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Abstract: In this study, a multivariable control structure is developed to simultaneously control the
concentrations of cells and of one of the nutrients in an animal cell cultivation system operated in
perfusion. A cascade control structure is considered consisting of (i) an inner loop with a partially
linearizing feedback controller, tuned so as to ensure robustness with respect to parameter uncertainties
and non-canceled nonlinearities; and (ii) an outer loop involving two linear predictive controllers. The
resulting control strategy shows robustness and performance properties similar to more computationally
demanding strategies (such as a multivariable nonlinear MPC strategy), while requiring less measure-
ments and involving an easier implementation.
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1. INTRODUCTION

High-value bioproducts such as vaccines, recombinant proteins
and antibodies, are used in the treatment of several diseases
such as diabetes, arthritis, multiple sclerosis, cancer, anaemia
and HIV (Nolan and Lee, 2011). The production of these bio-
products is delicate and in some cases the only useful in vitro
process available is the cultivation of cells that are programmed
to synthesize them. These cells can grow in suspension in
stirred tank reactors, which appear to be the most common
practice in industry for large production (Jain and Kumar,
2008). The efforts for increasing the culture productivityin
these systems focus on elaborating specific culture media, and
in optimal feeding policies. The most popular operating modes
in cell cultures are batch, fed-batch and perfusion modes (Jain
and Kumar, 2008; Komolpis et al., 2010). Batch and fed-batch
modes do not offer many options for control, except for the feed
rate in the latter, and the cells growth can be inhibited by the
accumulation of toxic metabolites, which cannot be removed.
In perfusion mode, fresh medium is fed to replenish the con-
sumed nutrients, while an equal volume of spent medium is
continuously withdrawn, allowing for the removal of inhibitory
components. Cells are retained or recycled back to the reac-
tor by some type of retention device (for instance an acoustic
filter). Higher cell concentrations and higher productivity can
be achieved in perfusion cultures than in conventional batch
cultures (Komolpis et al., 2010). Hence perfusion processes
provide consistent culture conditions, high productivityand
low product residence times. However, a successful perfusion
culture requires tight control of the perfusion rate. Too low
perfusion rates may result in nutrient limitation, accumulation
of inhibitory metabolites and retardation in cell growth rate.
Too high perfusion rates may result in wash out of the cells
in systems with partial cell retention. The removal of a small

amount of cells from the reactor through the cell-containing
flow (the bleed) is necessary for maintaining the viability of the
culture, as well as for reaching steady state operation (Banik
and Heath, 1995; Ozturk et al., 1997; Dalm et al., 2004).

In spite of providing increased productivity of the culture,
perfusion operation with partial cell retention is hardly used
at industrial scale because of the complexity raised by the
multivariable nature of the process. Although several studies
exist regarding the necessity and the influence of the bleed
stream on the cells growth, it is not clear yet how to set this
process input and how to use it for control and optimization
purposes. Moreover, most of published control studies focus
only on manipulating the perfusion rate (Ozturk et al., 1997;
Dowd et al., 2001a).

Recently, the potential of using the bleed flow in multivariable
control structures has been investigated in several simulation
studies in view of a prospective practical implementation:De-
scĥenes et al. (2006a,b) have developed an adaptive backstep-
ping strategy for a simple model to simultaneously control
the cell and metabolite concentrations, while Sbarciog et al.
(2012) have designed a multivariable nonlinear predictivecon-
trol strategy based on a more realistic model, for accelerating
the growth of cells and controlling the substrate concentration
in the effluent.

In this paper, our objective is to simplify and robustify the
above-mentioned control strategy. To this end, a cascade control
structure is proposed, where the dilution and the bleed rates
are manipulated to control the cell and substrate concentra-
tions. This structure combines a partial feedback linearizing
controller in the inner loop, whose resulting free linear dynam-
ics is designed to ensure robustness with respect to parametric
uncertainties and non-canceled nonlinearities, with linear pre-
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Fig. 1. Schematic representation of the perfusion culture

