z
f1(t, z, w + v1(t, z)); φ(t, z, w, η) :=

ϕ2(t, z, w + v1(t, z), η)− ∂v1(t, z)

∂z
ϕ1(t, z, η); (36)

λ∗ := λ0; γ∗ := γ0; and

ρ∗q := ρq, r∗q+1 := rq+1 for all q ≥ 3, q ∈ Z. (37)

To apply Theorem 3, we take {Rq}+∞q=−∞ such that ρ?q <

Rq < r?q+1 and Rq+3 < γ(Dq) ≤ Rq+4 for all q ∈ Z and
such that R4 ≤ ρ(λ0, γ0). Then we apply Theorem 3 and
find a controller v(·, ·), which satisfies (I),(II) with ε > 0

such that (34) holds true. If {Rq}+∞q=−∞ is chosen so that

the positive numbers (Rq−ρ∗q) are small enough, then the
K∞ function γind defined by γind(D) := 0 if D = 0 and

γind(D) :=

(
R2
q+2 +

D −Dq−1

Dq −Dq−1
(R2

q+3 −R2
q+2)

) 1
2

,

whenever D ∈]Dq−1, Dq)], q ∈ Z

satisfies the condition γind(D) < γ(D) for all D > 0 (this
follows from (24), (29) and (30)).

Then, arguing as in the Base Case and replacing γ̂ with
γind, we obtain the following estimate for the trajectories
of system (31) that is defined by (35), (36):

∀t ≥ t0 |y(t, t0, y
0, v(·, ·), η(·))| ≤ max{βind(|y0|, t− t0),

γ(2 ‖ ξ(·)‖L∞([t0,+∞[;RN )), γ(2 ‖ D(·)‖L∞([t0,+∞[;Rl0 ))},

for all t0 ∈ R, y0 ∈ Rm1+m2 , η(·) := [ξ(·), D(·)]T ∈
L∞(R;RN+l0), where βind(·) is some KL - function and
γ(·) is defined by (15). Arguing similarly by induction over
i = 1, 2, 3, . . . , ν, we obtain the desired estimate (13) with
γsm(r) := γ(2r), whenever r ≥ 0. This completes the proof
of our main Theorem 2.

Remark 2 The proof of Theorem 3 is similar to that
of Theorem 2 from Dashkovskiy et al. [2012]. The only
difference is the underlined text. In fact, {Rq} can be
chosen arbitrarily close to {ρq}, which is easily seen from
[Dashkovskiy et al. , 2012, p. 161, Fig.1]. For this, %q > 0,
q ≥ −q0, q ∈ Z should be chosen small enough. We omit
the proof of Theorem 3 due to space limits.

5. CONCLUSION

We have proved that a generalized triangular form sys-
tem with unmeasured dynamic uncertainties can be glob-
ally uniformly stabilized with respect to external L∞
disturbances. In contrast to the previous related work
Dashkovskiy et al. [2012], we proved that it is possible
to build a controller which provides gains as small as we
need in order to comply with the small gain condition and
to ensure the desired uniform ISS property.
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