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Abstract: This paper is concerned with the problem ., filtering for continuous-time nonlinear
guadratic systems. The aim is to design a full order dynaittées that can also contain quadratic terms.
The strategy relies on the use of a quadratic Lyapunov fanethd an inequality condition that assures
an 77, performance bound for the augmented quadratic system, @asedby the original system and
the filter to be designed, in a regional (local) context. TH®nusing the Finsler's lemma, an enlarged
parameter space is created, where the Lyapunov matrix eppeparated from the system matrices.
Imposing structural constraints to the decision varighiesoretical conditions, which can be treated
as linear matrix inequality conditions by fixing a grid on alse parameter, can be derived for the
filter design. As illustrated by numerical experiments, piieposed conditions can improve thé&,
performance provided by linear filters by including the g@aid terms in the filter dynamics.
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1. INTRODUCTION As another aspect of the problem, it is important to underlin
that the characterization of an estimate of the basin aictton

The filtering problem for linear systems has received a lot ¢if the origin for a nonlinear system is a challenging problem
attention in the last years. Sufficient conditions for thésex (Khalil (2002); Chesi (2011)). Actually, the global statyil
tence of full order filters for uncertain linear systems aisgu  Of the origin can hardly be certified for nonlinear systems in
a prescribed’ or %, performance based on Linear Matrix 9eneral (Koditschek and Narendra (1982)).

Inequalities (LMIs) appeared with quadratic stability (Gmael L

) . X n this paper the problem of%, filtering for continuous-time
(1999); de Souza and Trofino (2000); Geromel et al. (2000} jinear quadratic systems, i.e., systems whose dynataics

Geromel and de Oliveira (2001)), parameter dependent Lyganq quadratically on the states, is considered. The filer w
punov functions (Xie et al. (2004); Barbosa et al. (2005)abu yant 10 design has the same structure as the system, €., it i
et al. (2006)) and, more recently, with Lyapunov function, | order dynamic filter with quadratic terms. Firstly,ins
with polynomial dependence of degree greater than one (Ggoyyadratic Lyapunov function and LMI based techniques, a
et al. (2008); Lacerda et al. (2011)). In contrast, the stoly g fficient condition that assures a#, bound to the dynam-
filter design for systems subject to nonlinearities rema8ss cg of the error system, i.e., original quadratic system ted

a challenge in the filtering literature. In the last yearsneo ,qnosed filter, in a regional (local) context is obtainetisT
efforts have been made to solve filter design problems in thengition can be viewed as an adaptation of recent results of
context of systems with nonlinearities. In Gao and Wang 800\ imerbida et al. (2010) for state feedback control of szted

the nonlinearities are assumed to satisfy global Lips@@tdi-  4,adratic systems. Then, by using the Finsler's lemma and
tions and, then, alinear filter is designed by means of LMiS. limnyosing structural constraints to the decision varialdessi-
Coutinho et al. (2009) a lineat, filter is proposed for a class | v conditions with a scalar parameter are proposed for the
of nonlinear systems described by a differential-algebr@p-  yegign of the matrices of the quadratic filter assuring/#h
resentation and Basin et al. (2009) tackle the problem dfaen p,nq to the error dynamic system. As illustrated by the mume
suboptimal’z, filter design for nonlinear polynomial systems. 4 experiments, the proposed condition can provide catidr

By applying sum-of-squares (SOS) approaches, Li et al.ZP01jjters that assure less conservatié bounds when compared
propose a convergentiterative algorithm to solve the golf 1 standard linear filters.

linear 7%, filters for polynomial systems. In most cases, despite

the fact that the system has a nonlinear dynamic model, tAiée same class of nonlinear quadratic systems has been stud-

implemented filter is linear. ied in Amato et al. (2007, 2010). In these papers, sufficient
conditions allowing to design state feedback control lavamr