dictive controllers in the outer loop. Robust and predictive con-
trollers (Dowd et al., 2001a,b; Aehle et al., 2012) are the most
encountered techniques for cell culture control. Robustness is
needed to cope with the culture variability and sensitivityto en-
vironmental conditions or to alleviate the negative effectof the
incomplete understanding of the intricate relationship between
process parameters and outputs. On the other hand, predictive
control is one of the few advanced techniques which is widely
accepted in industry and deals with the optimization of cell
growth processes in a straightforward manner. However, direct
application of predictive control to the nonlinear cell growth
process is still raising controversies among practitioners, as
aside the process dynamics, the involved nonlinear optimization
adds complexity to the control loop. Therefore, we propose
in this work an easy-to-implement control structure without
trading performance for simplicity. Assuming the measurement
of biomass and substrate concentrations (which are nowadays
technically available in cell cultures), the partial linearizing
feedback controller ensures decoupling between the inputsand
the two controlled variables, with linear or quasi-linear dynam-
ics. These are subsequently used by two linear MPC (Model
Predictive Control) controllers to compute the inputs for the
inner loop controller. Provided that a non-constrained optimiza-
tion is solved, analytic expressions for the inner-loop controller
inputs can be derived.

The paper is organized as follows: Section 2 presents the animal
cell growth process, while Section 3 introduces the design of
the control structure. The simulation results are shown and
discussed in Section 4. The conclusions and future research
perspectives are highlighted in the last Section.

2. PROCESS MODEL

The animal cell culture considered in this study is described
by a model, which expresses that the cells growth is activated
by the presence of glucose and glutamine and their death is
governed by lactate, ammonia and glutamine concentrations.
A schematic representation of the perfusion culture is given
in Figure 1. Medium containing glucose and glutamine is
continuously supplied to the reactor. Components leave the
reactor at the same rate. The amount of cells in the effluent is
determined by the filtration device.

The mathematical model of the system illustrated in Figure 1is
given by:

ξ̇1 = −bl ·Dξ1 + r1(ξ)− r2(ξ) (1)

ξ̇2 = D(ξin2
− ξ2)− ar1(ξ)− r3(ξ) (2)

ξ̇3 = D(ξin3
− ξ3)− br1(ξ) (3)

ξ̇4 = −Dξ4 + cr1(ξ) + dr3(ξ) (4)

ξ̇5 = −Dξ5 + er1(ξ) (5)

where

• ξ1, ξ2, ξ3, ξ4, ξ5 respectively represent the concentrations
of viable cells, glucose, glutamine, lactate and ammonia.
ξin2

andξin3
are the concentrations of glucose and glu-

tamine in the influent;
• D = F/V is the dilution/perfusion rate andbl ∈ [0, 1] is

the bleed ratio;
• ri(ξ), i = 1, 2, 3 are reaction rates, given by:

r1(ξ) = µmax ·
ξ2

KGlc + ξ2
·

ξ3
KGln + ξ3

· ξ1

= µ1(ξ) · ξ1 (6)

r2(ξ) =
kdmax

(µmax − kdLac
ξ4)(µmax − kdAmm

ξ5)
·

kdGln

kdGln
+ ξ3

· ξ1 = µ2(ξ) · ξ1 (7)

r3(ξ) = mGlc ·
ξ2

kmGlc
+ ξ2

· ξ1

= µ3(ξ) · ξ1 (8)
• a, b, c, d, e > 0 are the stoichiometric coefficients, defined

as: a = 1

YXv/Glc
, b = 1

YXv/Gln
, c =

YLac/Glc

YXv/Glc
, d =

YLac/Glc, e =
YAmm/Gln

YXv/Gln
.

This model has been developed from batch and fed-batch
hybridoma culture results (de Tremblay et al., 1992), with the
model parameters given in Table 1.

Table 1. Numerical values of the animal cell cul-
ture (as in de Tremblay et al. (1992))

