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Abstract: Significant advances have taken place in the last few years in the development of control
designs for nonlinear infinite-dimensional systems. Such systems typically take the form of nonlinear
ODE:s (ordinary differential equations) with delays and nonlinear PDEs (partial differential equations).
In this article we review several representative but general results on nonlinear control in the infinite-
dimensional setting. First we present designs for nonlinear ODEs with constant, time-varying or state-
dependent input delays, which arise in numerous applications of control over networks. Second, we
present a design for nonlinear ODEs with a wave (string) PDE at its input, which is motivated by the
drilling dynamics in petroleum engineering. Third, we present a design for systems of (two) coupled
nonlinear first-order hyperbolic PDEs, which is motivated by slugging flow dynamics in petroleum
production in off-shore facilities. Our design and analysis methodologies are based on the concepts
of nonlinear predictor feedback and nonlinear infinite-dimensional backstepping. We present several

WePL1.1

simulation examples that illustrate the design methodology.

1. INTRODUCTION
1.1 Motivation and historical background

The area of control design—most notably stabilization—for
nonlinear finite-dimensional systems reached relative maturity
around year 2000. The method of backstepping (Krstic et al
(1995)), which played the central role in this development,
particularly for systems with modeling uncertainties, then be-
came the tool of interest for stabilization of infinite-dimensional
systems. However, for almost a decade, the success in that
direction remained limited to linear PDE (partial differential
equation) systems (Krstic and Smyshlyaev (2008)). It is not
until the last few years that this development has started yield-
ing results for nonlinear infinite-dimensional systems.

The turning point in the development of control designs for
nonlinear systems was the relatively little known two-part pa-
per by Vazquez and Krstic (2008a,b) where nonlinear infinite-
dimensional operators of a Volterra type, with infinite sums of
integrals in the spatial variable (rather than in time, as has been
common in the input-output representation theory for ODEs
for decades), were introduced for stabilization of nonlinear
PDEs of the parabolic type. This design represents a proper
infinite-dimensional extension of backstepping (and feedback
linearization) designs for nonlinear ODEs. The design involves
the construction of the Volterra transformations whose kernel
functions depend on increasing numbers of spatial variables
(which go to infinity), and where the kernels are governed
by PDEs in an increasing number of variables, on domains
whose dimension goes to infinity, with the solutions of lower-
order kernels being inputs to the PDEs for the higher-order
kernels. This complex formulations turns out to be construc-
tive and provably convergent, with a well-defined feedback
law and a stability result in spatial norms that are appropriate
for parabolic PDEs. All subsequent backstepping developments
for infinite-dimensional nonlinear systems—whether for other
PDE systems (Krstic et al. (2008, 2009)) or for nonlinear delay
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systems (Krstic (2010a))—are conceptually based on the tech-
nique laid out in (Vazquez and Krstic (2008a,b)), although all
such subsequent developments have been much less complex
as they have been for less broad classes of nonlinear infinite-
dimensional systems than parabolic PDEs with right-hand sides
that contain spatial Volterra nonlinear operators.

Though they carry with them a wealth of mathematical chal-
lenges, nonlinear infinite-dimensional systems are not artificial
mathematical inventions or esoteric generalizations of nonlin-
ear ODEs. They are as ubiquitous in applications as ODEs. In
fact, in numerous problems involving mechanics, fluids, ther-
mal phenomena, chemistry, or telecommunications, ODE mod-
els are merely approximations of full models that incorporate
PDEs and/or delay effects.

The most elementary systems in the broad class of nonlinear
infinite-dimensional systems are nonlinear systems with input
delays. They arise in numerous applications such as networked
control systems (Cloosterman et al. (2009), Heemels et al.
(2010), Hespanha et al. (2007), Montestruque and Antsaklis
(2004), Witrant et al. (2007)), supply networks (Sipahi et al.
(2006), Sterman (2000)), milling processes (Altinas (1999)),
irrigation channels (Litrico and Fromion (2004)), engine cool-
ing systems (Hansen et al. (2011)) and chemical processes
(Kravaris and Wright (1989), Mounier and Rudolph (1998)),
to name only a few (see also the survey by Richard (2003) for
additional examples).

