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Abstract

A gradient descent–based nonlinear observer for surface–mount permanent magnet synchronous motors
(PMSMs) with remarkable stability properties was recently proposed in [7]. A key assumption for the
derivation of the observer is the absence of rotor saliency, which is the case in surface–mount PMSMs. A
question of great practical interest is to assess the performance of the observer in the presence of saliency.
This is the topic of study of the present paper. It is shown that the robustness of the observer is fully
determined by the sinusoidal steady–state values of the currents, providing some guidelines for the selection
of their reference values to ensure good position estimation.

1. Introduction

Position information is required for field orienta-
tion control of PMSMs, which is the industry stan-
dard for high–performance applications. In some
cases, installing position sensors is troublesome, for
instance, in some vacuum pumps, cranes and eleva-
tors. Also, in some other applications, like house-
hold equipments such as refrigerators and air con-
ditioners, cost constraints stymies the use of speed
sensors. The above problems motivate to develop
sensorless algorithms for PMSMs, for which numer-
ous works have been published, see [1, 6] for a recent
review of the literature.
A very simple observer of the rotor position of

PMSMs that exhibits some remarkable stability
properties was recently presented in [7]. The analy-
sis, done for the full nonlinear model, proves global
(under some conditions, even exponential) conver-
gence of the position estimate and yields very sim-
ple robust tuning rules. In [5] the position observer
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was combined with an ad–hoc linear speed estima-
tor and a standard field–oriented controller, which
are often used in applications, yielding very encour-
aging experimental results. In [8] the position ob-
server is combined with a speed and load torque
observer and a passivity–based controller to obtain
an asymptotically stable controller that regulates
the mechanical speed of the motor, measuring only
the electrical coordinates. See also [2, 9] where this
observer is also used.

The position observer of [7] is designed for non–
salient PMSMs, for which it is possible to derive a
gradient descent method—whose robustness prop-
erties are well–known. In the phase of saliency,
that is present in all practical machines, the gra-
dient cannot be computed and the question of per-
formance of the observer naturally arises. In this
paper, we carry out a nonlinear analysis of the effect
of saliency on the error equations when the machine
is operating in sinusoidal steady–state.

The remaining of the paper is organized as fol-
lows. Section 2 presents the model of the salient
PMSM. The observer of [7] is briefly recalled in Sec-
tion 3 and the error equations due to the presence
of saliency are derived in Section 4. Some obser-
vations about the equilibria of these equations are
listed in Section 5 alongwith some representative
simulation diagrams.
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2. Mathematical Model of Salient PMSM

The classical fixed–frame αβ–model of the
PMSM in sinusoidal regime establishes the relation
between the voltages and currents as [3, 4]

vαβ = Riαβ +
d

dt
λαβ (1)

where λαβ = (λα, λβ) ∈ R(i0d)2, iαβ = (iα, iβ) ∈
R(i0d)2 and vαβ = (vα, vβ) ∈ R(i0d)2 are the flux
linkages, the currents and the voltages in the α and
β phases, respectively, and R is the resistance of
the stator coils. In the unsaturated case the flux
linkages are defined by

λα = Lααiα + Lαβiβ + λm cosnθ (2)

λβ = Lβαiα + Lββiβ + λm sinnθ

where Lαα and Lββ are self inductances of α and
β phases, respectively, and Lαβ and Lβα are the
mutual inductances between the two phases.1 λm

is the magnetic flux due to the permanent magnet
in the rotor, nθ is the electrical angle between the α-
phase and the rotor axis—where θ is the mechanical
angle between the α-phase and the rotor axis and
n is the number of pole-pairs in the machine.
For the salient machine, the self and mutual in-

ductances of the phases vary with the electrical an-
gle between the phases and the rotor axis. A model
that captures this variation is given by the following
equations

Lαα = Ls + Lg cos 2nθ

Lββ = Ls − Lg cos 2nθ

Lαβ = Lβα = Lg sin 2nθ,

Substituting these equations into (2) gives the equa-
tion

λαβ = [Ls + LgQ(θ)]iαβ + λmc(θ), (3)

where, to simplify the notation, we have defined

Q(θ) :=

[
cos 2nθ sin 2nθ
sin 2nθ − cos 2nθ

]
, c(θ) :=

[
cosnθ
sinnθ

]
.

