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Abstract: The state realization is called minimal if it is either accessible and observable or
its state dimension is minimal. In the linear case those two definitions are equivalent, but not
for nonlinear time-invariant systems. It is shown that definitions remain equivalent in case
one is searching for minimal realization in a larger class of nonlinear time-varying systems.
First, nonlinear realization theory is recasted for time-varying nonlinear systems. A necessary
and sufficient realizability condition is given in terms of integrability of certain subspace. The
mathematical tools used for this purpose are the algebraic approach of differential forms and
the theory of the skew polynomial rings; these tools are again extended from time-invariant to
time-varying systems.
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1. INTRODUCTION

There exist two possibilities to define minimality of the
state space realization. First, one calls the realization
minimal when it is both observable and accessible (con-
trollable). Second, one may require minimality of the
state dimension. Though in the linear time-invariant case
these two definitions are equivalent, this is no longer true
for nonlinear time-invariant systems, as shown in (Zhang
et al., 2010). The latter points to the controversy between
linear and nonlinear theories. The goal of this paper is to
show that these two definitions remain equivalent when
one is searching for the minimal realization in a larger
class of nonlinear time-varying systems. That is, the min-
imal realization of a nonlinear time-invariant system is, in
general, a time-varying system.

It has been encountered previously in nonlinear control
theory that the problem, stated for time-invariant sys-
tem, only has a solution in a larger class of systems.
For example, the paper (Pereira da Silva and Rouchon,
2004) pointed to the fact that time-invariant systems may
possess time-dependent flat outputs. The results of our
paper are of the similar flavour.

To find the minimal realization it is first necessary to
determine the irreducible input-output (i/o) equation of
the system. If one starts from the reducible equation,
application of the realization algorithms does not pro-
vide minimal realization. Reduction theory of nonlinear
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systems is based on the notion of autonomous variable
ϕred, i.e. a variable, satisfying certain autonomous differ-

ential equation F (ϕred, ϕ
(1)
red, . . . , ϕ

(µ)
red) = 0, see for instance

(Zhang et al., 2010; Conte et al., 2007; Zheng et al.,
2001). Usually the reduced equation is formed from the
assumption F (0, . . . , 0) = 0, taking ϕred = 0 1 . In this
paper we relax this assumption and an arbitrary solution
of the differential equation is taken into account in the
reduction process. We will show on several examples that
the non-trivial solution leads, in general, to the time-
varying reduced system, even if the original system is time-
invariant.

Second, one has to find the state space realization of non-
linear time-varying i/o equation. There exist numerous pa-
pers where the realization of nonlinear time-invariant sys-
tems is studied, see for instance (Conte et al., 2007; van der
Schaft, 1987; Delaleau and Respondek, 1995; Crouch and
Lamnabhi-Lagarrigue, 1988; Kotta and Mullari, 2006;
Halás and Kotta, 2012). The authors are not aware of
any papers addressing the realization problem of non-
linear time-varying systems. This is the second topic of
our paper. In the present paper we follow the algebraic
approach of differential one-forms (Conte et al., 2007),
combined with the theory of non-commutative polynomial
rings (Zhang et al., 2010; Belikov et al., 2011; Zheng et al.,
2001; Halás, 2008; Zheng and Cao, 1995), adapted from
time-invariant to time-varying case. More precisely, we
generalize the necessary and sufficient realizability condi-
tion given in (Halás and Kotta, 2012) to the time-varying
systems.

1 It means that zero is one of the solutions of the autonomous
differential equation.
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Finally, note that time-varying nonlinear systems have
received much less attention compared with their time-
invariant counterparts. Some results on time-varying non-
linear systems are presented in (Pereira da Silva, 2008;
Pereira da Silva and Rouchon, 2004), where infinite di-
mensional geometric setting is used.

In Section 2 the basic notions of algebraic approach and
polynomial framework are given. In Section 3 the realiza-
tion of time-varying nonlinear i/o equation is studied. In
Section 4 several examples are given that demonstrate the
emergence of time-varying systems in the process of system
reduction, and finally, Section 5 draws conclusion.

