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Abstract: In this study, a multivariable control structure is develdpgo simultaneously control the
concentrations of cells and of one of the nutrients in an ahicell cultivation system operated in
perfusion. A cascade control structure is considered stingi of (i) an inner loop with a partially
linearizing feedback controller, tuned so as to ensuregti@ss with respect to parameter uncertainties
and non-canceled nonlinearities; and (i) an outer looplirimg two linear predictive controllers. The
resulting control strategy shows robustness and perfazenproperties similar to more computationally
demanding strategies (such as a multivariable nonlineat IgliPategy), while requiring less measure-
ments and involving an easier implementation.

Keywords: biotechnology, control system design, multivariable fesszk control, cascade control,
feedback linearization, predictive control

1. INTRODUCTION amount of cells from the reactor through the cell-contajnin
flow (the bleed) is necessary for maintaining the viabilityie

— . . . . culture, as well as for reaching steady state operationikBan
High-value bioproducts such as vaccines, recombinanép®t ggd Heath, 1995; Ozturk et al., 1997; Dalm et al., 2004).

and antibodies, are used in the treatment of several disea
such as diabetes, arthritis, multiple sclerosis, canceremia In spite of providing increased productivity of the culture
and HIV (Nolan and Lee, 2011). The production of these bioperfusion operation with partial cell retention is hardlyed
products is delicate and in some cases the only useful io vitat industrial scale because of the complexity raised by the
process available is the cultivation of cells that are piogned multivariable nature of the process. Although several istid

to synthesize them. These cells can grow in suspension egist regarding the necessity and the influence of the bleed
stirred tank reactors, which appear to be the most commaiream on the cells growth, it is not clear yet how to set this
practice in industry for large production (Jain and Kumarprocess input and how to use it for control and optimization
2008). The efforts for increasing the culture productivitty purposes. Moreover, most of published control studies<ocu
these systems focus on elaborating specific culture meaiia, aonly on manipulating the perfusion rate (Ozturk et al., 1997

in optimal feeding policies. The most popular operating sd Dowd et al., 2001a).

in cell cultures are batch, fed-batch and perfusion modzs (J . . . I

and Kumar, 2008; Komolpis et al., 2010).pBatch and fed-bétcjﬁecently’ the potential of using the bleed flow in multivatia
modes do not offer many options for control, except for tleslfe cont_rol structures has been _|nvest|ga_1ted_|n several St“’f?'a
rate in the latter, and the cells growth can be inhibited ke thStUdies in view of a prospective practical implementatiDa:
accumulation of toxic metabolites, which cannot be removedC'Enes et al. (2006a,b) have developed an adaptive backstep-

In perfusion mode, fresh medium is fed to replenish the coping strategy for a s_lmple model to S'mU'Fa”eous'Y control
sumed nutrients, while an equal volume of spent medium [§€ Cell and metabolite concentrations, while Sbarcioglet a
continuously withdrawn, allowing for the removal of inHityiy 012) have designed a multlvanable_nonllnear pred"“m
components. Cells are retained or recycled back to the reéEQl strategy based on a more _reahstlc model, for acce_u‘zgat
tor by some type of retention device (for instance an acousf{ '€ 9rowth of cells and controlling the substrate concéioima
filter). Higher cell concentrations and higher producgivian ' the effluent.

be achieved in perfusion cultures than in conventionaltbatgn this paper, our objective is to simplify and robustify the
cultures (Komolpis et al., 2010). Hence perfusion process@bove-mentioned control strategy. To this end, a cascauento
provide consistent culture conditions, high productivityd  structure is proposed, where the dilution and the bleeds rate
low product residence times. However, a successful perfusiare manipulated to control the cell and substrate concentra
culture requires tight control of the perfusion rate. Tow lo tions. This structure combines a partial feedback linéragiz
perfusion rates may result in nutrient limitation, accuation  controller in the inner loop, whose resulting free lineanam-

of inhibitory metabolites and retardation in cell growtltera. ics is designed to ensure robustness with respect to paiamet