Although a nonlinear system with an input delay is as simple
a problem as it gets within the realm of infinite-dimensional
nonlinear systems, the design of stabilizing control laws for
general nonlinear systems and when the input delay is ar-
bitrarily large, is a highly nontrivial task (Krstic (2010a)).
The situation is even more intricate when the delay is time-
varying (Krstic (2010b); Bekiaris-Liberis and Krstic (2012)),
and becomes formidable when the delay depends on the state of
the system itself (Bekiaris-Liberis and Krstic (2013)). Several
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Fig. 1. A drillstring used in oil drilling. The angular displace-
ment u of the drillstring is controlled through a torque U.

additional important results on the stabilization of nonlinear
systems with input and state delays have been developed by
Jankovic (2001, 2009), Karafyllis (2006, 2010), Karafyllis
and Krstic (2012), Mazenc and Bliman (2006), Mazenc at al.
(2004), Mazenc and Niculescu (2011).

Once the designer is equipped with the capability to overcome
a delay at the input, i.e., the transport PDE process in the
actuator line, there is every reason to ask whether other types of
infinite-dimensional dynamics at the input can be compensated.
This line of pursuit for infinite-dimensional dynamics in the
actuator line of a linear ODE plant was pursued by Krstic
(2009b) for diffusion-dominated (parabolic) actuator dynamics
and by Kirstic (2009¢) for wave PDE actuator dynamics. Several
extensions, all considering linear ODE plants preceded by PDE
actuator dynamics, are presented by Bekiaris-Liberis and Krstic
(2010), Bekiaris-Liberis and Krstic (2011b), Krstic (2009a),
Ren et al. (2012), Susto and Krstic (2010), Tang and Xie
(2011a,b). Extending those results from the case where the
plant is a linear ODE to the case where the plant is a nonlinear
ODE has proved much more challenging than for the case
where the actuator dynamics are of the delay (transport PDE)
type. Until recently, that is, as we show in this article and
discuss next.

A representative engineering application in which wave PDE
actuator dynamics are cascaded with a nonlinear ODE is oil
drilling. A common type of instability in oil drilling is the
so-called stick-slip oscillations (Jansen (1993)). This type of
instability (which is caused by a specific composition of the
ground material) results in torsional vibrations of the drillstring,
which can in turn severely damage the drilling facilities (see
Fig. 1 taken from Sagert et al. (2013)). The torsional dynamics
of an oil drillstring are modeled as a wave PDE (that describes
the dynamics of the angular displacement of the drillstring)
coupled with a nonlinear ODE that describes the dynamics
of the bottom angular velocity of the drill bit (Saldivar et al.
(2011)). A control approach for the bottom angular velocity
based on the linearization of its dynamics is presented in
Sagert et al. (2013). In this article we present a design for
general nonlinear ODE plants with a wave PDE as its actuator
dynamics. This design solves the oil drilling problem (globally)
as a special case.
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Fig. 2. An oil production pipe conveying oil and gas from a
TEeServoir.

Once PDE-ODE cascades are systematically addressed, it is
reasonable to ask a question whether interconnections of mul-
tiple PDEs can be controlled, and not only in the cascade con-
figuration but in more general and strongly “interwoven” con-
figurations. In fact, such problems arise in numerous physical
systems and have been considered in the PDE control literature
for at least a decade, albeit with limitations to the degree of
open-loop instability that is permissible in the plant considered.

