9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

FrB3.3

Differentiation Tool Efficiency Comparison
for Nonlinear Model Predictive Control
Applied to Oil Gathering Systems.

Andrés Codas* Marco Aurélio S. Aguiar ***
Konstantin Nalum * Bjarne Foss*

* Department of Engineering Cybernetics, Norwegian University of
Science and Technology, 7491 Trondheim, Norway
** Department of Automation and Systems Engineering, Federal
University of Santa Catarina, Floriancopolis, SC 88040-900 Brazil

Abstract: This paper presents a comparison of gradient computation techniques required to
solve a single-shooting formulation of nonlinear model predictive control (NMPC) problems. An
oil production system with network structure is considered as test instance. The structure of the
network is exploited to improve computational efficiency. Exact gradient sensitivity calculation
methods (forward and adjoint) are compared along with the finite difference approximation.
Forward and Reverse automatic differentiation for calculating Jacobians are also compared
along with the finite difference approximation counterpart. Since there is a trade off involving
accuracy and speed when calculating these gradients, the best combination of tools is case
dependent and it is determined by the analyses of performance indexes arising when solving
specific NMPC problems. A hybrid approach combining finite difference Jacobian calculations
with adjoint sensitivity calculations gave the best performance for our test problems.

Keywords: Gas-lift, Gradient Computation, Automatic Differentiation

1. INTRODUCTION

The success of most nonlinear optimization problem
solvers, and in particular the efficiency of optimal control
algorithms relies on the performance of gradient compu-
tation. These problems are solved by iterative algorithms
which solve a linearization of the nonlinear problem at
each iteration. This linearization consists of Taylor approx-
imations of the optimization problem objective and con-
straints. A trade-off arises because poor approximations
may incur more iterations or divergence while accurate
gradients can be computational expensive leading to a
prohibitive solution time for real-time purposes.

Gradient calculation algorithms performance depend on
the problem instance. In this paper we assess gradient
computation techniques for a Nonlinear Model Predic-
tive Control (NMPC) with a single-shooting formulation
applied to short-term oil production optimization. The
NMPC application typically communicates with a low
level control layer which maintains stability (for open loop
unstable systems) and ensures high frequency disturbance
rejection. Further, the application may receive information
from an upper level optimizer which maximizes a long term
economical index.

The oil gathering system considered in this work possesses
a network structure consisting of a set of wells, manifolds,
pipeline-riser and separators. The wells and pipeline-riser
systems are modeled by Ordinary Differential Equations
(ODE) based on previous work by Eikrem et al. (2008)
and Jahanshahi and Skogestad (2011), respectively. The

Copyright © 2013 IFAC

manifold is modeled by a pressure-flow balance with no
states, thus it introduces algebraic equations, while the
separator is represented by a fixed pressure boundary
condition. The coupled system model is an index-1 Dif-
ferential Algebraic Equation (DAE), which can be easily
transformed to ODEs.

The NMPC problem is solved in a sequential approach
where the Nonlinear Programing (NLP) solver relies on
information provided by the ODE solver. Gradient in-
formation can be provided by solving additional ODEs
through the implementation of the direct or adjoint sen-
sitivity method or by repeated simulations through the
finite difference method (Biegler, 2010).

Implicit ODE solvers and sensitivity calculation methods
require the calculation of partial derivatives (or Jacobians)
of the system. Automatic differentiation tools, namely the
forward and reverse methods, are used to obtain exact
(up to machine precision) partial derivatives (Griewank
and Walther, 2008). Finite difference approximations are
also popular because of their simplicity. In this work we
propose to exploit the network structure of the system
through the application of the chain rule in order to
improve computational efficiency.

Tools for exact differentiation and approximate differen-
tiation are compared measuring their performance when
solving one iteration of the NMPC problem. To this end,
IPOPT (Wiachter and Biegler, 2006) is used as the NLP
solver.

821

Fig. 1. Oil gathering network structure with four wells, one
manifold, pipeline-riser and separator.

In section 2 the oil gathering network model is described.
The system equations are not written explicitly, however,
the system structure is described and decomposition op-
portunities are discussed. In section 3 the oil production
optimization problem is formulated as a single-shooting
NMPC problem. The gradient calculation methods are
presented in section 4 and some of their properties are
discussed. Section 5 illustrates the performance of the
presented tools when tackling the proposed problem. In
section 6 the results obtained are summarized and future
research directions are pointed. In section 7 the contribu-
tion of this paper is briefly stated.