(4)
The final model of the salient PMSM is then given
by (1), (3) and (4). A non–salient machine is mod-
eled with the same equations, under the assumption
that Lg = 0.

1As is standard practice, and without loss of generality,
we assume Lαβ = Lβα.

The observer problem is to generate a convergent
estimate of θ from the measurements of iαβ and
vαβ , and the knowledge of the (positive constant)
physical parameters R,Ls, Lg and λm.

3. The Position Estimator of [7]

From (3) it is obvious that if the flux is known,
and Lg = 0, it is possible to reconstruct θ via the
trigonometric identity

θ = tan−1

(
λβ − Lsiβ
λα − Lsiα

)
.

On the other hand, from (1) it is clear that one
can estimate the flux λαβ (up to a constant due
to the unknown initial conditions) by integrating a
quantity that depends on the measured quantities.
The key observation of [7] is that a gradient can be
computed to add to this integral a correction term
that will drive the estimation in the right direction.
More precisely, consider the following equations

ẋ = vαβ −Riαβ

y = |x− Lsiαβ |2,

with | · | the standard Euclidean norm. Clearly,
x estimates the flux λαβ up to a constant. Now,
note that in the case of no saliency, equation (3)
looses the middle term involving Lg and therefore
y = λ2

m when x = λαβ . Therefore, it is reasonable
to propose a gradient search that tries to minimize
the criterion (λ2

m − |x − Lsiαβ |2)2. which leads to
the flux observer proposed in [7]

ẋ = vαβ −Riαβ + γ(x− Lsiαβ)(λ
2
m − |x− Lsiαβ |2)

(5)
where γ > 0 is a scaling factor.

For the salient machine Lg ̸= 0, bringing into
(3) an unknown θ–dependent term. It is not clear
how to formulate a criterion with a computable gra-
dient in this case. In this paper, we analyze the
performance of the flux observer designed for the
non-salient machine [7], when applied to a machine
with saliency.

4. Error Equations

In this section, the dynamics of the observation
errors are derived and presented in a suitable ro-
tating frame for the analysis of their equilibria. To

2

Copyright © 2013 IFAC 354



streamline the presentation we introduce the rota-
tion matrix

exp(−nθJ) =

[
cosnθ sinnθ
− sinnθ cosnθ

]
,

where

J :=

[
0 −1
1 0

]
.

Notice that this matrix defines the well–known
transformation from αβ to dq coordinates [4]. In
particular, the id and iq currents are given by

idq = exp(−nθJ)iαβ .

As will become clear below the values of these cur-
rents will play a fundamental role on the perfor-
mance of the observer.

Proposition 4.1. Consider the salient PMSM
model (1), (3) and (4) together with the flux ob-
server (5). Define the error signals e = x − λαβ

and it’s scaled and rotated form

ξ = − 1

λm
exp(−nθJ)e. (6)

Introduce, moreover, the time–scale change

dt

dτ
=

1

γλ2
m

.

Then,

dξ1
dτ

= Ωξ2 − σ(ξ)(ξ1 − i0d − 1)

dξ2
dτ

= −Ωξ1 − σ(ξ)(ξ2 + i0q) (7)

where

σ(ξ) := (ξ1 − i0d − 1)2 + (ξ2 + i0q)
2 − 1, (8)

with the scaled currents idq

i0dq :=

[
i0d
i0q

]
:=

Lg

λm
idq

and the scaled speed

Ω =
n

γλ2
m

θ̇.

Proof. From (3)2

x− Lsiαβ = e+ λαβ − Lsiαβ

= e+ LgQiαβ + λmc.

2In the sequel the arguments of the functions are omitted.

Thus,

|x− Lsiαβ |2 = |e+ LgQiαβ + λmc|2

= |e|2 + L2
g|iαβ |2 + λ2

m

+2Lge
⊤Qiαβ + 2λme⊤c

+2λmLgc
⊤Qiαβ

and

λ2
m − |x− Lsiαβ |2 = −|e|2 − L2

g|iαβ |2

−2Lge
⊤Qiαβ − 2λme⊤c

−2λmLgc
⊤Qiαβ .