2. POLYNOMIAL FRAMEWORK

The main focus of this section is to extend the polynomial
framework that has been used to address many problems
for nonlinear time-invariant systems (Zhang et al., 2010;
Belikov et al., 2011; Zheng et al., 2001; Halás, 2008; Zheng
and Cao, 1995) for the case of time-varying systems, i.e. for
the case when the system coefficients are functions of time
t. Formally, this means that the ground field k = R(t),
and not just R as in the case of time-invariant systems.
Consider the system

y(n) = ψ(t, y, ẏ, . . . , y(n−1), u, u̇, . . . , u(r)) = 0. (1)

Let K denote the field of meromorphic functions in
a finite number of the independent system variables
{t, y, . . . , y(n−1), u(k), k > 0 } with coefficients from the
ground field k = R(t). Let d/dt : K → K be the time-
derivation operator. Then the pair (K,d/dt) is differential
field, (Kolchin, 1973). Over the field K a differential vector
space E := spanK {dϕ | ϕ ∈ K} is defined. Consider a one-
form ω ∈ E such that ω =

∑
i αidϕi, αi, ϕi ∈ K. Its

derivative ω̇ is defined by ω̇ =
∑
i(α̇idϕi + αidϕ̇i).

The differential field K and the differentiation operator
d/dt induce a non-commutative ring of left differential
polynomials K[s; d/dt]. A polynomial p ∈ K[s; d/dt] can
be uniquely written as

p = pms
m + pm−1s

m−1 + . . .+ p1s+ p0, (2)

where s is a formal variable and pi ∈ K for i = 0, . . .m.
Polynomial p 6= 0 iff at least one of the functions pi is non-
zero. If pm 6≡ 0, then the integer m is called the degree of p
and denoted by deg(p). We set additionally deg(0) = −∞.
The addition of the polynomials is defined in the standard
way. However, for a ∈ K ⊂ K[s; d/dt] the multiplication is
defined by the commutation rule

s · a := a s+ ȧ. (3)

It is easy to see that for s2 · a = as2 + 2ȧs+ ä, a ∈ K, and
in general, for n > 0 we obtain sn · a =

∑n
i=0

(
n
i

)
a(n−i)si,

where
(
n
i

)
is binomial coefficient.

Definition 1. Abramov et al. (2005) The adjoint of the
skew polynomial ring K[s; d/dt] is defined as the skew
polynomial ring K[s∗; (d/dt)∗], where (d/dt)∗ = −d/dt.

From Definition 1 it follows that multiplication in the
adjoint ring is defined by the commutation rule s∗ a =
a s∗ − ȧ for a ∈ K. If

p = pms
m + · · ·+ p1s+ p0

is a polynomial in K[s; d/dt] then the adjoint polynomial
p∗ is defined by the formula

p∗ = s∗mpm + · · ·+ s∗p1 + p0 ∈ K[s∗; (d/dt)∗],

where the products s∗ipi must be computed inK[s∗;(d/dt)∗],
to yield p∗ = p∗ms

∗m + · · ·+ p∗1s
∗ + p∗0. Application of the

adjoint operator may be considered as reversing the order
of the polynomial variable and polynomial coefficient.

In (McConnel and Robson, 1987) it has been shown that
the ring K[s; d/dt] is an integral domain. Therefore, one
can construct from the ring K[s; d/dt] a non-commutative
field of fractions, which will be required later to prove
Lemma 2. Let W be a multiplicative subset of K[s; d/dt].
Consider the set of left fractions, denoted by K〈s; d/dt〉.
The elements of K〈s; d/dt〉 have the form p−1q, where
p ∈ K[s; d/dt] and q ∈ W.

The time-varying nonlinear system (1) can be repre-
sented by two non-commutative polynomials from the ring
K[s; d/dt]. By applying the operator d to equation (1) we
obtain

dy(n) −
n−1∑
i=0

∂ψ

∂y(i)
dy(i) −

r∑
j=0

∂ψ

∂u(j)
du(j) − ∂ψ

∂t
dt = 0. (4)

The latter equation can be rewritten as

p(s)dy + q(s)du+ r(s)dt = 0, (5)

where

p = sn −
n−1∑
i=0

pis
i, q = −

r∑
j=0

qjs
j , r = −r0, (6)

whereas

pi =
∂ψ

∂y(i)
∈ K, qj =

∂ψ

∂y(j)
, r0 =

∂ψ

∂t
∈ K.

