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Abstract: In this paper, we propose a robotic model of a casterboard, which is a commercial
variants of skateboards with twistable footplates and passive inclined caster wheels. We then
derive its mathematical model in the form of nonlinear state equation; this system is of much
interest from both mechanical and control points of view as a new challenging example of
nonholonomic mechanics. Based on the observation on preceding works concerning locomotion
control for nonholonomic systems, we propose a locomotion control method with sinusoidal
periodic control to realize forwarding and turning locomotion. The proposed idea is examined
by simulations and physical experiments using the prototype robot developed by the authors.
Moreover, we also examine the influences on the driving of the robot of parameter in the

sinusoidal reference signals.

1. INTRODUCTION

In this paper, we propose a robotic model of a caster-
board, which is a commercial variants of skateboards with
twistable footplates and passive inclined caster wheels (as
shown in Fig. 1). The casterboard has an peculiar body
structure that the board itself is divided into two parts,
the front and the rear wheels can be steered separately to
each other. By appropriate combinatory actions of one’s
waist and feet, a human rider can drive the casterboard
without kicking the ground directory. This seems a quite
challenging and fascinating example from viewpoints of
both control theory and robotics. Our purpose is to clarify
the principle of casterboard locomotion through control
experiment of its prototype robot.

As closely related works to the current problem, there have
been a series of studies on snakeboard system conducted
by Ostrowski et al. (see Ostrowski et al. [1995, 1997],
Ostrowski and Burdick [1998], Mclsaac and Ostrowski
[2003] and the references therein). The snakeboard is also
a variant of skateboards having twistable casters at the
both ends, and undulatory propulsion without kicking the
ground is possible likewise in the casterboards. Ostrowski
et. al. derived a mathematical model of the snakeboard
based on nonholonomic mechanics, in the form of nonlinear
state equation composed of (i) geometric equation, (ii) gen-
eralized momentum equation and (iii) reduced equation
(see Murray et al. [1994], Bloch [2003]). A notable feature
here is the presense of (ii) and coupled influences between
(i) and (ii). The authors also worked on point-to-point
feedback control of the snakeboard considering repetitive
stability of its generalized momentum (see Kiyasu and
Ishikawa [2006]).

Modeling and control of the casterboard appears to be
harder than the snakeboard, in that it has complicated
footplate-caster mechanism and its dynamics is inherently
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three-dimensional. Shammas and Choset proposed wvari-
able inertia snakeboard which is a general framework

including the snakeboard as its special case, in that the
inertia matrix depends on the configuration of the robot,
and simulated forwarding locomotion of casterboard by
controlling it in specific configurations (see Shammas and
Choset [2006]). However they have not exploited various
driving modes of casterboard which appear by changing
parameters of inputs, and with experiments.

In this paper, we suggest a control approach for cast-
erboard locomotion together with its dynamical model.
Slightly from a different viewpoint compared to the pre-
vious work, we show that the casterboard can be con-
troled with an approach similar to the aforementioned
snakeboard at the cost of some simplifying assumptions.
We then model the casterboard as an autonomous mobile
robot with active weights, and propose a control approach
for forwarding and turning locomotion based on sinusoidal
reference signals. The proposed idea is examined by both
simulations and experiments. Moreover, we also examine
the influences on the driving of phase difference and fre-
quency of sinusoidal reference signals by both simulations
and experiments.

This paper is organized as follows. After brief review of
snakeboard research in Section 2, we propose a robotic
version of the casterboard and derive its mathematical
model in Section 3. Control strategy is proposed and
examined numerically and experimentally in Section 4.
Influences of phase difference in the reference signals are
examined in Section 5. Section 6 concludes the paper.

2. BACKGROUND: SNAKEBOARD ROBOT
In this section, we briefly review the relevant studies on

snakeboard robots mainly conducted by Ostrowski et. al.
(see Ostrowski and Burdick [1998]).
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(a) Casterboard

