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Abstract
Due to its ease of application, the circle criterion has been widely used to guarantee the stability
of many anti-windup schemes. While the Popov criterion gives less conservative results, it has
been conjectured in the literature that it cannot be used for convex anti-windup synthesis. This
paper shows that the conjecture does not necessarily apply in the discrete-time setting. We
show how the search for optimal parameters corresponding to the Jury-Lee criterion (a discrete
counterpart of the Popov criterion) can be formulated as a convex search via a linear matrix
inequality (LMI). The result is then extended to two existing multivariable static anti-windup
schemes with stable open-loop plants. Two numerical examples of multivariable anti-windup
controller synthesis are provided, and it is shown that in both cases the synthesis using the
Jury-Lee criterion can allow better performance than existing methods which use the circle
criterion alone.

1. INTRODUCTION

Most practical control systems which are designed based
on linear theory have to deal with physical constraints such
as saturations on the actuators. When the outputs of the
controllers reach their limitations, so-called windup effects
can take place. These might, in turn, cause performance
degradation, large overshoots in the output and sometimes
instability (Campo and Morari [1990], Kothare et al.
[1994]). These phenomena have been observed since 1950’s
in both analog (Lozier [1956]) and digital (Fertik and Ross
[1967]) control loops.

Techniques for addressing the windup effects have been
widely studied in the continuous-time domain and numer-
ous anti-windup schemes have been developed to improve
the stability and performance of the controllers. Most
of the traditional design techniques developed are either
based on static (zero order) (Hanus et al. [1987], Wada
and Saeki [1999], Saeki and Wada [2002], Mulder et al.
[2001], Marcopoli and Phillips [1996]), or dynamic (low-
order and full-order) (Turner and Postlethwaite [2004]
Grimm et al. [2003] Zheng et al. [1994]) anti-windup
compensators. Furthermore, as the extension to discrete-
time setting appears straightforward, almost all existing
continuous-time anti-windup schemes have their own digi-
tal versions (for example Syaichu-Rohman and Middleton
[2004], Massimetti et al. [2009], Hermann et al. [2006]).
It has been argued (e.g. Saeki and Wada [2002],Turner
and Postlethwaite [2004]) that static anti-windup may be
the most desirable structure from a practical point of

view. Moreover, most practical controllers nowadays are
implemented digitally using computers, which increases
the importance in designing the anti-windup in discrete-
time.

In early studies, a great deal of stability analysis was done
for closed-loop systems having sector-bounded nonlineari-
ties, both in continuous- and discrete-time domains. This
has led to the derivation of various stability tests such as
the circle, off-axis circle, and Popov criteria and the use of
Zames-Falb multipliers. The extension of the theorems to
stability analysis of existing anti-windup schemes has also
been widely considered (see, for examples, Pittet et al.
[1997], Feron et al. [1996], Kothare and Morari [1999] in
continuous-time, and Cao and Lin [2003] in discrete-time).
In Kothare and Morari [1999], the stability analysis of
multivariable anti-windup designs is presented in a unified
multiplier framework with the circle, off-axis circle, and
Popov criteria and the use of Zames-Falb multipliers as
special cases. It is also shown in their paper that the
Zames-Falb multiplier gives the best stability margin even
though the search for an optimal solution via the approach
may be computationally intractable (i.e. it is non-convex).

As for the anti-windup design problems, most of the
continuous-time anti-windup schemes base their synthesis
on the circle criterion and/or use a quadratic Lyapunov
function (Cao and Lin [2003], Weston and Postlethwaite
[1998], Marcopoli and Phillips [1996], Mulder et al. [2001]).
Similar techniques are also incorporated into digital anti-
windup schemes (e.g. Massimetti et al. [2009], Grimm
et al. [2008], Pan and Kapila [2002], Hermann et al. [2006]
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Figure 1. General static anti-windup scheme.