Systems of coupled, nonlinear first order hyperbolic PDEs
model a variety of physical systems. Specifically, 2 x 2 systems
of first order hyperbolic quasilinear PDEs model processes such
as open channels (Dos Santos and Prieur (2008), Gugat and
Leugering (2003), Gugat et al. (2004), Halleux et al. (2003)),
transmission lines (Curro et al. (2011)), gas flow pipelines
(Gugat and Dick (2011)) or road traffic models (Goatin (2006)).
They also have some resemblances with systems that model the
gas-liquid flow in oil production pipes (see Fig. 2 taken from Di
Meglio et al. (2012b)). The problem of stabilization for some
classes of 2 x 2 systems of first order hyperbolic quasilinear
PDE:s is considered by Coron et al. (2006), Dick et al. (2010),
Dos Santos and Prieur (2008), Greenberg and Li (1984), Gugat
and Hetry (2011), Prieur (2009), Prieur et al. (2008).

1.2 Contents of the article

In this paper we present some recent results on the compensa-
tion of input delays in nonlinear systems employing predictor-
based control laws. Predictor feedback was developed origi-
nally for unstable linear plants with input delays, see the early
paper by Artstein (1982) that conceptualizes the results of the
preceding decade generalizes them in several mathematically
interesting directions. Yet, a nonlinear counterpart of predictor
feedback was unavailable until recently (Krstic (2010a)). The
design by Krstic (2010a) is based on the introduction of a non-
linear infinite-dimensional backstepping transformation, which
provides a Lyapunov functional for studying the stability of the
closed-loop system. Although for linear systems with a time-
varying input delay the formula of the predictor feedback law
was provided by Nihtila (1991), for general nonlinear systems,
predictor-based control laws were provided only recently by
Bekiaris-Liberis and Krstic (2012). One of the most challenging
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problems in delay systems is the control of systems with state-
dependent delays, as highlighted by Richard (2003). The first
systematic approach for designing stabilizing controllers for
nonlinear systems with state-dependent delays introduced by
Bekiaris-Liberis and Krstic (2013). The design is based on pre-
dictor feedback. The key challenge that is resolved in Bekiaris-
Liberis and Krstic (2013) is the definition of the predictor state:
The state-dependence of the delay makes the prediction horizon
dependent on future values of the state which are unavailable.

We also consider finite-dimensional nonlinear plants which are
controlled through a string and we design a predictor-based
feedback law that compensates the string (wave) dynamics
in the input of the plant. Our design is based on a prelimi-
nary transformation which allows one to convert the problem
of the compensation of the wave PDE, to a problem of the
compensation of a 2 x 2 system of first order transport equa-
tions which convect in opposite directions (see, for example,
Vazquez et al. (2011a)), for an augmented (by one integrator)
plant. We then introduce the infinite-dimensional backstepping
transformations for the two transport states, which transform
the new, augmented system to a target system. With the aid of
the backstepping transformations we prove global asymptotic
stability of the closed-loop system by constructing a Lyapunov
functional.

Finally, we review some recent results on the local exponential
H, stabilization of a 2 x 2 system of first order hyperbolic
quasilinear PDEs using backstepping developed by Coron et al.
(2012) and Vazquez et al. (2011b). Specifically, we present the
design of a control law that stabilizes the linearized system us-
ing the recently developed backstepping technique of Vazquez
et al. (2011a) for 2 x 2 systems of linear hyperbolic PDEs (see
also Di Meglio et al. (2012a) for an extension to n X n systems).
We then prove the local exponential stability of the closed-
loop system in the H, norm by constructing a strict Lyapunov
functional with the aid of the backstepping transformations.

1.3 Oganization

Section 2 is devoted to nonlinear systems with input delays.
We introduce the predictor-based design for constant delays
in Section 2.1 For time-varying delays the predictor feedback
design is presented in Section 2.2. State-dependent delays are
treated in Section 2.3. In Section 3 we present a design that
compensates the wave actuator dynamics in nonlinear systems.
In Section 4 we are dealing with a 2 x 2 system of first
order quasilinear PDEs for which we design a control law that
achieves local exponential stability.

2. NONLINEAR SYSTEMS WITH INPUT DELAYS

One of the main obstacles in designing globally stabilizing
control laws for nonlinear systems with long input delays is the
finite escape phenomenon. The input delay may be so large that
the control signal can not reach the plant before its state escapes
to infinity. Therefore, in the following we assume that the plant
X = f(X,w) is forward complete, that is, for every initial
condition and every bounded input signal the corresponding
solution is defined for all £ > 0.