(b) Snakeboard

Fig. 1. Casterboard and Snakeboard

Snakeboard is a commercial variant of skateboard which
has been somewhat popular in playground scene since mid-
90’s. It is composed of a main beam and two footplates
with passive wheels at the both ends (front and rear)
as shown in Fig. 2. Each footplate is connected to the
main beam via a rotary joint about the vertical axis, so
that the front wheels and the rear wheels can be steered
using the rider’s feet relative to the main beam. Basically,
maneuvering principle of the snakeboard for a rider is a
(skillful) combination of the following actions:

e to steer the footplates into the direction opposite to
each other

e to exert yaw-torque around the body center by twist-
ing one’s waist

steering

TOI'(]LIQ

steering

rear wheels front wheels

Fig. 2. Maneuvering basics of the snakeboard

Ostrowski et al. discussed a mathematical description of
the snakeboard dynamics, and proposed an autonomous
robot model of the snakeboard, i.e., a snakeboard robot
(see Ostrowski et al. [1995]). It has a rotor which exerts
torque to the snakeboard about the vertical axis passing
through the body center, via an active joint ¥ as shown in
Fig. 3. The model has been formulated as a nonholonomic
dynamical system which has generalized momentum as a
state (see Murray et al. [1994], Bloch [2003]). Moreover,
inputs to the system for propulsion control have been
derived based on the analysis of controllability with Lie
brackets of vector fields in the state equation of the model.
They also simplified the model by assuming that the front
and the rear footplates are driven in symmetric way (with
a common control parameter ®), thus reduced the problem

to a nonlinear system with two control inputs ® and 0.

rotor

rear wheels front wheels

Fig. 3. Model of the snakeboard robot
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According to these results, given that each wheels is
in contact with the ground without slipping nor sliding
sideways, forwarding locomotion and turning locomotion
of the snakeboard robot are controllable by varying the
rotational angle of the rotor ¥ and the steering angle of
the wheels @ periodically with a common frequency. Their
success motivates us to challenge to other sort of “weired”
dynamic boards.

3. CASTERBOARD ROBOT

In this section, we introduce the dynamics of casterboard
and propose its robotic model.

8.1 Modeling

Fig. 4 illustrates a schematic side view of the casterboard
(shown in Fig. 1). The casterboard consists of a front board
and a rear board joined to each other via rotary joint about
the horizontal (roll) axis. Each board is equipped with a
passive caster inclined by a certain constant angle. Both
boards can be twisted to each other about the roll-axis as
the rider “presses” the boards by his/her feet. The casters
also rotate about their incline axes. Therefore, when the
rider presses down the boards to make them roll, each
wheel is pushed out to the opposite direction, so as to
minimize the potential energy as shown in Fig. 5. In short,
the caster’s yaw angle v is indirectly steered when one
steers the board’s roll angle ¢.

rear board N front board

v
rear wheel gc 2< front wheel

Fig. 4. Side view of the casterboard

ZaZ
rear front (b1/1
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(a) Top view \(/li)(zwﬂont (Acztual
caster

Fig. 5. Relationship between the boards and the caster
wheels

This leads us to explain the basic maneuvering principle
for the casterboard, as shown in Fig. 6. Rolling both boards
alternately, exerting force in the direction which each
board is tilted toward (labeled as "force” in the figure)
by each foot of the rider. This explanation is in rough
accordance with the techniques performed by experienced
riders. These actions of the feet generate torque around the
vertical axis of the casterboard, with both wheels being
steered in the opposite direction from each other, which
result in forward movement of the casterboard.
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Fig. 6. Maneuvering basics of the casterboard

3.2 Casterboard “Robot”

Now we are ready to model the casterboard as an au-
tonomous mobile robot (casterboard robot) using active
mass drivers instead of a human rider. See Fig. 7 for the
proposed robotic model of the casterboard. The robot is
supposed to consist of two blocks, the front and the rear
ones. Each block is equipped with a mass on its top side,
connected by a rigid beam, where the center of the wheel
is located just beneath the bottom end of the rigid beam.
The front and the rear block are connected to each other
by an active twistable joint, which we suppose to apply
control inputs.

X 1
« my (a3

(a) Side view

(b) Top view
Fig. 7. Model of the casterboard robot

3.8 Derivation of the state equation

Let us derive the state equation of the casterboard robot.
In Fig. 3.2, (z,y) denotes the robot’s position, i.e., the
coordinates of the centeral joint on X-Y plane. 8 is the
attitude angle relative to the X-axis. ¢y, ¢, are roll angles
of front and rear board, respectively. 1,1, are steering
angles of front and rear wheel, respectively.

Here we dare to compromise on following assumptions to
simplify the problem.