2. SYSTEM MODELING

Figure 1 illustrates the oil gathering network structure
treated in this work. w;,i € {1,...,4} represent wells,
while m1, p1, 71 and s; represent a manifold, a horizontal
pipeline segment, a riser, and a separator, respectively.

2.1 Well Model

Wells operated by gas-lift are considered. A model with
three states was developed inspired by Eikrem et al.
(2008). The states correspond to the mass of gas in the
well annulus, and the mass of gas and the mass of liquid
in the well production tubing.

The inflow performance relationship (IPR), i.e., the model
of the flow from the oil reservoir into the well, is modeled
by a quadratic function of the bottom-hole pressure. The
black-oil fluid model is used to represent the reservoir fluid
which is assumed to have constant water-cut (WCUT) and
gas-oil ratio (GOR). The pressures in the tubing and the
annular are a consequence of the hydrostatic pressures and
the ideal gas law. The well is assumed to be connected
to one manifold through a choke valve. Since the control
inputs in the later experiments are gas injection rates the
choke valve is considered always fully open and its pressure
drop is assumed to be proportional to the square of the
mass flow.

2.2 Manifold-Pipeline- Riser-Separator Model

The manifold is modeled by an algebraic equation, no
dynamic variables are used. The manifold pressure is
assumed to be the same as the boundary pressure of the
pipeline-riser model.

The horizontal pipeline and the riser dynamic models are
based on (Jahanshahi and Skogestad, 2011) which consid-
ers two phases (gas and liquid). Since the liquid input has

Copyright © 2013 IFAC

variable water-cut the liquid phase is separated in an oil
phase and a water phase. Within the horizontal pipeline
the flow is considered stratified while in the riser the flow
is considered mixed. Three states model the fluid mass
for each phase (gas, oil and water) in both the horizon-
tal pipeline and riser. The pressure gradient along both
segments is modeled as a consequence of the gravitational
gradient and a frictional gradient. Jahanshahi and Sko-
gestad (2011) consider an inclined pipeline to induce slug
flow effects. Since we are not interested in this behavior we
assume a perpendicular connection between the horizontal
pipeline and the riser.

Orifice equations model the transfer of fluids from the
horizontal pipeline to the riser. At the riser outlet, the
outflow is modeled by valve equations. The virtual orifice
connection area between pipeline and riser depends on
the volume of flowing liquids which are considered incom-
pressible. The flow of oil and water through the orifice is
proportional to their mass fractions in the pipeline.

Since the liquid properties vary as a consequence of the
water-cut variation, the equations involving density, vis-
cosity and superficial velocity had to be modified com-
pared to the approach by Jahanshahi and Skogestad
(2011). A friction correlation for fluid flow in the pipeline is
calculated by using the Haaland equation (Johnson, 1998).

2.8 System Coupling

Let W be the set of wells and P the set of horizontal
pipelines-risers pairs. Let R C {(w,p) € W x P|(w,p) € R,
(w,p') € R,p=1p'} be the set establishing the routing
configuration, then R(p) = {w € W|(w,p) € R} and
R(w) = {p € P|(w,p) € R} which is a singleton since
a well can only be connected to one pipeline.

The dynamic systems described in sections 2.1 and 2.2 can
be represented with the following system of differential-
algebraic equations (DAE):

X = fu | Xw, Uw, Z Yuw,p , Vw e W

pER(w)
Xp = fp (Xp,¥p), VD EP (1b)
Yw,p = Gu,p (XUHX;D)) V(w,p) ER (1C)
Yp = Z Ywp, VD € P (1d)

weR(p)

where:

e x,, and x, are the states relative to well w (3 states)
and the states relative to pipeline-riser p (6 states),
respectively.

e u,, represents the gas injection rate for the well w.

® yu,p represents the flow rate from well w to the
pipeline p.

e f, and f, are the dynamical equations for the well
w and the pipeline p, while g, , is the function
establishing the pressure-flow boundary between the
well and pipeline.

Yuw,p and y, can be replaced by means of (1c) and (1d),
turning the DAE into ODEs, however, these equations

822

are left explicit in order to take advantage of the system
structure. When running simulations of the system the
ODE representation is used.