Our predictor-based designs are based on a (possibly time-
varying) feedback law x(r,X(¢)), which is assumed to be pe-
riodic in its first argument and locally Lipschitz, that globally
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stabilizes the delay-free plant, i.e., X (1) = f (X (¢), x(t,X (¢))) is
globally asymptotically stable.

2.1 Constant delay

In this section we focus on nonlinear systems with constant
input delay, i.e, systems of the form

X(t)=f(X(),U(t—D)). (1)
The predictor-based control law for plant (1) is
U(t)=x(t+D,P(t)) 2)
PO =X+ [ fPOLU@O)E. )
t—D

where the initial condition for the integral equation for P(¢) is
defined for all 8 € [tg — D, 1] (to is the initial time which must
be given because the closed-loop system is time-varying) as

0

P(O)=X(w)+ [ f(P(c),U(c))do. @)

Jtg—D

The signal P(¢) represents the D time-units ahead predictor
of X, i.e., P(t) = X(r+ D). In the case of linear systems
the predictor P(¢) is given explicitly using the variation of
constants formula, with the initial condition P(r — D) = X (¢),
as P(t) = eAPX(t) + [ ,,e* =9 BU(6)d6. For systems that
are nonlinear, P(¢) cannot be written explicitly, for the same
reason as a nonlinear ODE cannot be solved explicitly. So we
represent P(7) implicitly using the nonlinear integral equation
(3). The computation of P(¢) from (3) is straightforward with
a discretized implementation in which P(¢) is assigned values
based on the right-hand side of (3), which involves earlier
values of P and the values of the input U.

Together with the predictor-based control law (2) we define
the infinite-dimensional backstepping transformation of the
actuator state given by

W) =U(t)—x(t+D,P(t)), ®)

together with its inverse
U(t) =W () + x(t+D,11(1)), (©)
where !
MO=X(0)+ [ f(T1(6),x(6-+D,11(6))+W(6))de, (7)
"
with initial condition for all 8 € [y — D, 1]
T1(6) = X (1)
0
+ / 1(11(0), k(0 +D.T1(0))+ W(0))do. (3)
P

The backstepping transformation maps the original system (1)
into the “target system” given by

I The quantities P in (3) and IT in (7) are identical. However, we use two
distinct symbols for the same quantity because, in one case, P is expressed
in terms of X and U, for the direct backstepping transformation, while, in the
other case, IT is expressed in terms of X and W, for the inverse backstepping
transformation.



X(t) = f (X (1), x(t,X (1)) +W(r — D)) ©)

W() =0, fort> 1. (10)
We have the following result. Its proof can be found in Krstic
(2010a).

Theorem 1. Let X = f (X, ®) be forward complete and X (1) =
f(X(t),x(z,X(r))) globally uniformly asymptotically stable.
Consider the closed-loop system consisting of the plant (1) and
the control law (2), (3). There exists a class .#.Z function

such that for all initial conditions X (fo) € R", U(fp+ 0);0 €
[-D,0] € L*[—D, 0] the following holds
Q(t) < B (Q(w) 1 —10) (11)
Q1) = |X(1)[+ sup |U(B)], (12)

t—D<0<t
forallt >ty > 0.

If the global asymptotic stability assumption in Theorem 1
is strengthened with an input-to-state stability assumption of
the plant X (¢t) = f(X(t), k(t,X(¢)) + (t)) with respect to o,
one can construct a Lyapunov functional 2 for the closed-loop
system. Towards that end we observe from the “target system”
(9), (10) that W (¢ — D) vanishes in finite time (in D time-units).
Hence, under the input-to-state stability assumption on the plant
X(t) = f(X(t),k(t,X(t)) + @(t)) with respect to ® one can
construct a Lyapunov functional for the system in the (X, W)
variables. Using Malisoff and Mazenc (2005) there exists a C!
function S : Ry x R” — R, and class %, functions &, 0, 03,
oy such that

o (IX(0)]) <S(t,X (1)) < au (IX(1)]) (13)
S(t.X(1) < —au(|X(1)]) +06 (IW(z=D)]), (14)
~ _ 98, X(1)) | 98(t,X(1))