Gomes da Silva and Tarbouriech [2006]) to achieve stabil-
ity. This is mainly due to their ease of applications and
the convexity obtained during the synthesis. Hence, the
focus of the anti-windup design in both time domains has
been mostly devoted to satisfying certain l2(L2) or H∞
performance requirements (Wada and Saeki [1999], Mar-
copoli and Phillips [1996], Mulder et al. [2001], Hermann
et al. [2006]). On the other hand, it has been observed that
other less conservative criteria such as the Popov criterion
do not lead to convex formulation when used for synthesis
(see Gomes da Silva and Tarbouriech [2006], Kapila et al.
[2001], Weston and Postlethwaite [1998] and Feron et al.
[1996] for discussion on this). This has also been stressed
in Grimm et al. [2003] if an attempt is made to use the
quadratic-plus-integral Lyapunov function (which is often
associated with Popov criterion) for synthesis purposes. In
Kapila et al. [2001], however, the Popov criterion is used
in the anti-windup schemes but only sub-optimal solutions
can be found. In summary, to the best of the authors
knowledge, there is not much attention being directed
towards applying criteria other than the circle for anti-
windup synthesis due to the difficulties in achieving the
optimal solutions.

In this paper, the focus is on the synthesis of static
discrete-time anti-windup schemes with stable open-loop
plants. The novelty of this paper is that the static anti-
windup controller synthesis problem using the Jury-Lee
criterion (Jury and Lee [1964a], Jury and Lee [1964b]),
which is a discrete-time counterpart of the Popov criterion,
is formulated into a convex search over an LMI where
an optimal solution can be found. This directly shows
that the conjecture of the Popov criterion leading to
nonconvex solution does not necessarily apply in the
discrete-time setting. The new stability criterion is then
extended to existing anti-windup schemes in the literature
which follow the conventional two-step paradigm: the
linear controller is designed first ignoring the saturation
and the anti-windup compensation is added to attenuate
the performance degradation resulting from the saturation
(Wada and Saeki [1999], Marcopoli and Phillips [1996]).

This paper is structured as follows: Section 2 presents
the problem formulation of a standard static anti-windup
scheme where the static gain is fed back into the con-
troller’s input. Section 3 formulates the anti-windup sta-
bility conditions via the Jury-Lee criterion into an LMI.
The result of Section 3 is extended to two existing static
anti-windup schemes (Wada and Saeki [1999], Marcopoli
and Phillips [1996]) in Section 4. In Section 5, we provide
some numerical examples of multivariable anti-windup
controller synthesis to compare the performance of the
Jury-Lee criterion and the circle criterion under given
performance requirements. The conclusion is given in the
last section.

Figure 2. Equivalent representation of Figure 1.

The notation used in this paper is standard throughout.
We denote xk for x(k) and G∗(z) as the complex conjugate
of G(z). If M ∈ Cp×p, we write He(M) = M +M∗. We omit
the upper triangle half of the Hermitian matrix M as it is
always the complex conjugate of the lower triangle half.

2. PROBLEM FORMULATION

Figure 1 shows a standard static anti-windup scheme
(Wada and Saeki [1999], Hermann et al. [2006]) with a
stable, strictly proper plant P (z)

xpk+1 =Apx
p
k +Bpûk

ypk =Cpx
p
k (1)

and a controller K(z)

xck+1 =Acx
c
k +Bcek +Bcθk (2)

uk =Ccx
c
k +Dcek. (3)

where xpk ∈ Rnp, xck ∈ Rnc,uk ∈ Rnu and yk ∈ Rny. The
saturation nonlinearity is described as ûk = φs(uk) where

(φs(uk))i =


−1 for uik < −1

uik for −1 ≤ uik ≤ 1

1 for uik > 1.