The system equations f,, f, and gy, are continuous,
piecewise-differentiable and explicit. The finite difference
gradient approximation is affected by the termination con-
ditions of iterative algorithms to solve implicit functions,
thus explicit equations are more convenient for this pur-
pose. Piecewise-differentiable functions are required to be
able to define derivatives in all points, if in a particular
point the function is not differentiable then the derivative
from one side is taken.

3. PROBLEM FORMULATION

Let 9¥(x(tf)) be a function of the state variables x =

Xy sy Xy, s Xpyyo oo ,xpnp} at the prediction horizon
final time ¢ ;. The DAE system (1) can be written as ODEs
with x = fo(x,u.(t)), where uc(t) = (Uw,,---;Uuw,,)
We model the control profiles u.(t) as piecewise con-
stant functions, thus, given a time discretization set 7 =
{to, ... ytn, = ts}, uc(t) = ub if t4_; <t < t;. Finally an
optimal control problem can be stated as an optimization
problem with embedded ODEs:

min ¢(x(ty))

s.t. %= f(t,x,u)
x(0) = %o
C](X(t]),u) S 0
Upin < U < Upax

[N}
=3

A/&D\,—‘MA/\
(oFNe)
~— —

where:

e f is analog to f. but taking the discrete control pa-
rameters. The time ¢ is also added in order to resolve
which of the control parameters u = {u',...,u™} is
active.

e cr(x(tr),u) are nonlinear functions describing con-
straints, where t; represents any time in the range
(0,t¢] representing the prediction horizon.

o If the objective or a constraint needs to be defined as
an integral function of the state variables, for instance
P(x(ty)) = — fgf q°(x)dt, where ¢° is the oil outflow,
then an additional state x4 can be added to the
system.

Assuming that the initial value problem given by (2b) and
(2¢) has a unique solution, problem (2) can be written
(with some notation abuse) as a single shooting problem
depeding on the variables u:

min ¢ (u)
st. cr(u) <0 (
Umin S u S Umax

,_\ A
w W ow
a6 T o
~— N

4. GRADIENT CALCULATIONS

Single shooting problems like (3) which do not posses
known convexity, are typically tackled with Sequential
Quadratic Programming (SPQ) or Interior Point (IP)
methods (Diehl et al., 2002; Biegler et al., 2002), given the

Copyright © 2013 IFAC

assumption that they are locally convex close to a local
optimal solution. Efficient SQP and IP algorithms require
gradients (Vy¢ and Vyer) and Hessian approximations.
These computations are the most time-consuming part in
single-shooting algorithms, see e.g. Imsland et al. (2010).
Linear model predictive control algorithms are relatively
easy to implement due to the simplicity of the gradients
calculations, in this case the predicted states are linear
w.r.t. the input and gradients are obtained from the
step/impulse response of the system. In addition, state
of the art linear optimization solvers are able to solve
problems with hundreds of thousands of variables in few
minutes, see e.g. Codas et al. (2012). On the other hand,
nonlinear model predictive control algorithms present a
challenge because iterative algorithms such as SQP and
IP require gradients and Hessians at each iteration.

The formulation of the control problem (3) has embed-
ded the ODE system (2b)-(2c). Therefore, the required
gradients depend on how the control variables affect the
ODEs. In the following we discuss the available tools for
gradient computation for this equation system. Extensions
for differential algebraic systems can be found in (Biegler,
2010).

4.1 Finite Difference Approximation (FD)

Given a direction vector p € R™ a directional derivative
approximation can be obtained by:

N e T
(4)

where hg is a value sufficiently small to approximate the
limit. It should be noticed that the solution of #(u) is
often an approximation controlled by the ODE solver
tolerance es. If the difference ¢(u + hop) — ¥(u) is in
the same order of magnitude or smaller than ez, then
the gradient approximation can be severely affected. The
complicated tuning relation between e, and hg besides
potential computational efficiency improvements motivate
the next gradient computation method.

4.2 Forward (Direct) Sensitivity Calculations (FS)

Considering the initial value problem (2b)-(2c), we focus
on computing V,1 where v € u is a single variable that
parametrizes the control input of the NMPC problem.
The forward sensitivity method principle resides on first
calculating V,x(t¢) and then relating this gradient to 1.
Following the derivation strategy by Biegler (2010), we
define S = 9%, S(ts) is then given by the solution of the
following system:

s of orT B
== ? (t) + 8_15 . 5(0) =0. (5a)
sy Y
V= &S(tf) + 5, (5b)

The computational effort related to compute the sensitiv-
ity equations is proportional to the number of states ny
times the number of control parameters ny (i.e., nx X ny).