3. REALIZATION

The realization problem is defined as follows. For a time-
varying nonlinear system (1), find, if possible, the state co-
ordinates x ∈X⊆ Rn, x = ψ(t, y, ẏ, . . . , y

(n−1), u, . . . , u
(r))

such that in these coordinates the system takes the classi-
cal state-space form

ẋ = f(t, x, u)

y = h(x)
(7)

and the sequences {u(t), y(t), t > 0}, generated by (7)
(for different initial states), coincide with those, satisfying
equation (1). Then (7) will be called a realization of (1).
A system (1) is said to be realizable if there exists a
realization of the form (7) for it.

The proofs presented in this section are adapted from
(Halás and Kotta, 2012), where the realization of time-
invariant systems was studied. In order to prove the main
theorem, we need the following lemma, which establishes
the relation between the tangent linearized i/o and state
equations.

Lemma 2. Assume we have given the i/o equation (1)
together with its tangent linearized system (5). Let

p∗ =

n∑
i=0

p∗i s
∗i, q∗ =

r∑
j=0

q∗j s
∗j (8)
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be respectively the adjoint polynomials of p and q. Then
the realization of the linearized system (5) has the form

dẋ = Adx+Bdu+Ddt

dy = Cdx,
(9)

where

A =


0 0 . . . 0 −p∗0
1 0 . . . 0 −p∗1
...

...
...

...
0 0 . . . 1 −p∗n−1

 ,

B =

 −q
∗
0

...
−q∗n−1

 , D =

 −r
∗
0

...
−r∗n−1

 ,

C = (0, . . . , 0, 1),

(10)

and r∗0 , . . . , r
∗
n−1 are arbitrary functions from K, satisfying

the condition

r∗0 + ṙ∗1 + · · ·+ r
∗(n−1)
n−1 = r0. (11)

Proof. It is sufficient to show that the equations (9) can be
transformed into the form (5). From (9) one may compute

dx = (sI −A)−1(Bdu+Ddt),

where I is the identity matrix, and

dy = C(sI −A)−1(Bdu+Ddt). (12)

The inverse matrix (sI−A)−1 has rather complex entries,
therefore it is better to avoid computing it directly. How-
ever, the product C(sI − A)−1 =: E is much easier to
find. The elements of E = (e1, . . . , en) are fractions from
K〈s,d/dt〉. In (Halás and Kotta, 2012) it is shown that
E = (p−1, p−1s, . . . , p−1sn−1), where the polynomial p is
defined by (6). From above and (12),

dy = E(Bdu+Ddt)

= −
n−1∑
i=0

p−1(s)siq∗i du−
n−1∑
i=0

p−1(s)sir∗i dt

= −p−1(s)q(s)du− p−1(s)r′(s)dt.

Note that
sidt = 0, i > 1,

since dṫ = dẗ = . . . dt(i) = 0. Due to restriction (11) the
constant term of r′(s) equals to r0. Thus, r′(s)dt = r0dt
and

dy = −p−1(s)q(s)du− p−1(s)r0dt,

or alternatively,

p(s)dy + q(s)du+ r0dt = 0.

2

Note that dx1, . . . ,dxn in Lemma 2 are just symbols
denoting the one-forms from E , not necessarily exact. If
dx1, . . . ,dxn are exact, one can integrate the equations
(9) immediately, and obtain the realization of (1) in the
observer form. In case the one-forms dx1, . . . ,dxn are not
exact, one may ask whether there exist a set of n linear
combinations of dx1, . . . ,dxn, that are exact, or said in the
other words, whether the subspace spanK{dx1, . . . ,dxn}
is integrable. If so, we can apply the coordinate trans-
formation to (9) and integration of the transformed one-
forms yields the realization of (1) in a general form. To
conclude, the system (1) is realizable iff the subspace
spanK{dx1, . . . ,dxn} is integrable. Therefore, our aim is

to find the expressions for the one-forms dx1, . . . ,dxn in
(9). These expressions are given in Lemma 3. For that we
first introduce the set of one-forms

ω̃l := p∗l dy + q∗l du+ r∗l dt, l = 1, . . . , n, (13)

where p∗l and q∗l are respectively the coefficients of sl

of the adjoint polynomials p∗ and q∗, defined by (8),
and r∗0 , . . . , r

∗
n ∈ K are arbitrary functions satisfying the

restriction (11).