(4)

When there is no saturation, the system will act linearly
since the controller output uk will be the same as the
plant input ûk. However, when the controller output
reaches the saturation levels, the difference between uk
and ûk will be fed back into the input of the controller
via a static gain Λ ∈ Rnc×nu as θk = −Λvk = Λ(ûk −
uk). It is standard to represent the loop around the
saturation φs as the deadzone nonlinearity φd as shown
in Figure 2 (Wada and Saeki [1999] Mulder et al. [2001]
Marcopoli and Phillips [1996]). The deadzone function φd
can be expressed as φd(uk) = uk − φs(uk). Hence φd(uk) =[
(φd(yk))1, · · · , (φd(yk))p

]T
.

Since we assume the plant is given and the controller
has already been designed first to achieve acceptable
performance in the unsaturated region, the only design
parameter is the static gain Λ. Therefore, the problem
formulation is to optimize the static gain which can
minimize the effect of the nonlinearity (in some sense)
while preserving the stability. In the next section, we will
show how the Jury-Lee criterion can be formulated into a
convex search in the anti-windup synthesis problem.

3. ANTI-WINDUP STABILITY CONDITIONS

The closed-loop system as shown in Figure 3 consists of a
stable, strictly proper LTI plant G̃(z) in negative feedback
with a static nonlinearity φ. To guarantee the stability
of the system, we begin with the set of nonlinearities
described as follows:
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Figure 3. Discrete-time Lure system

Let φ : Rp → Rp be a memoryless (static) diagonal

nonlinearity φ(uk) =
[
φ1(u1k), . . . , φp(upk)

]T
. Each φi lies

within the sector bound [0, 1], i.e.

φi(u
i)(φi(u

i)− ui) ≤ 0 ∀ui, i = 1, . . . , p. (5)

The nonlinearity is also monotonic and slope-restricted by
[0, 1], which can be described as

0 ≤ φi(u
i)− φi(ûi)
ui − ûi

≤ 1 ∀ûi 6= ui, i = 1, . . . , p. (6)

Now define Φ to be the set of φ which satisfies both (5) and
(6). To provide the stability conditions for the closed-loop
system (1)-(4), Figure 2 can be transformed into a Lur’e
system framework as shown in Figure 3 where φd = φ ∈ Φ,
and

G̃(z) ∼

[
A B1

C1 0

]
(7)

with

A =

[
Ap −BpDcCp BpCp

−BcCp Ac

]
(8)

B1 = BaΛ−Bv with Bv =

[
−Bp

0

]
and Ba =

[
0
Bc

]
; (9)

C1 =
[
−DcCp Cc

]
. (10)

The following theorem corresponds to the Jury-Lee crite-
rion in the frequency domain.

Theorem 3.1. (Jury and Lee [1964b, 1966]) Let the LTI
system G̃(z) which is stable and strictly proper be con-
nected to a monotonic, sector- and slope-restricted non-
linearity φ as shown in Figure 3. The closed-loop system is
stable if there exist δ > 0 and N+ =diag(n1+, . . . , n

p
+) with

ni+ ≥ 0 such that the following frequency domain condition
is satisfied:

He
[
I+[I+(z−1)N+]G̃(z)− 1

2
|z−1|2G̃∗(z)N+G̃(z)

]
≥ δI (11)

∀|z| = 1.

Proof. The proof (and its graphical interpretation) for
the SISO case can be found in Jury and Lee [1964b], with
the extension to the MIMO cases in Jury and Lee [1966]
and Ahmad et al. [2013].

The next corollary provides a generalized Jury-Lee condi-
tion and its equivalent time-domain condition in matrix
inequality form.

Corollary 3.1. Define W =diag(w1, . . . , wp) and N+ =
diag(n1+, . . . , n

p
+) with wi > 0, ni+ ≥ 0 and N1 = WN+.