823

We solve the sensitivity equation system (5a) running the
solver once for all v € u along with the system (2b)-(2c)
simulation to take advantage of the common computations
of the partial derivatives %. An alternative implementa-
tion would take advantage of parallelization capabilities by
solving the sensitivities independently for each u € u.

4.8 Adjoint (Reverse) Sensitivity Calculations (AS)

When the number of control variables is large the Forward
Sensitivity Calculation is inefficient due to the size of the
ODE system (5a). This motivates the use of the Adjoint
Sensitivity Calculation (Biegler, 2010) which equation
system is:

a of" oY
T ok Aty) = Ox (6a)
oY opof
Vuy) = =+ i AT S dt. (6b)

The ODE system (6a) has dimension nx, and n,, integrals
must be solved in addition (which are less computationally
expensive than ODEs). However, it is important to remark
that system (6) should be solved for each function in the
optimization problem, thus the computational effort is
proportional to ng(1+n.,). When there are more functions
than control parameters the F'S method typically performs
better than the AS method and vice versa.

4.4 Jacobian Calculations

A key aspect for accurate and efficient sensitivity compu-
tation is the performance of Jacobian calculations. As can
be seen in (5) and (6) partial derivatives are needed in each
single step of the sensitivity calculation. Implicit ODE
solvers also use the same partial derivatives to simulate

(2b)-(2c).

System (1) has a special structure that can be exploited
to solve its partial derivatives efficiently. The wells and
pipelines states depend on each other indirectly through
the algebraic variables y. , and y,. The dependency is
determined by the routing configuration given by the set
R.

Taking advantage of the network structure, (7) shows how
to calculate the non-zero members of the Jacobian by
applying the chain rule.

0w _ Ofw | Ofw Oguwp
Oy Oxu + Dy D% Yw e W,p € R(w) (7a)
0%y _ Ofw Oguwp

= : v R 7b
Oy ~ Dy 0%, weW,p € R(w) (7b)
% — % + % 3gw,p Vp e P (7c)
ox, 0%, Oy, weTin) 0x,
B _ O O0un -y, p) e R (7d)

0%y Oyp 0%y

It should be noted that all partial derivatives in (7) are
dense and dependent on the well and pipeline-riser mod-
els. Further sparsity exploitation depends on the specific
implementation of these models.

Copyright © 2013 IFAC

When calculating the system sensitivity, the full evaluation
of (7) is required depending on the chosen ODE solver.
Implicit ODE solvers require complete Jacobians, while
explicit methods require the evaluation of the Jacobians
in a single direction. Efficiency gains can be obtained by
calculating the Jacobians only in the required direction.

Automatic differentiation tools can be used to compute
exact partial derivatives. Two modes are available, forward
mode (FM) and reverse mode (RM), which are relatively
efficient for calculating directional derivatives in the col-
umn space and in the row space of the Jacobian, respec-
tively. On the other hand, the finite difference method
described in Section 4.1 can be also used to get gradient
approximations (Nocedal and Wright, 2006).

5. EXPERIMENTAL RESULTS

All computational experiments were executed on an In-
tel Core2Duo E8400 @ 3.00 GHz machine with 4.00 GB
RAM running under Windows 7 SP1 64bits. Matlab 2012b
was used to solve the ODE equations with the solver
“ode23t” which implements the trapezoidal rule and is rec-
ommended for moderately stiff systems (Shampine et al.,
1999). The single-shooting optimization problem (3) was
solved with TPOPT v3.10.2 (Wichter and Biegler, 2006)
interfaced to Matlab by the “OPTI” toolbox v1.71 (Currie
and Wilson, 2012). The automatic differentiation tool used
was ADiMat v0.5.8-3496 (Bischof et al., 2002).

5.1 Single Shooting Optimization Problem

The problem solved for the performance assessment of
the tools is equivalent to problem (2) with ¥(t;) =
T (x—xs)" Q(x —xs)+ (uc — us)” R(u. — ug) dt
+ 1 (x(ty) — xs) P (x(tf) — xg). Q is a diagonal constant
positive definite matrix with Q[k] = (1/xs[k])* ([k] de-
notes the kth component), and R = 7ol where ry is a
positive scalar tuned to have the convergence rate of the
system at the optimal solution similar to the open loop
system dynamics. The matrix P is the positive solution of
the Algebraic Ricatti Equation (ARE) with state cost @
and control cost R for the LTI system obtained after the
linearization of (1) around the point (xg,us).