* Developed during the leave of the first author at LAAS-CNRGuIBuse, O.bserver-b?sted.contr(.)l IaV\; ?f:e p:o’f)osed. Adtdt:tlonla”ngle
France, and supported by the Brazilian agencies CAPES, GN®GAPESP. given a polytopic region o e state-space, Ine closed loop
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system is made asymptotically stable and the associatexhregThe aim of this paper is: find a full-order quadratic stabkefil
of attraction contains this polytopic region. In the cutneaper, described as

we propose an alternative way, which, with our filtering abje X; Agf1Xs

tive, prevent to choose an initial polytope. X Ag X

The paper is organized as follows. Section 2 presents the sys Xt = AtXt + : +Bry (6)
tem under consideration and the problem we intend to solve, N Aq. X

Section 3 presents the preliminary results. The main reaundt fAafng 2

presented in Section 4. Section 5 provides numerical experi z; =Ctxt + Dty

ments that illustrate the advantages of the proposed mettbd \yith n, — n, A; € RN N Agri € RN i =1 n¢, Bye
Section 6 concludes the paper. RM*A Cf € RPM, Dy € RPX9, x; € R™ the estimated state

Notation. Matrices are denoted by capital letters and smafindzs € RP the estimated output.

i mxn
letters denote vectors. The elements of a maArxR™M are e that by using similar definitions (3) and (4) with respe

denoted byA; ), i=1,....,m j=1,....,n. A; denotes théth to the filter (6 it t 6
row of matrixA. For two symmetric matrice#y andB, A > B 0 the filter (6), one can write system (6) as

(A > B) means thalA — B is positive definite (positive semi- Xt = ArXt + AqiXeXt +Bry )
definite). For matrices or vecto($) indicates transpose. The z; = CiXt + Dty
block-diagonal matrix obtained from vectors is expressgd brhe quadratic terms in the filter can be interpreted as a coun-
diag(xy,...,Xn). Similarly, the block-diagonal matrix obtained teraction to the influence of the quadratic terms of the syste
from matrices, by _d|a@<1, ...,Xn). Identity matrices are denoted Defining the augmented state vectbt”[x/ Xﬂ and the output
by I and null matrices are denoted by 0. The symboieans a errore= z— z;, the augmented system (5)—(7) reads
symmetric block in matrices. C el e oa

XK= AR+ AgXX+Bw

8
2. PROBLEM STATEMENT e=CX+Dw ®
h
Consider the nonlinear quadratic system where A 0 Aq O )
A _ 2nx2n A 2nx2n
X:Aqlx A= [Bsz Af] S ’ Aa= [0 Aqf:| €R '
. X AgoX
X=Ax+| . |+Bw g_|xX0 € RPN, B | B | cgamer
/Aq (1) 0 Xt BtD21
X AgnX = an R xr
C=[C1—D¢C; —C¢] e RP**". D =[D11—D¢D2] € RP
27— Cyx+ Dygw [C1—DC —Cy] [D11— D¢ D2y
y = Cox+ Doiw At this stage, it is important to mention that system (8) with

wherex € R"is the state vectow € R is the noise inpuze RP W= 0 can be globally asymptotically stable (i.e., asymptdiica
is the signal to be estimated ape RY is the measured output, Stable for any initial conditiorx(0) € R?") only for some
The matrices that describe the system have the following dparticular structure of both matricésandA, (see, for example,
mensionsA € R™", A e R™Mj=1....n BieR™, C € Koditschek and Narendra (1982); Valmérbida et al. (2018) a
RPXN Dq1 € RPXM Cy € RAXN Dy € RIXT, references therein). Then, the stability of system (8)uslistl

) ) _in a regional (local) context, requiring thatis Hurwitz. The
Furthermore, the signal is supposed energy bounded, that isyrplem addressed in the paper can be summarized as follows.
w € .%. Without loss of generality we assume that the signal . . .
is %-normalized, that is, it satisfies: Problem 1 Determine a full-order quadratic stable filter as (7)

and a regior§ C R?" such that:

2 e /
Iwilz _/0 W(Tyw(T)dt <1 (2) (1) whenw = 0, the regionS, is an estimate of the basin of
. , attraction of the origin for system (8). That means that
Let us definedq € R™"™ andX € R™*" being given by for anyX(0) € S, the resulting trajectories of system (8)
asymptotically converge towards the origin;
Aqu(1) Agi(2) " Agi(n) @) Wgenev# 0 y g g
Aq= : o 3) (a) the trajectories of system (8) do not leave the region
1 o) e S for any initial conditionx{0) = O;
and Aanct) Aancz Aan (b) the %, performance between the disturbancand
X0 .- the output errore = z— z; is limited by y for any

Ox---0 initial conditionxX(0) = 0, that is:||e|\§ < waH%.

X = : (4)
00 x 3. PRELIMINARIES
whereAg; ;) € RM" denotes thgth row of matrixAq;i € R™".
Then system (1) can be rewritten as

X = AX+ AgXx+ Biw

Let us recall the following lemma issued from Valmérbidalet
(2010) on which our results are based.

Lemma 1(Valmorbida et al. (2010)). Consider a matrix e

z=Cyx+D1w (5 Rnxn p— P~ 0 and a vectov such that|v]| = 1. Every point
y = Cox+ D2gw on the boundary of an ellipsoid&’(P) = {x € R";xPx= 1},
1 For simplicity, the dependence oiis omitted. can be parameterized by= P*%Tv, with T'T = 1.
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Based on the parameterization of Lemma 1, we can present the) V %) < \'/(y() + Lee< 0whenw=0;
following result on stability analysis for system (8). v

+1lde—
Proposition 2. If there exist a matri®® = P’ > 0 € R?"*?" and @) V(®)+ Iz ee—ww < 0 whenw 7 0.

a positive scalag such that the inequality By integrating the last inequality fo{0) = 0, one gets:
AP+PA+EIPB C' PAq 1T
BP -1 B 0 V (X(T)) =V (%(0)) + _/ e(t)e(t)dr
¢ By o |70 ©) v Jo
AqP 0 0 —¢P / w(T)'w(1)dT <0
is satisfied withP = diag(P,...,P) € RZ“ZXZ”Z then or
(1) whenw =0, the regiorgy = &'(P) = {X € R, XPX < 1} / w(t)w(t)dt <1, VT >0
is an estimate of the region of attractlon of the origin for .
system (8); i.e., the trajectories of the augmented system (8) do netlea

(2) whenw + 0, the ./, performance betweew ande for ~ the set&’(P). Whenw = 0, we haveV(x) < 0, which ensures
system (8) is limited by, for initial conditionx(0) =0.  thatX— 0 ast — « foranyxXe &(P). O

Proof. Consider the quadratic Lyapunov functidiX) = ¥P%,  Letus give the following lemma (Finsler's Lemma) that wié b
P =P’ > 0. The.#%, performance bound betweanande for  useful to derive the conditions for filter design.
system (8) can be obtained by satisfying Lemma 3(de Oliveira and Skelton (2001)). Let € R", 2
V(% 1 deo wWw <0 R™N and % € R™" with rank (%) < nand%* a basis for the
(%) + ? e-Ww=< null space of%Z (A% = 0). Then, the following conditions

for energy signalsv € .%», which can be written as are equivalent:
A’P—i—PA—i—PAqX—i—XAqP PE ¢ i) W2w<0Vw#O0:%Aw=0;
BP -1 B | <0 (10) i) #"2%8"<0;
¢ D —y2 i)y IUeR: 2—UB B <O;

We are interested in finding an ellipsoid V) 32 RV 24 2B+ A 27 <0.