[Assumptions]

(1) Roll orientation of the robot is always kept upright.
(2) Roll angle of boards ¢; (i = f,r) is very small, so we
obtain the following approximate expressions:

sin¢; ~ ¢;, cos¢; ~ 1. (1)

(3) Inresponse to the change of roll angle of the board ¢;,
yaw angle of the wheels 1; changes instantaneously
due to their inclined configuration (Fig. 7). Namely,

¢; and v; satisfy the following holonomic constraint:
Y;i(t) = tan*(tan a sin ¢;(t)). (2)

Eq. (2) is derived from the configuration of each caster
when the potential energy of the robot is minimum.
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These assumptions may seem somewhat restrictive. How-
ever, at the cost of this compromise, we can reduce
the problem to control problem for an almost planar
mobile robot nevertheless the original system is three-
dimensional. It would be clear in the rest of paper that
essence of the casterboard locomotion still remains in this
reduced planar model.

Now we introduce several physical parameters. m; denotes
mass of the entire robot, ms denotes mass of a weight, [y
is length from the center of the robot to one wheel, o
is length of the rigid beam (distance between the mass
and the board), J denotes moment of inertia of the robot
about the vertical axis. « is a constant that indicate incline
angle of the caster axis relative to the vertical axis. The
Lagrangian of the whole system is given by

1 1.
L :§m1(¢2 +9%) + 5J&2

1 d , 2
+ img —t(erll cosf — Iy sin )

q 2
+ {dt(erll sin9+l2¢fcos€))}

+1m g(:Efl cos @ — Iy, sin ) i
52 |\ q@ 1 207

2
+ {i(y—llsin9+l2@0089)} .3

In Eq. (3), the first line denotes kinetic energy of the
body except weights, the second and the third lines denote
kinetic energy of the front weight, and the fourth and
the fifth lines denote kinetic energy of the rear weight.
Here, gravitational potential energy is not considered due
to Eq. (1). Assuming all the wheels do not slide sideways,
we obtain the following nonholonomic constraints:

(4)

@sin(@ 4+ 1) — gcos(d +y) — 16 cosipy =0
@ sin(@ + ) — g cos(0 + 1) + L costp, =0

Thanks to the assumptions mentioned above, the gen-
eralized coordinates of the system is composed of just
q = [w,¢s,¢,]7, where w = [z,y,0]T indicates the
location of the entire robot. First, the Lagrangian equation
of motion with respect to ¢y, ¢, is described as follows.

mglgéf — mala(Zsinf — jcosh — 116)

— <;m2l1l2 cos 260 — z§¢f) 6% = Tf
.. (5)

Mal3hr — mala(#sinf — jjcosd + 1;6)

1 .
+ <2m2l1l2 cos 26 — lg@) 6% = 7,

Here 7,7, are external torques applied as the actuator
inputs. Following the standard manner of computed torque
method, it is not difficult to consider u := [¢, $,]T as a
virtual control input.

On the other hand, combining Eq. (2) and Eq. (4) gives
us a kinematic constraint linear in w
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D(g)w =0,
D(q) =
sin(0 + () —cos(0 +¢s(dr)) —lcosipr(oy)
sin(0 + ¢ (¢r)) —cos(6 + 1 (dr)) 11 costy(dr)
(6)
Thus the Lagrangian equation of motion with respect to
the location vector w under the constraint (6) is derived
as in the following form, with the Lagrange multiplier
A = [A1, A2]T to indicate constraint forces:
M + W (q) — E(q)u — D(q)" A =0
where M (q), W(q) and E(q) are given by

(7)

mi + 2mo 0 Mia
M(q) = 0 mi + 2my Mos
M3 Mz Mss

M13 = —mglg(gf)f + d)r) (3089

M23 = _m2l2(¢f + d)r) sin 6

M3z = J +ma{2lF + Lila(¢f — ¢r) cos 20 + 5(¢7 + ¢7)}
Wy

W(q) = le
W3

Wy = mala{(¢5 + ¢r)sind -0 — 2(df + ¢y) cos 016 + ci

Wa = —mala{(¢7 + ¢r) cos0 -0 — 2(d; + dy)sin0}0 + cj

Wy = mola[l1{(¢f — b,) cos 20 — (¢7 — b,)sin 26 - 0}
+20(brdy + drdr))0 + 230

malasin®  molssin 0
E(q) = | —mals cos @ —mgals cos 9]
—m2l1l2 mglllg

Here, we assume that both wheels are subjected to viscos-
ity resistance from ground along their moving direction.
Above c is proportionality constant in the viscosity resis-
tance.

Solving Eq. (7) using Eq. (6), A is given by
A= (DM DY Y(—Dw + DM~'W — DM~ Eu).
(8)
Eliminating A from Eq. (7) using Eq. (8), we have:
W+ QDw+ PM™'W — PM'Eu=0
where Q(q) and P(q) are given by
Q(g) =M~ 'DY(DM™'D")™}
P(q)=1-@QD
Here, I is an unit matrix. Therefore the state equation of
the casterboard robot is described as follows.