The set of constraints c¢; describes linear input rate con-
straints. No state constraints are implemented. up,;, and
Umax are selected to bound the lift-gas rate to the steady-
state feasible operational region. xg and xg satisfy 0 =
fe(X0,u0) and 0 = f.(xs,ug), respectively, so they are
steady-state solutions of the system for uy and ug. Then
the solution of this problem gives the optimal control
sequence to change the system set-point. The time ¢y is
chosen longer than the system’s dominant dynamics.

For the intent of this work routing is not relevant, so
we assume it fixed. Therefore, the behavior of manifolds
subsystems can be analyzed independently. To perform the
tests we choose a system with 4 wells routed to a single
manifold. The control inputs are parametrized as piecewise
constant time functions with 15 equal intervals for each
well, i.e., the optimization problem has 60 continuous
decision variables. The complete model implementation,
gradient calculation algorithms and the experimental re-
sults can be downloaded from (Codas et al., 2013).

824

5.2 Jacobian Efficiency/Accuracy Assessment

Jacobian calculations are required to simulate the system
and to calculate the sensitivities. The “ode23t” implemen-
tation requires just an approximation of the Jacobian,
which is checked and updated if necessary at each step
(Shampine et al., 1999). The sensitivity calculations need
a Jacobian-vector product, i.e., a member of the column
space or row space. The forward mode (reverse mode)
Jacobian calculation method can obtain the Jacobian-
vector (vector-Jacobian) product without calculating the
whole Jacobian, which is more expensive.

Table 1 illustrates the impact of the network structure
exploitation on (7). The first 3 rows report the computa-
tional time for the Jacobian computation, while the last
3 rows show Jacobian-vector products. We observe that
the structure exploitation makes the Jacobian calculation
more efficient and calculating one product of the Jacobian
is faster than calculating the Jacobian. The next analyses
will always take advantage of this structure exploitation.

Table 1. Jacobian calculation time comparison

Time in Structure Exploitation | Improvement
seconds Without With ratio
FM 0.29 0.07 4.15
RM 1.60 0.53 3.03
FD 0.06 0.03 2.48
FM (right product) 0.22 0.04 5.19
RM (left product) 0.50 0.42 1.20
FD (right product) 0.05 0.02 2.68

In order to assess the gradient calculation performance,
Table 2 reports the time taken by the algorithms to
calculate Vi, and the relative distance of the solution
to the gradient by FM/AS method. The RM method is
discarded because it is faster to compute exact Jacobians
with the FM method, even if only a vector-Jacobian
product is required.

Table 2. Vi, calculation performance

Sensitivities
Running Time (s) Relative Error(%)
FS AS FD FS AS FD
FM 127.1 11.1 14.8 | 0.33 0 26.2
FD 1010.5 4.6 6.8 0.33 0.06 26.2

af/ox

As expected, the AS method is faster than the others
because the gradients are calculated for a unique function
depending on 60 variables. While the AS method solves 2
relatively small ODEs, the FS method solves a big ODE
system, and the FD method require n, + 1 = 61 ODEs.

Individual Jacobian-vector product calculations are not
computed in the FS algorithm without calculating the
Jacobian first. Since the ODE solver is instantiated once
for all control parameters, it is faster to calculate the
Jacobian once than calculating a Jacobian-vector product
for each u € u.

In theory FM/AS and FM/FS provide exact gradients.
The reported mismatch is a consequence of the ODE
solver approximation. The approximations given by the
FD sensitivity method are significantly different (26%) and
are consequence of the parameter hy discussed in section

Copyright © 2013 IFAC

4.1. Several values of hy were tested obtaining similar re-
sults. Comparing the results given by the methods FM/AS
and FD/AS, it is observed that the error introduced by
the Jacobian approximation was not significant for this
instance.

Table 3 shows the performance of the gradient calculation
approaches when solving 100 instances of the optimiza-
tion problem described in section 5.1 with IPOPT. The
instances differ in the the initial conditions of the system,
which is always in steady state, and in the set-points. The
methods chosen for this comparison are FD/FD for being
the easiest to implement, the FD/AS for being the fastest
for gradient calculations and the FM/AS because it is the
fastest with exact Jacobian calculation.