P)={Xxe RR"XPR< 1}
inside whichV (%) < 0 whenw = 0 andV (%) + Vlze’e—\f\/w <

0 whenw # 0. Hence, by applying the parameterization oBy using Lemma 3, Proposition 2 leads to the following propo-
Lemma 1, fore 9¢&, the time-derivativé/ (X) can be written sition.

4. MAIN RESULTS

as Proposition 4. If there exist a matrixP = P’ > 0 € R?™2,
. 1.~ ~yx 1~
V(%) =% (A’P+ PA+PAP 2TV 4+ VTP AP ) matricesF; € R, F, € RV, Fy € RN, Fy € RZ7X20,
2% PBw Fs € RP*?" and a positive scaldf such that the inequality
ith T = diag(T,...,T) € R2™2" andv =d o0 -
with T = diag(T, .., T) € »andv =diag(v,.-.V) € s satisfied with
R?"™2" where||v|| = 1. One can write PO 0 &
% (PAP 2TV +V/ TP 2AP) %< *x00 0 0
(Aq A;‘-)_ ©O=|x x—I 0_ D’ (12)
¥ ( ZPAB A PLEVTTV) * « « —éP O
X<5Aq AqP+¢ >X x % *  x =y
with &€ > 0. AsT'T =1 andV'V =1, it follows: B — diag(P....,P) € R2%<2" and
D~ o~ 1n ~pn 1~ o
X (PAP 2TV VTP 2A&F’)XS FuAs K] —Fy -+ AF; FB AR R+ AF; AR
1 x ~F—F5 FB-F, FA—F; —F.
X FPAPIAPE)R W=l «  FBiBE FAOF BF
!/
Thus if the inequality : : : F4Aq+AqF4 AqF
AP+PA+PAPIAP+EI PB C (13)
B'P -1 D | <0 then,

. . C _ o D _V.ZI (1) whenw =0, the regior = &(P) = {X € R, XPX < 1}
holds then inequality (10) is satisfied. By using Schur campl is an estimate of the region of attraction of the origin for
ment the above inequality is equivalent to: system (8);

AP+PA+&I PB C  PA (2) whenw # 0:
B'P -1 D 0 (a) the trajectories of system (8) do not leave the region
é B -y 0 | < 0 S for any initial conditionx70) = 0;
,&ap 0 0 -—éP (b) the .7, performance between the disturbancand

which corresponds to relation (9). Hence, from Lemma 1, if .th.e_ output.e.rrore: Z-als .I|m|te2d by y f02r any
relation (9) is satisfied, then for evexy="9& (P) we have initial conditionX(0) = 0, that is:||e[|5 < y||w/>.
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Proof. By considering griding on&, a convex optimization problem can be stated to

F gpo o0 & A’ minimizey for each fixed value of:
F 00 0 O —I miny 21)
2 =|R|,2=|x -1 0 D |, #=|F subject to LMI (18)
Fa *x ok =P 0 Aq where the decision variables @gF, i = 1,...,5, Ky, Kz, K3,
Fs * %«  x =y 0 Cs, Ds andy.
(14)
in conditioniv) of Lemma 3 witNh 5. NUMERICAL EXPERIMENTS
| A00O
B — OB 100 The objective of the experiments is to illustrate the caondg
“|loA, 010 proposed in this paper and show the potential of the nonlinea
0000l quadratic filters in comparison with the linear onég¢«(= 0).

The matrix inequality conditions in both cases depend on a
calar parametef that needs to be searched. In the following
xperiments a simple linear search with precisi@ithas been

used iné. By applying optimization algorithms, as for exam-

epIe fminsearchin the optimization toolbox of MTLAB, the
conditions could be improved. The routines were implerménte
in MATLAB, version 7.6.0.324 (R2008a) SP 2 using Yalmip
Lofberg (2004)) and SeDuMi (Sturm (1999)). The computer
sed was an Int8l Core 2 Duo (2.0 GHz), 3GB RAM, Win-

and by using conditiorii) of Lemma 3, one obtains con-
dition (9) (except by the exchange of rows and columns
and 4). O