Thus, the error dynamics is

ė = ẋ− λ̇

= γ[−|e|2 − L2
g|iαβ |2 − 2Lge

⊤Qiαβ

−2λme⊤c− 2λmLgc
⊤Qiαβ ]×

(e+ LgQiαβ + λmc) (9)

Now, differentiating (6) we get

ξ̇ = −n
dθ

dt
Jξ − 1

λm
exp(−nθJ)ė

On simplifying, we get

ξ̇ = −nθ̇Jξ − γλ2
mσ(ξ)

[
ξ1 − i0d − 1
ξ2 + i0q

]
.

The proof is completed introducing the time scal-
ing. ���

Remark 1. The equations (7) fully describe the
behavior of the position observer (5) when applied
to a salient machine. Note that the functions i0d and
i0q play a central role in the error equations (7)—in
the steady–state operation of the machine they are
constants, proportional to the currents id and iq.

Note that the scaling factor
Lg

λm
is, in some sense, a

measure of the saliency of the machine as it depends
on Lg scaled by the magnetic flux of the permanent
magnet of the machine.

5. Observations about the Error Equations

For the sake of brevity, we now list several ob-
servations about existence and location of equi-
libria for the error equations (7), when idq is
constant—that is, for the machine operating in
steady–state.We have also added relevant figures
from simulations that support these observations.
Formal proofs of these observations would be re-
ported elsewhere.
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• For a nonzero Ω, every equilibrium point of the
error equations lie on a critical circle defined by

C(ξ) :=

(
ξ1 −

i0d + 1

2

)2

+

(
ξ2 +

i0q
2

)2

−
(i0d + 1)2 + (i0q)

2

4
.

• For fixed values of Ω, i0d and i0q, there is at
least one equilibrium point and at most three
equilibrium points.

• When more than one equilibrium point exists,
then Ω ≤ 1

3 and (1 + i0d)
2 + (i0q)

2 ≥ 8
9 .

• The origin is an equilibrium point if and only
if σ(ξ) = 0 or σ(ξ) = −1. Note that the case
of a non-salient machine falls in this category
as Lg = 0 and therefore σ(ξ) = 0.

• The disk

{ξ ∈ R2| |ξ| ≤ 1 +
√

(i0d + 1)2 + (i0q)
2}

is globally asymptotically stable (GAS).

• If (i0d + 1)2 + (i0q)
2 = 1, then

a) If 0 < Ω < 1/2, then there are three
equilibria. The origin is a stable node,
whereas the other two equilibrium points
are a saddle and an unstable equilibrium
point.

b) If Ω = 1/2, then there are two equilibria.
c) If Ω > 1/2, then the origin is the only

equilibrium. It is a stable node for Ω ≤ 1
and a stable focus for Ω > 1.

• If (i0d + 1)2 + (i0q)
2 > 1, then there exists an

equilibrium point ξ∗, such that σ∗ = σ(ξ∗) >
0. This equilibrium point is stable. If (σ∗ +
1) ≥ Ω, then ξ∗ is a stable node, otherwise it
is a stable focus.

• If (i0d + 1)2 + (i0q)
2 ≤ 1/2, then there exists

only one equilibrium point, which is unstable.
However, a stable limit cycle also exists in this
case, whose basin of attraction is the whole
plane minus the equilibrium point.

• If 1/2 < (i0d +1)2 + (i0q)
2 < 8/9, then there ex-

ists only one equilibrium point. For low speeds,
the equilibrium point is unstable and there ex-
ists a limit cycle. At higher speeds, the equi-
librium point becomes a stable focus.

x ’ = K y − (x − a − 1) ((x − a − 1)2 + (y + b)2 − 1)
y ’ = − K x − (y + b) ((x − a − 1)2 + (y + b)2 − 1)  

a = − 0.4
b = 0.8

K = 1
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Figure 1: The case of (i0d + 1)2 + (i0q)
2 = 1 having one and

three equilibrium points

• If 1 > (i0d +1)2 +(i0q)
2 ≥ 8/9, then there exists

two critical speeds Ω1 < Ω2, such that

a) if Ω < Ω1, then only one equilibrium
point exists. For low speeds, this equi-
librium point is unstable and there ex-
ists a limit cycle around this equilibrium
point. As the speed increases, the limit
cycle shrinks until finally it opens out and
the equilibrium point becomes a stable fo-
cus.

b) if Ω1 ≤ Ω ≤ Ω2, then there are three equi-
librium points. One of them is stable, a
second one is a saddle and a third one is
an unstable equilibrium point.

c) if Ω > Ω2, then there exists only one equi-
librium point, which is stable.