Table 3. Algorithms overall performance with

IPOPT.
Index Average (Sample standard deviation)
FD/FD FD/AS FM/AS

Solving time (s) | 106.62 (83.29) 13.07 (1.14) 20.60 (1.46)

IPOPT iterations | 20.64 (15.18) 3.75 (0.44) 3.75 (0.44)

Gradient calls 23.38 (15.56) 5.75 (0.44) 5.75 (0.44)
Gradient time (s) | 83.72 (58.21) 12.66 (1.09) 20.04 (1.42)
Jacobian calls 1777 (1345) 299.43 (21.79) 260.01 (18.46)
Jacobian time (s) 19.71 (14.89) 3.45 (0.30) 11.24 (0.80)

The solution time comparison indicates that the FD/AS
method is the fastest. Specifically FD/AS takes over the
FM/AS when calculating Jacobians. The relative lower
accuracy of FD Jacobians does not affect significantly the
number of Jacobian iterations and the number of gradient
calls remains the same. A comparison of the returned
objective values indicates that the solutions are equivalent.
These results suggest that FD Jacobians are more efficient
in spite of being relatively inaccurate.

The FD/FD algorithm did not converge for 37 instances.
The indexes shown in Table 3 are related to the resources
taken by IPOPT to find an optimal solution or to indicate
the problem unbounded or infeasible. This result leads to
the conclusion that the gradients obtained by this method
are not accurate enough for this application.

6. DISCUSSION

The intention of this work is to explore dynamic opti-
mization tools for the integration of dynamic simulators.
Within the oil industry, models and simulators are often
developed by different teams or companies, complicating
the next integration step. Here we propose the integration
of dynamical models developed by different groups, e.g.,
well models and pipeline models, for use in production
optimization. Our approach takes advantage of the net-
work structure of the system and disjoint optimization and
modeling layers by making use of differentiation tools.

A trade-off between efficiency and accuracy is important.
The Jacobians given by Automatic Differentiation (AD)
tools are accurate up to machine precision, but they come
at a relatively higher cost. Our computational experiments
point out that Finite Difference (FD) approximations
of Jacobians lead to faster convergence of the whole
algorithm, even if more Jacobians are required due to
the inaccuracy of the method. However, it is important
to remember that the Optimal Jacobian Accumulation
problem, which seeks to calculate Jacobians with the

825

minimum number of operations, is itself NP-Complete and
heuristics for making this calculation more efficient can be
embedded in AD tools.

These results are encouraging for dynamic system inte-
gration through optimization where the FD method is
commonly used due to its simplicity. It is more difficult
to propagate gradients through independent systems. The
development of AD tools or the direct gradient coding are
complex processes which are error-prone. On the other
hand, the FD method implementation effort is minimal,
but special attention should be focused on the consequence
of its approximation errors. While the FD method for
sensitivity calculations should be avoided, the FD Jaco-
bian calculation had the best performance, when tested on
IPOPT. Similar results are expected with SQP algorithms
such as SNOPT (Gill et al., 2005).

For future studies we propose to investigate the impact of
FD approximations on Hessian approximations. In our ex-
periments, no Hessian approximation was given to IPOPT.
Further, exploitation of parallel computation should be
considered. The Jacobian calculation can be performed
concurrently taking advantage of the network structure.
These structures appear frequently in process simulators
and are a consequence of their physical topology.

Regarding the computational time spent in our experi-
ments, real-time applications are promising. Matlab uses
an interpreted language, which results in slower executions
compared to compiled languages such as C/C++. There-
fore, we expect that implementations using ODE solvers
such as ACADO (Houska et al., 2011) and CVODES
(Serban and Hindmarsh, 2003) comply with real-time re-
quirements. In addition these tools provide sensitivity cal-
culations funcionalities which diminish the coding effort.

7. CONCLUSIONS

In this work we presented a comparative study of tools
for gradient calculations. Our experiments indicate that
FD Jacobian calculations had the best performance, how-
ever, AD tools are not much slower. For this application
FD Jacobians are accurate enough, but AD tools may
be appropriated in applications requiring more accuracy.
We exploit the system structure to enhance the Jacobian
calculation efficiency. Further, we show that for this ap-
plication adjoint sensitivity calculations is superior to the
FD sensitivity calculation both in accuracy and speed.