Lemma 3. The differentials of the state coordinates ex-
pressed in linearized system equations (9) are given by the
formulas

dxi = ωi :=

n∑
k=i

ω̃
(k−i)
k , i = 1, . . . , n. (14)

Proof. In terms of the one-forms ω̃i, i = 0, . . . , n the system
equations (9) take the form

dẋ1 = −ω̃0

dẋ2 = dx1 − ω̃1

. . .

dẋn−1 = dxn−2 − ω̃n−2
dẋn = dxn−1 − ω̃n−1

dy = dxn

(15)

Expressing dy, . . . , dy(n−1) from (15) yields

dy = dxn
dẏ = dxn−1 − ω̃n−1
dÿ = dxn−2 − ω̃n−2 − ω̃(1)

n−1
. . .

dy(n−1) = dx1 − ω̃1 − ω̃(1)
2 − · · · − ω̃

(n−2)
n−1

(16)

From the definition (13) we obtain ωn = dy. Thus, (16)
can be rewritten as

dxn = ωn

dxn−1 = ω̃n−1 + ω̃(1)
n

dxn−2 = ω̃n−2 + ω̃
(1)
n−1 + ω̃(2)

n

. . .

dx1 = ω̃1 + ω̃
(1)
2 + · · ·+ ω̃

(n−2)
n−1 + ω̃(n−1)

n

Regarding the definition (14) it is easy to see that dx1 =
ω1, . . . ,dxn = ωn. 2

The following theorem gives the realizability criterion in
terms of the adjoint polynomials.

Theorem 4. The i/o equation (1) has the state space
realization in the form (7) iff the subspace

V = spanK{ω1, . . . , ωn}
is completely integrable.

Proof. After linearizing the i/o equation (1), its realization,
by Lemma 2, is expressed in the form (9). From (9),
by Lemma 3, the differentials of the state coordinates
dxi = ωi, i = 1, . . . , n. If the differentials of the state
coordinates are integrable then the system is realizable
and vice versa. 2

The fact that the functions r∗1 , . . . , r
∗
n−1 ∈ K in definition

(13) are arbitrary, gives additional freedom to find the
exact basis of V.
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Remark 5. For the realizable i/o model (1) the differen-
tials of the state coordinates dxi can be calculated as the
integrable linear combination of the one-forms ω1, . . . , ωn.

Remark 6. The one-forms ωi in (14) can be alternatively
computed by recursive formula, starting from ωn:

ωn := dy, ωi := ω̇i+1 + ω̃i, (17)

where i = n− 1, . . . , 1.

Example 7. Consider the system

ÿ + tetẏ +
1

t
y − ln u̇− tu = 0 (18)

After differentiating (18) we obtain the polynomial repre-
sentation in the form (5), where

p = s2 + etts+
1

t
, q = − ln ts− t,

r = −r0 = tetẏ + etẏ − 1

t2
y − 1

t
u̇.

(19)

Computation of the adjoint polynomials of (19) yields

p∗ = (s∗)2 + etts∗ +
1

t
− et(t+ 1)

q∗ = − ln ts∗ +
1

t
− t.

The polynomial r∗ is an arbitrary polynomial of degree
n− 1 = 1, so we may assume it has a form

r∗ = r∗1s
∗ + r∗0 .

Though by Lemma 2, r∗0 + ṙ∗1 = r0, it is not necessary
to know the precise values of r∗1 and r∗0 at this stage of
computations, they have rather to be chosen later, during
the integration process in order to make the subspace V
integrable, if possible. By formula (13) we obtain

ω̃1 = p∗1dy + q∗1du+ r∗1dt = ettdy − ln tdu+ r∗1dt

ω̃2 = p∗2dy = dy,

and from (17)

ω2 = ω̃2 = dy

ω1 = ω̇2 + ω̃1 = dẏ + ettdy − ln tdu+ r∗1dt

The next task is to find the polynomial r∗ so that
spanK{ω1, ω2} would be integrable, if possible. Observe
that ω1 = d(ẏ+ etty−u ln t), if we take r∗1 := ett+ et− u

t .
It means ω1 and ω2 are both exact and one may choose
differentials of the state coordinates as

dx1 = ω1 = d(ẏ + etty − u ln t)

dx2 = ω2 = dy

yielding the state-space equations

ẋ1 =
1

t
(t2 − 1)u+

1

t
(ett2 + ett− 1)x2 + ln u̇− u̇ ln t

ẋ2 = x1 − ln tu− ettx2
y = x2

where x1 = ẏ + etty − u ln t and x2 = y.