9)

w _ w 00
a —QDw — PM~*W PM™'E
d |or| _ oy 00
5 0 10
O 0 01

Note again that D, W, E, @ and P are all matrix-valued
nonlinear functions depend on the state variables.

4. LOCOMOTION CONTROL
In this section, we propose a control approach for the

casterboard robot, whose validity is examined both by
numerical simulations and physical experiments.
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4.1 Control approach

Now we intend to control the roll angle ¢y, ¢, of the
casterboard robot to track respectively the sinusoidal
reference angle ¢'<f, ¢™f given as follows, so that the
steering angle of each wheel and torque exerted on the
body changes periodically with a common frequency:

d)}ef(t) = Asinwt + B (11)
& (1) =~ (t) (12)

where A is the amplitude, B is the average of oscillation
and w denotes the angular frequency. B determines the
direction (or turning radius) of locomotion : B = 0 corre-
sponds to forwarding locomotion, while B # 0 corresponds
to turning locomotion where B > 0 for counter-clockwise
rotation and B < 0 for clockwise rotation.

As for the tracking control of ¢¢, ¢, to the reference angle
(/)?ef, ref we simply adopt the following feedback PD-type
control law:

Kp(¢F" — o) + Kp(¢F" — ¢7) + 0"

Kp(¢;" = én) + Kp(@) = ) + 61
where gf)}ef, ¢t are the reference angles, Kp is the propor-
tional gain and Kp is the derivative gain.

u =

(13)

4.2 Simulation

In this subsection, the proposed approach is examined by
several numerical simulations based on the state equation
(10). Here, the values of the parameters A, B and T in the

reference angles gZ)EFf, ¢t were given as follows.

e Forwarding locomotion :
A= g [rad], B =0 [rad], w = 6.4 [rad/s]
e Turning locomotion :

A= 17T—8 [rad], B = % [rad], w =11.4 [rad/s]
The value of each parameter in the state equation (10)
was given as shown in Table 1. Here, for simplicity, let

2
J = méll by putting the body a bar of uniform cross-

section. The values of Kp and Kp were given so that ¢;
follows ¢i°! sufficiently. The other values in Table 1 were
given so as to be the same as in the prototype shown in
the following section. Incidentally, the initial location was
w(0) = [0,0,0]".

Table 1. Physical parameters of the caster-
board robot

I length from the center of the body to a 0.095 [m]
wheel
lo length of the inverted pendulum 0.115 [m]
mi mass of the body 1.29 kg
mo mass of a weight 0.29 kg
J inertia of the body about the vertical axis | 0.039 [kg-m?]
e incline angle of the caster axis %ﬂ' [rad]
c proportionality constant in viscosity resis- 0.8 [N-s/m]
tance between wheels and ground

First, the simulation result of forwarding locomotion is
shown in Fig. 8. As shown in the figures, the casterboard
robot moves forward winding its way.
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(a) X-Y trajectory (b) Robot’s location

Fig. 8. Simulation of forwarding locomotion

Second, the simulation result of turning locomotion is
shown in Fig. 9. As shown in the figures, the casterboard
robot turns. Here, the turning radius is almost constant.
Moreover, it was also confirmed that the model of the

[00)

0.4 —x[m]
6 -y I[m]
0 [rad]
£0.2 8
S 2
N I
0
-0.2 0 0.2 @ 2 4 6 8 10 12
X [m] t[s]

(a) X-Y trajectory (b) Robot’s location

Fig. 9. Simulation of turning locomotion
casterboard robot was valid from the above results.

4.3 Ezperiment

We developed a prototype of microcomputer-controlled
casterboard robot as shown in Fig. 10. This prototype has

Fig. 10. Overview of the casterboard robot

the front and the rear boards (footplates), each of which is
equipped with a weight and a caster. It also has the central
block put between the both boards so as to control rolling
of each board. The central block has two servomotor at
the front and the rear side, connected to the front and the
rear boards, respectively.
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In addition, we attach a support caster consisting of two
ball casters to the bottom of the central block, through
a parallel link mechanism so that the casters are kept
horizontal. As a result, the central block does not roll
irrespective of its vertical motion. Therefore the roll angle
of each board ¢; is given on the basis of the central block
by each servomotor.