The case of (i0d + 1)2 + (i0q)
2 = 1 and having one

stable equilibrium point is displayed in Figure 1a.
Notice that the origin is a stable focus in this case.
The situation of three equilibrium points appearing

4
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x ’ = K y − (x − a − 1) ((x − a − 1)2 + (y + b)2 − 1)
y ’ = − K x − (y + b) ((x − a − 1)2 + (y + b)2 − 1)  

a = 0.5
b = 0.2

K = 1
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Figure 2: Various cases of equilibrium points when (i0d +
1)2 + (i0q)

2 > 1

for the case (i0d + 1)2 + (i0q)
2 = 1 is displayed in

Figure 1b. Again notice here that the origin is a
stable equilibrium point (in fact, a stable node).
Among the other two equilibrium points, the one
nearer to the origin is a saddle, whereas the one
further away is an unstable focus.

The case of (i0d + 1)2 + (i0q)
2 > 1 and having

one stable equilibrium point is displayed in Fig-
ure 2a, whereas a case of three equilibrium points
is displayed in Figure 2b. Of the three equilibrium
points, the one closest to the origin is a stable equi-
librium point (in fact, a stable node). Among the
other two equilibrium points, the one appearing to-
wards the top of the diagram is a saddle, whereas
the one further to the right is an unstable focus.

In Figure 3, we have a case where (i0d + 1)2 +
(i0q)

2 ≤ 1/2. The equilibrium point is an unsta-
ble focus. Observe that there exists a limit cycle
around the equilibrium point. This limit cycle is
stable, as in all points other than the equilibrium
point, eventually evolves towards this limit cycle.

x ’ = K y − (x − a − 1) ((x − a − 1)2 + (y + b)2 − 1)
y ’ = − K x − (y + b) ((x − a − 1)2 + (y + b)2 − 1)  

a = − 0.5
b = 0.4

K = 1
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Figure 3: The case of (i0d + 1)2 + (i0q)
2 < 1/2 having an

unstable equilibrium point and a limit cycle

Figure 4 shows the various cases arising when
8/9 ≤ (i0d+1)2+(i0q)

2 < 1. Thus Figure 4a is a case
of Ω > Ω2: one stable equilibrium point. Figure 4b
is the case of Ω1 < Ω < Ω2: three equilibrium
points with one stable, one unstable focus and the
third a saddle. Figure 4c is the case of Ω < Ω1:
one unstable equilibrium point with a limit cycle
around it.

6. Conclusions

We have done a theoretical analysis of the sen-
sorless position observer given in [7] for non-salient
machines. Only under the condition of (i0d + 1)2 +
(i0q)

2 = 1, would the origin be an equilibrium point
of the error dynamics. Thus, it is only under this
very specific condition that the error in estimation
of flux can actually go to zero. In all the other
cases, there is some error in the estimated flux and
therefore the estimated position. However, this er-
ror is never very large—a globally attractive disc
exists for the error system.

Under specific conditions, three equilibrium
points can exist. When three equilibrium points do
exist, the one closest to the origin is a stable equilib-
rium. The other two equilibrium points are a sad-
dle and an unstable node/focus. In all other cases,
there is only one equilibrium point which is either
a stable equilibrium point or an unstable equilib-
rium with a stable limit cycle around the unstable
equilibrium point.
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x ’ = K y − (x − a − 1) ((x − a − 1)2 + (y + b)2 − 1)
y ’ = − K x − (y + b) ((x − a − 1)2 + (y + b)2 − 1)  

a = − 0.3
b = 0.7

K = 1
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Figure 4: Different cases arising when 8/9 ≤ (i0d + 1)2 +
(i0q)

2 < 1
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