4. MINIMAL REALIZATION

Like in (Zhang et al., 2010), we call the realization minimal
if it has the smallest order (i.e. the smallest number of state
variables) among all realizations having the same general-
ized transfer function. To obtain the minimal realization,
the i/o equation (1) has to be in the irreducible form.
Irreducibility is defined using the notion of autonomous
element.

Definition 8. (Conte et al., 2007) A non-constant function
ϕred ∈ K is said to be an autonomous variable for
system (1) if there exist an integer µ > 1 and a non-zero
meromorphic function F such that

F (ϕred, ϕ
(1)
red, . . . , ϕ

(µ)
red) = 0. (20)

The equation (20) is called an autonomous differential
equation of the system (1).

Definition 9. The system (1) is said to be irreducible if
there does not exist any non-constant autonomous variable
in K.

In case the system admits an autonomous variable, the
system can be reduced. That is, one may find the new,
lower order system, which is transfer equivalent with the
original system.

Example 10. Consider the following motivating example

ϕ := ÿu− ẏu̇+ ẏu = 0. (21)

According to the results of (Zhang et al., 2010) the system
(21) is not reducible though it admits an autonomous
variable ϕred := ẏ/u, satisfying the relation

ϕ = kF (ϕred, ϕ̇red) = u2 [ϕred + ϕ̇red] . (22)

The source of discrepancy is that ϕred = ẏ/u = 0 yields
a degenerate system ẏ = 0. This again yields that the
minimal realization of (21), i.e.

ẋ1 = ux2
ẋ2 = −x2
y = x1

is not an accessible system being in contradiction with the
classical control theory.

Note that the convention ϕred = 0 comes from the
assumption that F (0, . . . , 0) = 0, meaning that zero is
one (constant) solution of the homogeneous differential
equation. Though this is an assumption often made in
nonlinear control theory, for instance in (Conte et al., 2007;
Zhang et al., 2010) and is also valid in (22), it is far from
being the only possible choice and may be relaxed.

Observe that from ϕ = 0 (and u 6= 0) we obtain

ϕ̇red + ϕred = 0.

The solution of this homogeneous differential equation
is ϕred = C e−t, where C is an integrating constant.
Therefore, the reduced i/o equation, in general, is

ϕred =
ẏ

u
= C e−t, (23)

where C ∈ R is an arbitrary constant. If we choose C = 0,
we arrive at the situation described above. However, the
general realization of the i/o equation (23) is

ẋ = C e−tu

y = x
(24)

that is a linear time-varying system. The realization (24)
is not unique but depends on constant C. It is because we
have abandoned the standard assumption ϕ(0, . . . , 0) =
0. If we fix the initial conditions of the autonomous
differential equation (20), then C will acquire the specific
value. Note also that the choice C = 0 is the only one
that does not take us out from the set of time-invariant
systems. For every other choice the reduced i/o equation
will depend explicitly on time t. To conclude, the typical
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assumption F (0, . . . , 0) = 0 allows in majority of cases to
simplify the exposition of the theory, and is often made
by this reason. However, in the nonlinear context this
assumption is not always natural or even not a valid choice.

Example 11. Consider for example the system

ϕ = ÿẏu− ẏ2u̇+ u3 = 0 (25)

yielding

ϕ = u2ẏ

[
ϕ̇red +

1

ϕred

]
, ϕred =

ẏ

u
.

Since the assumption F (0, 0) = 0 can not be used here, one
has to solve the differential equation ϕ̇red + 1

ϕred
yielding

ϕred = ±
√

2(C1 − t).