Too high perfusion rates may result in wash out of the cellgncertainties and non-canceled nonlinearities, withalirgre-
in systems with partial cell retention. The removal of a dmal
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o &1, &9, &3, &4, &5 respectively represent the concentrations
Cell-containing flow : . .
Input flow 3 of viable cells, glucose, glutamine, lactate and ammonia.
—_——— '
&in, andg,,, are the concentrations of glucose and glu-

tamine in the influent;
Cell-free flow e D = F/V is the dilution/perfusion rate arld € [0, 1] is
the bleed ratio;

e 7;(£),i=1,2,3 are reaction rates, given by:

: , : : &2 &3
Fig. 1. Schematic representation of the perfusion culture 71(8) = tmax Kon 16 Komih &
dictive controllers in the outer loop. Robust and prede&ton- =wu (&) & (6)
trollers (Dowd et al., 2001a,b; Aehle et al., 2012) are thetmo kg
encountered techniques for cell culture control. Robsstrie r2(§) = ( "k € )7(’” _ &)
needed to cope with the culture variability and sensititdtgn- k“m” dracSt)\Bmaz = Rdamm 5
vironmental conditions or to alleviate the negative effefdhe _Mdam | &= pua(6)- & 7)
incomplete understanding of the intricate relationshipveen ki, + &
process parameters and outputs. On the other hand, pvedicti &2
control is one of the few advanced techniques which is widely r3(8) = maie - ke, + &2 &
accepted in industry and deals with the optimization of cell — 13(6)- & ‘ 8)

growth processes in a straightforward manner. Howevesctir

application of predictive control to the nonlinear cell gth ® a,b,c,d,e > 0are the stoichiometric coefficients, defined

. . .. . .. . 1 1 Yiac c
process is still raising controversies among practitisners asia = y oo b = Yeoom' ¢ = ﬁ d =
aside the process dynamics, the involved nonlinear opgitioi Y, o — Yamm/Gin
adds complexity to the control loop. Therefore, we propose Lac/Gle: Yxy/Gin

in this work an easy-to-implement control structure withouThis model has been developed from batch and fed-batch

trading performance for simplicity. Assuming the measweem hybridoma culture results (de Tremblay et al., 1992), with t
of biomass and substrate concentrations (which are nowadayodel parameters given in Table 1.

technically available in cell cultures), the partial lineiang

feedback controller ensures decoupling between the irgmuts Table 1. Numerical values of the animal cell cul-
the two controlled variables, with linear or quasi-linegndm- ture (as in de Tremblay et al. (1992))
ics. These are subsequently used by two linear MPC (Model v 109 102 105 Galls/mmol
Predictive Control) controllers to compute the inputs foe t YX’”/GZC 38.102 106 cells/mmol
inner loop controller. Provided that a non-constrainedoiga- YZC//GGT 18 mmol/mmol
tion is solved, analytic expressions for the inner-looptoater Y Amm/Gin 085 mmol/mmol
inputs can be derived. Homax 1.09 d-!
—1
The paper is organized as follows: Section 2 presents tineedni lym” 8'29 ?_
cell growth process, while Section 3 introduces the design o Keie 1 mmol/L
the control structure. The simulation results are shown and Ko 0.3 mmol/L
discussed in Section 4. The conclusions and future research ka,,. 0.01 d=t(mmol/L)~!
perspectives are highlighted in the last Section. Kay, 0.06 d-*(mmol/L)~!
dcin 0.02 mmol/L
—4 6 —14—1
2. PROCESS MODEL e (107 im0 celle)
The animal cell culture considered in this study is desdribe 3. CONTROL STRUCTURE DESIGN