YXv/Glc 1.09 · 10
2

10
6 cells/mmol

YXv/Gln 3.8 · 10
2

10
6 cells/mmol

YLac/Glc 1.8 mmol/mmol
YAmm/Gln 0.85 mmol/mmol
µmax 1.09 d−1

kdmax 0.69 d−1

V 0.8 L
KGlc 1 mmol/L
KGln 0.3 mmol/L
kdLac

0.01 d−1(mmol/L)−1

kdAmm
0.06 d−1(mmol/L)−1

kdGln
0.02 mmol/L

mGlc 1.68 · 10
−4 mmol(106 cells)−1d−1

kmGlc 19 mmol

3. CONTROL STRUCTURE DESIGN

The main objective is to achieve and maintain a high cell
density in the reactor. Naively, supplying high amounts of
substrates determines a better and faster growth of the cells.
In practice however (Jain and Kumar, 2008), this leads to an
inefficient use of the medium and it is detrimental to the cells, as
large amounts of expensive nutrients are lost via the effluent and
toxic byproducts causing cell death are produced. Therefore,
many control implementations consider the regulation of the
main nutrient glucose at a reasonable low level to minimize
the formation of toxic metabolites (Dowd et al., 2001b; Ozturk
et al., 1997; Yang et al., 2000). In this paper we design the
control structure to achieve a similar goal, i.e., the regulation
of cell and glucose concentrations at specified setpoints.

Thus, the control goal is to manipulate the dilution rateD and
the bleed ratiobl (or equivalently the bleed rate defined as
Db = bl · D) such that the biomass concentrationξ1 and the
glucose concentrationξ2 follow their setpoints defined byξref1 ,
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Fig. 2. Control structure

ξref2 . This goal is achieved by a cascade control structure as
illustrated in Figure 2: (i) a partial feedback linearizingcon-
troller is designed such that the inner loop has approximately a
decoupled linear dynamics; and (ii) two linear MPC controllers
are used in the outer loops to compute the inputs of the inner
loop controllerξ̄1, ξ̄2.

3.1 Inner loop controller

The inner loop controller is a partial feedback linearizingcon-
troller, which considers the measurement ofξ1, ξ2 andξ3. The
control law is given by:

Db = bl ·D =
1

ξ1

(

r1(ξ)− λ1(ξ̄1 − ξ1)
)

(9)

D =
1

(ξin2
− ξ2)

(

a · r1(ξ) + r3(ξ) + λ2(ξ̄2 − ξ2)
)

(10)

whereλ1, λ2 are the controller parameters (to be tuned) andξ̄1,
ξ̄2 are the controller inputs.

For designing the controller parametersλ1 andλ2, we consider
that the model (1)-(5) is not perfectly known. In this paper,it is
assumed thatµmax may vary± 20%with respect to its nominal
value, that is:

µmax = µmax(δ) = µ̄max(1 + 0.2δ) , δ ∈ [−1, 1] , (11)
where µ̄max stands for the nominal value ofµmax and δ is
an uncertain parameter lying in the interval[−1, 1]. Notice
that we cannot straightforwardly implement the control law
given in (9)-(10), becauseµmax is uncertain. To overcome this
problem, we estimate the value ofr1(ξ) = r1(ξ, δ) based on
the nominal value ofµmax leading to

Db =
1

ξ1

(

r̂1(ξ)− λ1(ξ̄1 − ξ1)
)

(12)

D =
1

(ξin2
− ξ2)

(

a · r̂1(ξ) + r3(ξ) + λ2(ξ̄2 − ξ2)
)

(13)

where

r̂1(ξ) = µ̄max ·
ξ2

KGlc + ξ2
·

ξ3
KGln + ξ3

· ξ1 (14)

Using (12) and (13) in the model (1)-(5) and defining
χ1 = ξ̄1 − ξ1 , χ2 = ξ̄2 − ξ2 ,

the following dynamics for the controlled outputs is obtained:
χ̇1 = −λ1χ1 −

(

r1(ξ, δ)− r̂1(ξ)
)

+ r2(ξ) (15)

χ̇2 = −λ2χ2 + a
(

r1(ξ, δ)− r̂1(ξ)
)

(16)

Notice that the above dynamics is not linear since the term
r1(ξ, δ) − r̂1(ξ) is not canceled due to parameter uncertainty

andr2(ξ) is not considered in the feedback linearizing based
controller to avoid additional measurements.