The proposed approach is examined by several experi-
ments. We adopted the same reference signals to the servo-
motors ¢>’}ef (t), *t(t) as in simulations mentioned above.
Fig. 11 shows the experimental result of forwarding loco-
motion. The casterboard robot surely moves forward with
a certain amount of winding, likewise in the simulation
results.

0.4 “—x[m]
1 -y [m]
6 [rad
_ 0.2 < [rad]
> 0 8
-0.2
-0.

0 02 04 06 08

% mf s

(a) X-Y trajectory (b) Robot’s location

Fig. 11. Experiment of forwarding locomotion

Second, the experimental result of turning locomotion is
shown in Fig. 12. The casterboard robot also exhibits

03 T=x1m
6f -y [m]
0 [rad]
.EO.Z _5 4
= 7
” 04 S 2
B SO
O 2l
-02 -01 0 01 ) 4 6 10
X [m] t[s]

(a) X-Y trajectory (b) Robot’s location

Fig. 12. Experiment of turning locomotion

counter-clockwise turning with almost constant radius,
also likewise in the simulation results.

5. INFLUENCE OF PHASE DIFFERENCE

In the last section, we have been considering to drive roll
angles of the both boards in anti-phase manner. Now we
examine how the phase difference between ;Ef and d)ﬁef
affects on the resulting locomotion.

5.1 Simulation

First, we examine the influence of phase difference of front
and rear boards by numerical simulations based on the
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state equation (10). The reference signals (b}ef,gbﬁef were
given in the following forms:
P (t) = Asinwt
gb}ef(t) = Asin(wt — B)
where A is the common amplitude, w is the common
angular frequency and f is the phase difference between
the two signals. Now we fix A = 7/9 [rad], w = 6.4 [rad/s],

set the initial location as w(0) = [0,0,0]T, and see what
happens with various phase gaps 5 = 0,7/2, 7 [rad].

(14)

i i
ym y[m
1.8 [rad] 1 0.

location
o
n
location
<I: G
R
=
QO
=

2 3
t[s]

(a) =0 [rad]

Fig. 13. Robot’s location (simulation)

Fig. 13 shows the simulation results. Note we omit the
case 8 = m [rad] for it corresponds to the anti-phase drive
mentioned in the last section (see Fig. 8). The robot moves
almost forward at any phase difference 8. Although the
robot turns a little rightward at 8 = /2 [rad], it travels
almost straightforward for all choices of . Thus, it is the
traveling speed in the z-direction that varies depending on
(. The fastest is the case = 0, say in-phase drive mode,
and the speed tends to be slower as the [ increases.

Now let us turn to focus on history of the attitude angle
6. 0(t) is kept almost constant in the case of 3 = 0 (note
that § = 0 holds in Eq. (6) for this case). On the other
hand, @ starts to oscillate as 8 gets larger, in particular
with larger amplitude A. This partially explains the loss of
energy in the forwarding locomotion, as well as the change
of traveling speed as depending on f.

5.2 FExperiment

We performed physical experiments under the same refer-
eces and the conditions as the simulation above; compare
Fig. 14 for the cases § = 0,7/2 and Fig. 11 for the case
B =m.

As shown in these figures, the robot moves almost straight-
forward in all cases, while the relationship between phase
difference and traveling speed shows similar tendency as
in the simulation results.

6. CONCLUSION

In this paper, we proposed a mathematical model of the
casterboard as an autonomous mobile robot equipped with
a pair of mass-beam mechanisms, in the form of nonlinear
state equation. We then proposed a control approach for
forwarding and turning locomotion that drives the mass-
beam actuators so as to track periodic references. Then
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Fig. 14. Robot’s location (experiment)

we developed an experimental system of the proposed
casterboard robot and realized the forwarding and turning
locomotion, to show that the experimental results are well
consistent with simulation results. Moreover, we examined
the influence on the driving of phase difference of periodic
references. In low-frequency range, moving velocity of the
robot got higher as the phase difference got smaller, and
increased exponentially as the frequency got higher by
both simulations and experiments. In the experiments, it
was confirmed that a peak of moving velocity appeared in
a frequency range, although the peak did not appear in
the simulations. Moreover, in the experiments, it was also
confirmed that a peak of moving velocity appeared in two
frequency ranges, respectively in in-phase drive.

As for physical experiments, we are keen to realize locomo-
tion without the support casters by actively balancing the
robot’s roll angle. We also neglected the dynamics of 1);’s
behavior in response to ¢; by assuming their relationship
is static. The mathematical model should be refined in the
future by taking this dynamics into account.
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