by a model, which expresses that the cells growth is activate

by the presence of glucose and glutamine and their deathifie main objective is to achieve and maintain a high cell
governed py lactate, ammonia and glutamme concer)trat'lo%nsity in the reactor. Naively, supplying high amounts of
A schematic representation of the perfusion culture isrgiveg psirates determines a better and faster growth of the. cell
in Figure 1. Medium containing glucose and glutamine igy practice however (Jain and Kumar, 2008), this leads to an
continuously supplied to the reactor. Components leave theaicient use of the medium and itis detrimental to theels
reactor at the same rate. The amount of cells in the effluentu;rge amounts of expensive nutrients are lost via the efftare

determined by the filtration device. toxic byproducts causing cell death are produced. Thezefor
The mathematical model of the system illustrated in Figuge 1 Many control implementations consider the regulation ef th
given by: main nutrient glucose at a reasonable low level to minimize
. the formation of toxic metabolites (Dowd et al., 2001b; Qktu
& = —=bl- D& 411 () —2(8) (1) et al., 1997; Yang et al., 2000). In this paper we design the
€ = D(Eim, — &) — ary(€) — r3(€) (2) control structure to achieve a similar goal, i.e., the ragiah
€y = D(Emy — €3) — bra(€) 3) _T_L cell a;]nd glucolse coln-centrat|or-15 zlit spimf::j s-etp(glts.d
S ) us, the control goal is to manipulate the dilution rat@n
5.4 = ~DEa+ (&) +dra() 4) the bleed ratiobl (or equivalently the bleed rate defined as
& = —D& +erq(§) (5) D, = bl - D) such that the biomass concentratignand the
where glucose concentratiafy follow their setpoints defined by},
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et andry(€) is not considered in the feedback linearizing based

g | Meeconoler § controller to avoid additional measurements.
minag, Ji
] Thus, we desigr\; and )\, to minimize the effects of the non-
Dy &1 canceled nonlinearities in (15)-(16) on the state vegtor=
Nonlinear . &2 [x1 x2]T intheH . sense. To this end, we embed (15)-(16) into
_ controller | £1.62.65 & the following quasi-LPV representation (Leith and Leithead,
= b 2000):
= a0 020 1
MPC controller: e ng . {X: |: O )\2:| X - |:02a'6 O:| Yo (17)
minag, Ja eref where the disturbance inputmodels the non-canceled dynam-
2 ics, that is:
. ﬁmaz£1£253
Fig. 2. Control structure w— | Kaie+ &) Kam + &)
§§€f. This goal is achieved by a cascade control structure as ra(€)

illustrated in Figure 2: (i) a partial feedback linearizingn-

troller is designed such that the inner loop has approxilpate Then, the parameters, and \, are designed to minimize an
decoupled linear dynamics; and (ii) two linear MPC conel  upper-bound of{G,,.. || for all § € [—1, 1] using similar steps
are used in the outer loops to compute the inputs of the inngg in the approach proposed in (Dewasme et al., 2011).

loop controllery, &. . . o
P S &2 Notice that the overall feedback system aims at operatisgtn

point regions such that the death rat€¢) is close to zero. In
addition, if |G, ||~ is relatively small, we may also assume
that Ary := r1(,0) — #1(§) ~ 0. Hence, to determine the
inner-loop controller inputg; and¢&, in the MPC setting, as
proposed in the next section, the following simplified dymnzm
is considered:

3.1 Inner loop controller

The inner loop controller is a partial feedback linearizaom-
troller, which considers the measurementgfés and&s. The
control law is given by:

1 _ . _
Dy =0bl-D = & (ri(&) = M(& — &) 9) G =XM(& &) (18)
1 _ €= A (& — &) (19)
D= (o) (a-71(8) +r3(&) + Aa(&2 — &)  (10)
w2 2 B 3.2 Outer-loop controllers
where\;, A\, are the controller parameters (to be tuned) &nd
&2 are the controller inputs. Two simple controllers are designed to compute the inputs of

the inner-loop controller using the key components of theoviP

strategy (Camacho and Bordons, 1999): a model used for pre-

diction, an online optimization and the feedback compéosat

The models used for prediction by each MPC controller are

B built on the consideration that the measured system ougput i
fmaz = fmaz(6) = fmax(140.26) , 6 € [=1,1], - (11)  the combined contribution of the system dynamics and peoces