Thus, we designλ1 andλ2 to minimize the effects of the non-
canceled nonlinearities in (15)-(16) on the state vectorχ :=
[χ1 χ2]

T in theH∞ sense. To this end, we embed (15)-(16) into
the following quasi-LPV representation (Leith and Leithead,
2000):

Gwz :

{

χ̇=

[

λ1 0
0 λ2

]

χ+

[

0.2δ 1
0.2aδ 0

]

w , z=χ (17)

where the disturbance inputw models the non-canceled dynam-
ics, that is:

w :=







µ̄maxξ1ξ2ξ3
(KGlc + ξ2)(KGln + ξ3)

r2(ξ)







Then, the parametersλ1 andλ2 are designed to minimize an
upper-bound on‖Gwz‖∞ for all δ ∈ [−1, 1] using similar steps
as in the approach proposed in (Dewasme et al., 2011).

Notice that the overall feedback system aims at operating inset
point regions such that the death rater2(ξ) is close to zero. In
addition, if ‖Gwz‖∞ is relatively small, we may also assume
that ∆r1 := r1(ξ, δ) − r̂1(ξ) ≃ 0. Hence, to determine the
inner-loop controller inputs̄ξ1 and ξ̄2 in the MPC setting, as
proposed in the next section, the following simplified dynamics
is considered:

ξ̇1 = λ1

(

ξ̄1 − ξ1
)

(18)

ξ̇2 = λ2

(

ξ̄2 − ξ2
)

(19)

3.2 Outer-loop controllers

Two simple controllers are designed to compute the inputs of
the inner-loop controller using the key components of the MPC
strategy (Camacho and Bordons, 1999): a model used for pre-
diction, an online optimization and the feedback compensation.
The models used for prediction by each MPC controller are
built on the consideration that the measured system output is
the combined contribution of the system dynamics and process
disturbance. Hence the models assume the form

ξmi (t) =
Bi

(

q−1
)

Ai (q−1)
ξ̄i(t) +

Ci

(

q−1
)

Di (q−1)
e(t), i = 1, 2 (20)

where ξm1 , ξm2 are the models outputs;Ai

(

q−1
)

, Bi

(

q−1
)

are polynomials in the shift operatorq found by discretizing
respectively the dynamics (18), (19) with a sampling period
Ts; Ci

(

q−1
)

, Di

(

q−1
)

are polynomials in the shift operator

q, with
Ci

(

q−1
)

Di (q−1)
representing the disturbance model;e(t) is

uncorrelated noise with zero mean value. As no particular
information on the process disturbance is known, the default
structure for the disturbance models is considered, i.e.:

Ci

(

q−1
)

Di (q−1)
=

1

1− q−1
.

The standard GPC (Generalized Predictive Control) algorithm
is employed: it is assumed that the control effort is of the form

ξ̄i(t) = ξ̄i(t− 1) + ∆ξ̄i(t), i = 1, 2 (21)
Then the predicted system outputs over the prediction horizon
Np by consideringNu control moves are calculated as the sum
of the free and forced responses

ξ̂mi = ξ̃mi +Gi∆ξ̄i (22)
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where ξ̂mi ∈ R
Np×1; ξ̃mi ∈ R

Np×1 is computed on the
horizonNp by settingξ̄i to the last derived control effort̄ξi(t−
1) in (20); ∆ξ̄i ∈ R

Nu×1 are the control increments to be
determined;Gi ∈ R

Np×Nu is the matrix of unit step response
coefficients, having the structure

Gi =











g1i 0 . . . 0
g2i g1i . . . 0
...

...
...

...
g
Np

i g
Np−1

i . . . g
Np−Nu+1

i











Each of the control increments∆ξ̄i is calculated by minimizing
the cost index

Ji =
(

ξrefi − ξ̂mi

)T

·
(

ξrefi − ξ̂mi

)

+αi

(

∆ξ̄i
)T

·
(

∆ξ̄i
)

(23)

Using (22) in (23) an analytical expression of the control
increments may be obtained:

∆ξ̄i =
(

GT
i Gi + αiI

)−1
GT

i

(

ξrefi − ξ̃mi

)

(24)

4. SIMULATIONS AND DISCUSSION

In order to implement the proposed control structure, one needs
to off-line:

• compute the gainsλ1, λ2 of the inner-loop controller;
• obtain the discrete time models of the linear dynamics and

calculate the unit step responses.