ϕred =
ẏ

u
= ±

√
2(C1 − t)

The realization of (25) has the form

ẋ = ±
√

2(C1 − t)u
y = x.

Example 12. Consider the equation

ϕ := −9uu̇2 − u̇2ü+ 2uü2 − 9u̇2ÿ + 2ü2ÿ−
uu̇u(3) − u̇ÿu(3) − 2u̇üy(3) + u̇2y(4) = 0.

(26)

The latter equation can be represented in the form

ϕ = u̇3[ϕ̈red − 9ϕred] = 0, (27)

where

ϕred =
u+ ÿ

u̇
.

In (27) the function F = ϕ̈red − 9ϕred is a special case of
the linear differential equation with constant coefficients

anϕ
(n)
red + · · ·+ a1ϕ̇red + a0ϕred = 0. (28)

The solution of it is determined by the roots of the
characteristic equation anλ

n+ · · ·+a1λ+a0 = 0. If all the
roots λ1, . . . , λn are real and distinct, then the solution of
(28) has the form

ϕred = C1e
λ1t + · · ·+ Cne

λnt,

where C1, . . . , Cn are arbitrary constants. Thus,

ϕred =
u+ ÿ

u
= C1e

3t + C2e
−3t,

then the minimal realization of i/o equation (26) is

ẋ1 = (C1e
3t + C2e

−3t)u+ x2

ẋ2 = (−1− 3C1e
3t + 3C2e

−3t)u

y = x1,

where x1 = y and x2 = −(C1e
3t + C2e

−3t)u+ ẏ.

Example 13. If F is a nonlinear differential equation with
respect to ϕred, then the closed-form solution, in general,
may be more complicated or does not exist at all, though
some simple cases the analytic solution for ϕred may still
be found. For instance, consider the equation

ϕ := 2u̇2ÿ + 2u̇ÿ2 − (1 + u)(üÿ + 2u̇y(3) + 2ÿy(3))

+(1 + u)2y(4) = 0,
(29)

yielding

ϕ = (1 + u)3 [ϕ̈red − 2ϕ̇redϕred] = 0, ϕred =
ÿ

1 + u
.

Then
ϕred = C1 tan[C1(t+ C2)],

and the realization of (29) is

ẋ1 = x2
ẋ2 = C1 tan[C1(t+ C2)](1 + u)

y = x,

where x1 = y and x2 = ẏ.

Example 14. Consider the Example 5.4 from (Zhang et al.,
2010):

ϕ := uÿ − u̇ẏ = 0. (30)

It is easy to check that

ϕ = u2ϕ̇red, where ϕred =
ẏ

u
.

Solving the equation ϕ̇red = 0 yields ϕred = C, thus the
reduced i/o equation has the form ẏ = Cu, u 6= 0, and the
minimal state equations are

x = Cu

y = x.

The latter system is time-invariant, depending on arbi-
trary constant C. This example shows that the general
solution of the autonomous differential equation does not
always cause the reduced equation to be time-varying.

Note that taking ϕred = 0 (see (Zhang et al., 2010)),
yields ẏ/u = 0 and we obtain the degenerate i/o equation
ẏ = 0. The paper (Zhang et al., 2010) demonstrates
via this example that minimality (in terms of the state
dimension n) does not necessarily yield accessibility. The
last property may be related to the following fact. Though
the i/o equation may be reducible generically (like in
case of (30)), it may happen that at a specific ’singular’
point the i/o equation is not reducible. We conjecture
that extending the assumption F (0, . . . , 0) = 0 as done
in this paper, one may abandon the above discrepancy,
and generically, the minimal realization is accessible.

5. CONCLUSION

The reduction process of the i/o equation is related to the
solutions of the autonomous differential equation (20). In
earlier papers usually only trivial solution was considered,
yielding ϕred = 0. Allowing the nonzero solution points
to a somewhat surprising fact that the reduced equation
of the time-invariant nonlinear system may be, in general,
a time-varying system. However, it is important to stress
that in case of arbitrary differential equation (20) the close-
form solution can not be found. Example 14 solves the
seeming contradiction in (Zhang et al., 2010), where it
was claimed that the minimal realization is not necessarily
accessible. The approach used in our paper allows to
unravel this discrepancy with the linear case.
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