where fi,,., stands for the nominal value ¢f,,.. andd is disturbance. Hence the models assume the form

an uncertain parameter lying in the interjall,1]. Notice Bi(q") . Ci (¢

that we cannot straightforwardly implement the control law &"(t) = ——- =3 &i(t) + - —e(t), =12 (20)

given in (9)-(10), because,,... is uncertain. To overcome this i(a™) i(a™)

problem, we estimate the value of(¢) = r1(¢,0) based on Where &r", &' are the models outputsy; (¢~"), Bi (¢7")

For designing the controller parametarsand ), we consider
that the model (1)-(5) is not perfectly known. In this pajies
assumed that,, ., may vary+ 20 % with respect to its nominal
value, that is:

the nominal value ofi,, .. leading to are polynomials in the shift operatqrfoqnd by discretizing_
1 ~ respectively the dynamics (18), (19) with a sampling period
Dy = & (#1(6) — M6 — &) (12) T Ci(¢7'), D; (¢7*) are polynomials in the shift operator
1 _
e (q 1) . . .
D= 1 (a-#1(6) + r3(6) + Mol — &) (13) @ with D) representing the disturbance modelt) is
(ins — &2) uncorrelated noise with zero mean value. As no particular
where information on the process disturbance is known, the defaul
#1(€) = Fimax - &2 . &3 & (14) structure for the disturbance models is considered, i.e.:
Kegic +& Kain + &3 Cilg) 1
Using (12) and (13) in the model (1)-(5) and defining Di(g7Y) 1—gq 1~
X1=& —&, xa=6& — &, The standarg_ GPC (Generalized Predictive Control) algaorit
the following dynamics for the controlled outputs is obein 'S @MPloyed: itis assumed that the CO””Q' effort is of ttrerfo
K= =M - (68 7€) + (6 (15) wh) =G -1+ Asl), =12 (@)
)\ 5 — f 16 Then the predicted system outputs over the prediction boriz
Xo = =daxz +a(r(§,8) = 71(6)) (16) N,, by consideringV,, control moves are calculated as the sum
Notice that the above dynamics is not linear since the terfif the free and forced responses
r1(&,9) — 7#1(€) is not canceled due to parameter uncertainty &M =¢&"+ GA¢ (22)
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where {m e RNM»x1; ém ¢ RN»x1 js computed on the (introduced to compensate for solving unconstrained apém
horizon N, by settingé; to the last derived control effog; (¢t —  tion problems). Although penalizing the slew rate is common
1) in (20); A¢; € RN«*1 are the control increments to be!" MPC, hef_e it was introduced to kee;p the complexﬂy c.’f the
determined(?; € RV»*Nu is the matrix of unit step response|mplementat|on low, as t_he relationships betv_veen thel_dmut
coefficients, having the structure and bleed rates and the inner-loop controller inputs ardéimon

’ ear. Thus, in order to avoid solving optimization problenithw

gé 01 e 0 nonlinear constraints, one needs to properly select thalfyen
g; 9 - 0 weightsay, ao. For the simulation results presented in Figure 3,
Gi=| . . . : ay = 150, ap = 100 for ¢ < 20d anda; = 220, ay = 200
Ny Ny—=1  Npy—Nu+1 for ¢t > 20d. Similarly, for the results shown in Figures 4 and 5,
9; " 9; < G a1 = 150, ap = 100 for ¢t < 10d anda; = 200, ap = 120 for
t > 10d.