Then, at each sampling instant:

• biomass, glucose and glutamine concentrations are mea-
sured;

• a prediction of the inner loop behavior is calculated over
the prediction horizonNp based on the models (20);

• the cost functions (23) are minimized;
• the new control inputs of the inner-loop controller are

found and the new values for the dilution and bleed rates
are calculated;

• the newly found process inputs may be clipped to comply
with the physical constraints on the dilution and bleed
rates:0 ≤ D ≤ 3.75d−1, 0 ≤ Db ≤ D.

Simulation results of the proposed control loop are presented in
Figures 3, 4 and 5. The parameters of the inner-loop controller
are set toλ1 = 11.8319, λ2 = 6.9534, while for the MPC
controllers the prediction and control horizonsNp, Nu are
respectively set to 15 and 1. A sampling period of0.05d is used.
Figure 3 shows the control results for the nominal values of
the process parameters, while Figures 4 and 5 show the closed-
loop response for respectively an increase and a decrease of
20% on the maximum growth rateµmax. The simulation results
presented here include: the controlled outputsξ1, ξ2 and their
respective setpoints; the inputs of the inner-loop controller com-
puted by the two MPC controllers represented with continuous
line and the inputs which are admissible (to comply with the
physical constraints on the flow rates) represented with dashed
line; the process inputs calculated by the inner-loop controller:
the dilution and the bleed rates.

A good behavior is achieved in closed loop, even in the presence
of parameter uncertainty, as both outputs follow closely the
imposed setpoint changes and reach the steady state almost
simultaneously. The control efforts change smoothly, due to the
penalty on the control moves in the optimization criteria (23)

(introduced to compensate for solving unconstrained optimiza-
tion problems). Although penalizing the slew rate is common
in MPC, here it was introduced to keep the complexity of the
implementation low, as the relationships between the dilution
and bleed rates and the inner-loop controller inputs are nonlin-
ear. Thus, in order to avoid solving optimization problems with
nonlinear constraints, one needs to properly select the penalty
weightsα1,α2. For the simulation results presented in Figure 3,
α1 = 150, α2 = 100 for t ≤ 20d andα1 = 220, α2 = 200
for t > 20d. Similarly, for the results shown in Figures 4 and 5,
α1 = 150, α2 = 100 for t ≤ 10d andα1 = 200, α2 = 120 for
t > 10d.

The tuning of the cascade control structure is equivalent totun-
ing the MPC controllers, where appropriate values for the con-
trol and prediction horizons and for the penalty factors must be
selected. While general guidelines exist for choosing the hori-
zonsNu, Np, some insight of the process dynamics is needed
to select appropriately the penaltiesα1, α2. These weighting
coefficients provide a means to cope with the constraints on
the physical inputs, but at the same time they increase the
robustness with respect to the non-cancelled nonlinearities. The
selection of setpoints corresponding to high cells concentration
and low glucose concentration (eg. Figure 3) leads inherently to
the increase of the death rate, which may become comparable
to the growth rate (such as illustrated in Figure 6). In these
cases, the assumption that the death rate is close to zero does
not hold and the model used by the MPC controllers is not
accurate. However, as shown in Figures 3-5, increasing the
weighting coefficients leads to the successful implementation
of the proposed control structure.

In order to assess the performance of the proposed cascade con-
trol structure, the closed-loop response is compared to theone
obtained using a multivariable nonlinear predictive controller as
proposed, for instance, in (Sbarciog et al., 2012). This nonlinear
predictive control implementation uses the full system model to
compute the output predictions, assuming thus the availability
of the full system state. The optimal dilution and bleed rates
are determined by minimizing the cost index (23), fori = 1, 2,
in an iterative manner, thus implying a higher computational
effort. Figures 3- 5 show that the proposed control structure
produces results at least as good as the nonlinear predictive
controller; however it requires less measurements and the com-
putational effort is minimum if compared to the nonlinear MPC,
advantages which make the cascade control structure a potential
candidate for real-life applications.

5. CONCLUSION

In this paper the design and implementation of a cascade control
structure for an animal cell culture has been presented. Thecon-
trol loop, comprising a partially linearizing feedback controller
and two SISO linear predictive controllers, is an effectiveand
easily implementable solution, which allows the simultaneous
control of the biomass and substrate concentrations while en-
suring robustness with respect to parametric uncertainties and
non-canceled nonlinearities. Further developments include the
real-life application of the proposed control structure onan
animal cell culture.
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