Proposition 4 presents a nonlinear condition because ttie d
sion variables of interest (i.eA¢, Aqt, B, Ct andDy) appear
in sub-matrices multiplying the extra variablgsi = 1,...,5.
To linearize the condition presented in Proposition 4, basé
on the strategies in Duan et al. (2006); Lacerda et al. (201

the following structure imposed on matricesi =1,...,5, is ows Vista.
considered: Consider the Lorenz attractor, a nonlinear quadratic syste
F1p K Fp K also studied in Valmorbida et al. (2010), with matrices
f— A = -~ = F O
i |B 0] o 0 ) 0 0
5 . . " 00 O 000 O O
nxn
mhne;er}fbfoﬂsks . For convenience, matriR is also partitioned _ [O 0 —05 0 00-050 (ﬂ)’
005 0 0500 0 O
p_ Pi1 P2 (16) ,
- PZ/LZPZZ B]_:[loq, 02:[10q, D21:[0.5],
and the following changes of variables are adopted C:=[0511, Dn=I0],
_R _R _R wherea, p andb are positive scalars. By linearizing matx
. _ Kl_ A K _K_Bf’ }_<3 KAqs " (17) around the equilibrium point
With this choice for the decision variables, Propositionas ¢ . ,
be reformulated in a way that allows the direct determimatid X = [\/b(P -1) v/b(p—1) p— 1}
the filter matrices presented in the following theorem. one has
Theorem 5.If there exist a matrixP = P’ > 0 as in (16), -0 g 0
matricesF;, i = 1,...,5 as in (15),K; € R™", Ky € R™, A= 1 -1 —/b(p-1)
ng_R“X”Z,_Cf € RP*" Dt € RP*9, y > 0 andé > 0 such that Vb(p—1) /b(p—1) —b
the inequality _ Figure 1 depicts the#, bounds obtained with a linear filter
0+W¥<0 (18)  (Aqr = 0) obtained through the design conditions of Theorem 5

is satisfied with® as in (12) and¥ given by (20) (top of next (in blue), withK3 = 0, and also using the analysis conditions
page), then, of Proposition 4 applied to the augmented system (8) with the

51 51 51 corresponding filter (in black) with parameters=1,b=8/3
At = K7Ky, B = K™Kp, Agr = K™7Ks, Gy, Dy (19)  and P = 4. The minimum value ofy obtained by using a
are the matrices of the quadratic filter solution to Problem 1 linear filter for this interval isy = 1.6057 with & = 0.40 for

] ) design, and the minimury obtained from the analysis of the
Proof. Following the same steps as those in proof of Proposiy,gmented system (8) js= 0.8586 with& = 0.50.
tion 4, if (18) is satisfied with the slack variables as in (1bg¢n
the ., filter that solves Problem 1 is given by (19)0 Figure 2 shows the#;, performance obtained with a nonlinear

quadratic filter designed by the conditions of Theorem 5€plu

Theorem 5 provides a sufficient matrix inequality condiion and the bounds obtained from the analysis of the augmented
the existence of a nonlinear quadra#, filter, derived from system (8) (in black) with parametes = 1, b = 8/3 and
Proposition 4 by imposing a particular structure to thelslaco = 4. The minimum achieved with the design condition in
variablesH,i=1,...,5. Theorem 5 isy = 1.0628 for é = 0.41, while the minimum