Consider the system in Figure 3 with G̃(z) described in
(7)-(9), in negative feedback with φ ∈ Φ. The closed-loop

system (1)-(4) is stable if there exist W > 0, δ > 0 and
N1 ≥ 0 such that the frequency-domain condition below is
satisfied:

He
[
W + [W + (z − 1)N1]G̃(z)− 1

2
|z − 1|2G̃∗(z)N1G̃(z)

]
≥ δI

(12)

∀|z| = 1, or equivalently, in the time domain, if there exist
P > 0, W > 0, δ > 0 and N1 ≥ 0 such that

M0 + M̃1 + M̃2 + M̃3 < 0 (13)

with

M0 =

[
ATPA− P ATPB1

BT
1 PA BT

1 PB1

]
; M̃1 =

[
0 −CT

1 W
−WC1 δI − 2W

]
(14)

M̃2 =

[
(A− I)TCT

1 N1C1(A− I) (A− I)TCT
1 N1C1B1

BT
1 C

T
1 N1C1(A− I) BT

1 C
T
1 N1C1B1

]
(15)

M̃3 =

[
0 −(A− I)TCT

1 N1

−N1C1(A− I) −N1C1B1 −BT
1 C

T
1 N1

]
. (16)

In this case, the associated Lur’e-Lyapunov function of the
system can be formed as

V (xk) = xTk Pxk + 2

∫ uk

0
φ(σ)TN1 dσ. (17)

Proof. See Premaratne and Jury [1994], Ahmad [2012]
and the references therein for the matrix inequality deriva-
tion.

For analysis purposes, when Λ (or B1) is fixed, the matrix
inequality (13)-(16) is convex as it is an LMI in variables
P , W , N1 and δ. However, for synthesis, it is not convex
since there are products of variables (P and B1 in (14), N1

and B1 in (15)-(16)). Therefore the search for an optimal
static gain Λ is not straightforward. The next lemma shows
how the matrix inequality (13)-(16) can be formulated into
a convex search.

Lemma 3.1. Let M0, M̃1, M̃2, and M̃3 be defined as in (14)-
(16) and let B̃ = BaX − BvM , Q = P−1 > 0. For N1 > 0,
let R1 = N−11 > 0, M =diag(M1, . . . ,Mp) = W−1 > 0,
U = (δI − N1)−1 > 0 and X = ΛM . Then (13) may be
expressed as:

−Q ∗ ∗ ∗ ∗
−C1Q −2M ∗ ∗ ∗
AQ B̃ −Q ∗ ∗

C1(A− I)Q C1B̃ −M 0 −R1 ∗
0 M 0 0 −U

 < 0. (18)

This is an LMI in variables Q, R1, U , X and M .

Proof. Let

MN =

[
0 0
0 −N1

]
, V1 =

[
A B1

]
,

V2 =
[
C1(A− I) C1B1 − I

]
.

From (13), taking the Schur complements givesM̃1 +MN V T
1 V T

2

V1 −Q 0
V2 0 −R1

 < 0. (19)

Applying a congruence transformation with diag(Q,M, I, I)
and another Schur complement to remove the quadratic
term leads to (18).
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The result in Lemma 3.1 is the foundation of the anti-
windup synthesis in the next section.

Remark 3.1. In Lemma 3.1, N1 needs to be positive def-
inite to ensure the existence of R1. Even though it can
be made sufficiently small, it may lead to some numerical
errors in the computation. Therefore, we need to compute
the LMI for N1 > 0 and the LMI for N = 0 separately for
the application of the Jury-Lee criterion.

Remark 3.2. In the continuous-time domain, the Lya-
punov function corresponding to the Popov criterion takes
a form similar to (17), but the resulting matrix inequality
is quite different from (13)-(16), which is given as follows
(Haddad and Bernstein [1993])[

ATP + PA PB − CTW −ATCTN

BTP −WC −NCA δI − 2W −NCB −BTCTN

]
< 0.

(20)

In the anti-windup strategy, it is a standard approach to
apply the congruence transformation in order to obtain
a convex search (see Mulder et al. [2001] for example).
However, if the congruence transformation is applied to
the matrix inequality in (20), the result will be in bilin-
ear matrix inequaliy (BMI) (see Kapila et al. [2001] for
details). This is not the case in the discrete-time setting
because the LMI (13) has an extra term (M̃2) and hence
the convex formulation (18).