Each of the control incrementss; is calculated by minimizing
the cost index The tuning of the cascade control structure is equivaletirio
ver oo \T [uref  im .7 _ ing the MPC controllers, where appropriate values for the co
Ji = (fi -& ) : (ﬁi - & ) +a; (A&) - (A&) (23)  trol and prediction horizons and for the penalty factors rbes
Using (22) in (23) an analytical expression of the contropelected. While genere}l guidelines exist for choo_smg the ho
increments may be obtained: zonsN,, N, some insight of the process dynamics is n_eeded
B . _ to select appropriately the penaltias, as. These weighting
A = (GIGi+ o) GT (5{ ef 5{”’) (24) coefficients provide a means to cope with the constraints on
the physical inputs, but at the same time they increase the
4. SIMULATIONS AND DISCUSSION robustness with respect to the non-cancelled nonlinearitine
selection of setpoints corresponding to high cells comation
and low glucose concentration (eg. Figure 3) leads inhigremt

In order to implement the proposed control structure, oreelse the increase of the death rate, which may become comparable

to off-line: to the growth rate (such as illustrated in Figure 6). In these
e compute the gaind;, A, of the inner-loop controller; cases, the assumption that the death rate is close to zeso doe

e obtain the discrete time models of the linear dynamics amibt hold and the model used by the MPC controllers is not
calculate the unit step responses. accurate. However, as shown in Figures 3-5, increasing the

Then, at each sampling instant: weighting coefficients leads to the successful implemantat

' : of the proposed control structure.

e biomass, glucose and glutamine concentrations are m
sured;

e a prediction of the inner loop behavior is calculated ov

the prediction horizonV, based on the models (20);

S§ftorder to assess the performance of the proposed casaade co
trol structure, the closed-loop response is compared torkee
€bbtained using a multivariable nonlinear predictive colter as

o the cost functions (23) are minimized: proposed, for instance, in (Sbarciog et al., 2012). Thidinear

. . redictiv ntrol implementation he full m
e the new control inputs of the inner-loop controller areP edictive control implementation uses the full system altal

- compute the output predictions, assuming thus the avhijabi
;Orgncdagl}?attgg_new values for the dilution and bleed ratest the full system state. The optimal dilution and bleed sate

e the newly found process inputs may be clipped to complare determined by minimizing the cost index (23), fer 1,2,
with the physical constraints on the dilution and blee an iterative manner, thus implying a higher computationa

) ~ ffort. Figures 3- 5 show that the proposed control strigctur
rates0 < D < 3.75d™1,0 < Dy < D. produces results at least as good as the nonlinear predictiv
Simulation results of the proposed control loop are preskint  controller; however it requires less measurements anddime ¢
Figures 3, 4 and 5. The parameters of the inner-loop coatrollputational effort is minimum if compared to the nonlinear ®P
are set to\; = 11.8319, \» = 6.9534, while for the MPC advantages which make the cascade control structure atjabten
controllers the prediction and control horizon,, N, are candidate for real-life applications.
respectively setto 15 and 1. A sampling perio® obd is used.

Figure 3 shows the control results for the nominal values of 5. CONCLUSION

the process parameters, while Figures 4 and 5 show the elosed | . . .

loop response for respectively an increase and a decreasdbfis paper the design and implementation of a cascadeatont
20% on the maximum growth rate, ... The simulation results Structure for an animal cell culture has been presentedcdine
presented here include: the controlled outpiytst, and their ol 1oop, comprising a partially linearizing feedback cafler
respective setpoints; the inputs of the inner-loop colgreom-  and two SISO linear predictive controllers, is an effectvel
puted by the two MPC controllers represented with contisuo£aSily implementable solution, which allows the simultaue
line and the inputs which are admissible (to comply with th&ontrol of the biomass and substrate concentrations while e
physical constraints on the flow rates) represented witheths SUrng robustness with respect to parametric uncertaiinel

line; the process inputs calculated by the inner-loop cdieir non-c_:anceleq no_nlinearities. Further developments decthe
the dilution and the bleed rates. real-life application of the proposed control structure am

. . ) ) animal cell culture.
A good behavior is achieved in closed loop, even in the pi@sen

of parameter uncertainty, as both outputs follow closely th ACKNOWLEDGEMENTS
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