8. ACKNOWLEDGMENT

We acknowledge the support of the Center of Integrated
Operations at NTNU, Johannes Willkomm who gave sup-
port on ADiMat and Eduardo Camponogara for his valu-
able comments and corrections. Marco Aguiar is partially
supported by a CNPg-Brazil scholarship.

REFERENCES

Biegler, L.T. (2010). Nonlinear programming: Concepts, algorithms,
and applications to chemical processes. Mps-Siam Series on
Optimization. Society for Industrial and Applied Mathematics
(SIAM).

Copyright © 2013 IFAC

Biegler, L.T., Cervantes, A.M., and Wichter, A. (2002). Advances in
simultaneous strategies for dynamic process optimization. Chem-
ical Engineering Science, 57(4), 575-593. doi:10.1016/S0009-
2509(01)00376-1.

Bischof, C., Bucker, H., Lang, B., Rasch, A., and Vehreschild, A.
(2002). Combining source transformation and operator overload-
ing techniques to compute derivatives for MATLAB programs. In
Proceedings of the Second IEEFE international workshop on source
code analysis and manipulation, 65—72. IEEE Comput. Soc. doi:
10.1109/SCAM.2002.1134106.

Codas, A., Aguiar, M.A.A., Nalum, K., and Foss, B.
(2013). Oil production system model implementation,
gradient computation and computational results. URL

http://itk.ntnu.no/nolcos2013/oilnetwork.zip.

Codas, A., Campos, S., Camponogara, E., Gunnerud, V., and
Sunjerga, S. (2012). Integrated production optimization of
oil fields with pressure and routing constraints: The Urucu
field. Computers & Chemical Engineering, 46, 178-189. doi:
10.1016/j.compchemeng.2012.06.016.

Currie, J. and Wilson, D.I. (2012). OPTI: Lowering the barrier
between open source optimizers and the industrial MATLAB user.
In N. Sahinidis and J. Pinto (eds.), Foundations of Computer-
Aided Process Operations. Savannah, Georgia, USA.

Diehl, M., Bock, H., Schléder, J.P., Findeisen, R., Nagy, Z., and
Allgoéwer, F. (2002). Real-time optimization and nonlinear model
predictive control of processes governed by differential-algebraic
equations. Journal of Process Control, 12(4), 577-585. doi:
10.1016,/50959-1524(01)00023-3.

Eikrem, G., Aamo, O., and Foss, B. (2008). On instability in gas
lift wells and schemes for stabilization by automatic control. SPE
Production & Operations, 23(2). doi:10.2118/101502-PA.

Gill, P.E., Murray, W., and Saunders, M.a. (2005). SNOPT: An SQP
algorithm for large-scale constrained optimization. SIAM Review,
47(1), 99-131. doi:10.1137/S0036144504446096.

Griewank, A. and Walther, A. (2008). Ewvaluating derivatives:
Principles and techniques of algorithmic differentiation. SIAM,
Philadelphia, PA, 2nd edition.

Houska, B., Ferreau, H.J., and Diehl, M. (2011). ACADO toolkit-
An open-source framework for automatic control and dynamic
optimization. Optimal Control Applications and Methods, 32(3),
298-312. doi:10.1002/0ca.939.

Imsland, L., Kittilsen, P., and Schei, T. (2010). Model-based opti-
mizing control and estimation using Modelica models. Modeling,
Identification and Control: A Norwegian Research Bulletin, 31(3),
107-121. doi:10.4173/mic.2010.3.3.

Jahanshahi, E. and Skogestad, S. (2011). Simplified dynamical
models for control of severe slugging in multiphase risers. In 18th
IFAC World Congress, 1634-1639. Milan. doi:10.3182/20110828-
6-1T-1002.00981.

Johnson, R. (ed.) (1998). The Handbook of Fluid Dynamics. Me-
chanical engineering. Crc Press, Springer.

Nocedal, J. and Wright, S.J. (2006). Numerical optimization.
Springer.

Serban, R. and Hindmarsh, A.C. (2003). CVODES: the sensitivity-
enabled ODE solver in SUNDIALS. ACM Transactions on
Mathematical Software, 5, 1-18.

Shampine, L.F., Reichelt, M.W., and Kierzenka, J.a. (1999). Solving
index-1 DAEs in MATLAB and Simulink. SIAM Review, 41(3),
538-552. doi:10.1137/S003614459933425X.

Waichter, A. and Biegler, L.T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1), 25-57. doi:
10.1007/s10107-004-0559-y.

826