4. ANTI-WINDUP STABILITY AND
PERFORMANCE

The circle criterion has been used to guarantee the stabil-
ity of many anti-windup schemes in the literature. Most
of the schemes differ by their performance requirements
which depend on the goals of the controllers. In the fol-
lowing subsections, we extend the stability condition in
Lemma 3.1. which is based on the Jury-Lee criterion to two
existing anti-windup designs: (i) Design 1 - based on H∞
norm performance condition (Wada and Saeki [1999]) and
(ii) Design 2 - based on the induced l2 norm performance
objective (Marcopoli and Phillips [1996], Mulder et al.
[2001]).

4.1 Anti-windup Design 1

In this design (Wada and Saeki [1999]), the performance
requirement is to attenuate the error resulting from the
windup effect, which is done by making the transfer func-
tion from vk to yk small (see Figure 2). Let Gp(z) be the
transfer function between yk and vk; the goal is to make
sure that Gp(z) is always bounded by using the H∞ norm.
This is given in the next lemma which is based on the
bounded-real lemma (Boyd et al. [1994]).

Lemma 4.1. (Performance condition) Given a stable trans-
fer

Gp(z) ∼

[
A B1

C2 0

]
, (21)

where A and B1 are defined as in (8) and (9) respectively,
and C2 = [−Cp 0]. The following statements are then
equivalent:

Figure 4. Generalized problem for stability and performance of
static anti-windup scheme.

(i) ||Gp(z)||∞ < γ2

(ii) there exists Qp > 0, M = diag(M1, . . . ,Mp) = W−1 >
0, and µ = γ2 > 0 such that the following LMI is
satisfied.
−Qp ∗ ∗ ∗

0 −MTM ∗ ∗
C2Qp 0 −µI ∗
AQp BaX −BvM 0 −Qp

 < 0. (22)

If the LMI is feasible then Λ = XM−1 is the static anti-
windup compensator that can satisfy the performance
requirement of the system.

Proof. See Wada and Saeki [1999].

To guarantee the stability and to satisfy the performance
condition of the closed-loop system, both Lemmas 3.1 and
4.1 are combined in the following theorem.

Theorem 4.1. Let F1(Q,X) be the LMI in (18), and
F2(Qp, X) be the LMI in (22). Under the conditions of
Lemma 3.1 and Lemma 4.1, if there exist Q > 0, Qp > 0
and M > 0 such that the following LMI is satisfied[
F1(Q,X) 0

0 F2(Qp, X)

]
< 0, (23)

then Λ = XM−1 is the static anti-windup compensator
that satisfies the stability and performance requirements
of the closed-loop system in Figure 2 with φdz ∈ Φ.

Proof. The proof is straightforward.

Note that the parameter M > 0 in (23) is a prespecified
parameter; therefore (23) is an LMI with respect to Q > 0,
Qp > 0 and X only.

4.2 Anti-windup Design 2

In this design (Marcopoli and Phillips [1996], Mulder
et al. [2001]), the performance condition is based on the
minimization of the induced l2 norm objective. From
Figure 4, the aim is to attenuate the error zk with respect

to the exogenous input, wk as sup||wk||2 6=0
||zk||2
||wk||2

≤ γ. Here

the error and the exogenous input are defined as zk = ek
and wk = rk respectively (refer to Figure 2). From the
generalized problem as shown in Figure 4 which is the
transformation from Figure 2 with φdz = φ, the state space
of G(z) takes the form

G(z) ∼


A B1 B2

C1 D11 D12

C2 D21 D22

C3 D31 D32

 , (24)
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with A, B1, and C1 defined as in (8)-(9) and

B2 =

[
BpDc

Bc

]
; C2 =

[
−Cp 0

]
, (25)

and C3 = D11 = D21 = D32 = 0; D12 = Dc; D22 = D32 = I.
The next theorem provides the anti-windup stability and
performance which is derived using the quadratic-plus-
integral Lyapunov function and the S-procedure technique.