Remark 6.To recover the classical linear filter it suffices toY considering the analysis of the augmented system (8) is
considerAyt = 0, i.e., simply imposingz = 0 in Theorem5. Y = 0.6428 obtained for§ = 0.49. The nonlinear quadratic
Remark 7.It is important to observe that inequality (18) be_f||ter provides the smallest bounds, both to the design ¢immdi

comes an LMI when the positive scaléris fixed. By using a 2 This system can present chaotic behavior wiiea10,b=8/3 andp > 25.
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[ FriA+ AR+ KoCo + CoK5 Ky + AF{3+CoK, —Fii+ AR+ CK)
* (K1 +Kjp) —F13+K]
* * —F1—F)
w _ * *
* * *
* * *
* * *
L * * *
—K+ AFJ3+ChKY) F11B1 + KoDa1 + ARy FraAq+ AF,; Ka+ ARy AR, T
—|§ + Ki F13B1 + KoDoq F13Aq Kz 0
—K—F3 Fo1B1+KoDo1—Ff;, FaAq—F, Ke—F3 —F;
—K =K’ F>3B1 + KoDoq F23Aq Ks 0 (20)
* F31B1 + B/lF?il F31Aq + B/leil Blleig B/1F5/1
* * FaAq+AgF  AFas AgFer
* * * 0 0
* * * * 0 |

the one obtained by means of a linear filteg( = 0). It can be

45 ‘ ‘ ‘ ‘ ‘ noted that the nonlinear quadratic filter provides the besilts
af ] mainly for smaller values gb.
ast ] Table 1.7, performance comparison, quadratic
sl | filter x linear filter, withb = 8/3.
- 25¢ Parameters| Theorem 5 Linear filter
Al o p & y 4 y
1] 32 [ 036 17980 — =
Lo 1| 35 | 039 | 1.2209 | 0.37 | 2.5641
it 1| 36 | 039 1.1645| 0.38 | 2.1307
ol 1] 37 [ 040 1.1251| 0.39 | 1.9062
1] 38 [ 041] 1.0979| 0.39 | 1.7684
0 = ET m o = 1] 39 [041] 1.0772| 0.40 | 1.6728
¢ 1 4 | 0.41 | 1.0628 | 0.40 | 1.6057
2 4 | 0.73] 05038 0.76 | 0.6025

Fig. 1. Behavior ofy with the variation of¢ for a linear filter In order to provide a time simulation for the filter behavior,

obtained with Theorem 5. ; ; L
consider the input noise signal
and for the analysis of the augmented system. Furthermtore, i w(t) = sin(0.5t) exp( —0.1t) (22)
is important to note that for some values &f(for example
& = 0.25) the condition from Theorem 5 did not provide a linea
filter, while a nonlinear quadratic filter can be obtained.

Figure 3 shows the output for the augmented system (8), i.e.,
the error signal, for the linear filter (blue dashed line) #od

the nonlinear quadratic filter (red line), with initial catidn

%X(0) = 0, parameters = 1, p = 3.5 andb = 8/3. The values

of & are indicated in Table 1. It is possible to note that the
nonlinear quadratic filter obtained by Theorem 5 provides th

25¢ ' ' 1 smallest error output in view of the noisét) in (22). In this
case, the nonlinear quadratic filter obtained with Theordm 5
2r | given by
. —3.3942 05254 00215 —2.122
e A; = | —8.4362 -1.4371 15404] , By = [—3.6466 ,
115077 12044 —5.5196 4.4287
W
Ct = [~1.8073-0.8338 —0.3494, D = [-0.5114,
osf —0.1427 00081 0012800000
Aqt = [—1.0037 00573 00900 00 00 0
0 —0.2840 00161 00254 0000 0
0.25 0.3 0.35 0.4 0.45 0.5 . . . . .
H while the linear filter is given by

Fig. 2. Behavior of/ with the variation o€ for a quadraticfilter — A; =

—10.6368 —0.7225 20057 —4.7658| ,
obtained with Theorem 5.

137158 04619 —6.3106 5.3911
Ct =[—2.0964 —0.7118 —0.3283, D = [-0.6672

—3.3588 04991 —0.0326| l—2.1307
, Br =

Table 1 presents a comparison between #e performance We can verify that for both nonlinear quadratic filter ancthn
obtained by Theorem 5, with a nonlinear quadratic filter, anfilter, the evolution of the statesr€mains confined in the region
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