Theorem 4.2. If there exist a matrix Q > 0, a scalar
µ > 0, and positive definite digonal matrices M,R1, U with
Q,M,R1, U ∈ Rp×p such that the following LMI is satisfied:

−Q ∗ ∗ ∗ ∗ ∗ ∗
−C1Q −2M ∗ ∗ ∗ ∗ ∗

0 −DT
c −µI ∗ ∗ ∗ ∗

AQ B̃ B2 −Q ∗ ∗ ∗
C1ÃQ C1B̃ −M 0 0 −R1 ∗ ∗
C2Q 0 I 0 0 −I ∗

0 M 0 0 0 0 −U


< 0 (26)

where B̃ = BaX−BvM , N−11 = R1, and Ã = A−I, then the
system (1)-(4) is l2 stabilizable for all φ(yk) ∈ Φ and has
a weighted induced l2 gain less than

√
µ = γ. The static

anti-windup compensator which stabilizes the closed-loop
system is given by Λ = XM−1.

Proof. See Ahmad [2012].

5. NUMERICAL EXAMPLES

Within the framework of Figure 1, we synthesize and
compare anti-windup compensators for MIMO cases based
on the Jury-Lee and the circle criteria.

5.1 Example 1: Application of Theorem 4.1

For the first example, we use the continuous-time plant
P (s) and the PI controller K(s) as follows:

P (s) =
10

100s+ 1

[
2 2.5

1.5 2

]
, K(s) =

200s+ 2

100s

[
4 −5
−3 4

]
.

The discrete-time models P (z) and K(z) are obtained
via the zero-order-hold method with a sampling time of
T = 0.01s, and a delay of z−2 is imposed on the plant P (z).
Theorem 4.1 is applied to the closed-loop system with
M = 100I (since it is feasible), giving an H∞ norm bound
of γJ = 3.5274. The circle criterion alone gives γC = 3.6904.
The responses are shown in Figure 5. As can be observed,
although the norm bounds γC and γJ are quite similar,
there is a clear improvement in the response.

5.2 Example 2: Application of Theorem 4.2

The continuous-time plant P (s) and the PI controller K(s)
are chosen as follows:

P (s) =
10s+ 1

100s2 + 2s

[
2 2.5

1.5 2

]
, K(s) =

300s+ 9

100s

[
4 −5
−3 4

]
and the discrete-time models P (z) and K(z) are obtained
via the zero-order-hold method with a sampling time of
T = 0.05s, with a delay of z−5 imposed on the plant
P (z). Applying Theorem 4.2 with LMI (26) where N1 ≥ 0
gives γJ = 0.2656 whereas when the circle criterion alone
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Figure 5. Example 1: Application of Theorem 4.1 with M = 40I
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Figure 6. Example 2: Application of Theorem 4.2.

gives γC = 0.4475. The outputs of the plant are shown in
Figure 6. Once again there is a clear improvement in the
response.

6. CONCLUSIONS

In this paper, the static discrete-time anti-windup synthe-
sis problem via the Jury-Lee criterion is formulated into a
convex search over an LMI where an optimal solution can
be found. We have shown that the conjecture of Popov
criterion leading to nonconvex solution does not necessar-
ily apply to the discrete-time setting. The result is then
extended to two existing anti-windup schemes available
in the literature. The circle criterion is a special case and
we have demonstrated (in the examples) that the Jury-Lee
criterion can give considerable improvement in the synthe-
sis problem. The convex formulation in this paper may also
be applied to the direct approach which accounts for the
saturation nonlinearity throughout the design procedure
(see Tyan and Bernstein [1995] for example), and also to
the robustness of static anti-windup schemes such as those
presented in Turner et al. [2007].
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