S(taX(t))_ at + aX
< (X(1),k(t.X (1)) +W(—D)).  (15)
The Lyapunov functional for the “target system” is then
_ 2 [H0 op(r)
V(l)—S(l,X(f))—i'z/O id?} (16)
azr(r) is a class Z function or o, has been appropriately

majorized so this is true (with no generality loss), ¢ > 0 is
arbitrary and

L(t)= sup
1—D<6<t

A7)

ec(ﬂ—t—‘rD)W(e)’ )

Using the inverse backstepping transformation (6) one can then
prove stability in the original variables (X,U). The functional
L can be also written directly in terms of the original variables
(X,U) as

Li)= sup [eCOHD0)(Uy(0)—

t—D<6<t

k(0 +D,P(0)))|, (18)
where P is given in terms of (X,U) from (3). The two different
representations of the functional L, namely, representations
(17) and (18), reveal one of the benefits of the backstepping
transformation: If the construction of the functional L in terms

2 The availability of a Lyapunov functional enables one in principle, to study,
robustness of the predictor feedback to parametric uncertainties, its disturbance
attenuation properties, and the inverse-optimal re-design problem.
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of the transformed actuator state W appears to be non-trivial,
its form in terms of the original variables (X,U), i.e., relation
(18), is rather impossible to guess without the backstepping and
predictor transformations.

2.2 Time-varying delay
In this section we consider plants of the form

X(l):f(X(I),UO‘—D(l))), (19)
where D is a positive-valued continuously differentiable func-
tion of time. We define the functions

9(t) =1 —D(1) (20)

o(r)=¢""(0), @
and we refer to the quantity t — ¢ (¢) = D(¢) as the delay time.
This is the time interval that indicates how long ago the control
signal that is currently affects the plant was actually applied.
The main goal of this section is to determine the predictor state,
i.e., the quantity P such that X (o (¢)) = P(¢). From now on we
refer to the quantity o(¢) — ¢ as the prediction horizon. This
is the time interval which indicates affer how long an input
signal that is currently applied affects the plant. In the constant
delay case, the prediction horizon is equal to the delay time,

ie.,t—¢(t) = D= o(t) —t. The predictor-based control law is
U(t) =x(o(t),P(t)) (22)
t f(P(6),U(6))do

P(t)=X 23
0=X0% [ ey

with an initial condition for all 8 € [tg — D(to), o] as

¢ f(P(o),U(o))do
PO)=X . 24
O T

The fact that P(r) = X (o(¢)) can be established by applying the
change of variables r = (1) in (19).
(6) _ 1

. do
From (23) one can observe that the function =5~ = o0 1()

is employed in the control law. Therefore, one has to appropri-
ately restrict the delay time D(z) such that ¢'(¢) # 0 for all 1 > 0.
Actually, we impose the condition ¢’(¢) > 0 for all # > 0. The
reason is that if ¢’(¢) > 0 for all r > O then the control signal
is able to reach the plant and it does not change the direction
of propagation of the control signal (the plant keeps receiving
control inputs that are never older than the ones it has already
received). Besides the condition ¢’(¢) > 0 for all ¢ > 0, which
can be also expressed in terms of the delay function as D(¢) < 1,
for all t > 0, we also assume that the delay can not disappear
instantaneously, i.e., ¢’ (or D) is bounded. Also, the delay has
to be positive (to guarantee the causality of the system) and
bounded (such that the control signal eventually reaches the
plant).

We are now ready to state the following theorem, the proof of
which can be found in Bekiaris-Liberis and Krstic (2012).

Theorem 2. Let X = f (X, ®) be forward complete and X () =
Ff(X(r),x(t,X(t))) globally uniformly asymptotically stable.
Let the delay time D(r) =t — ¢(¢) be positive and uniformly
bounded from above, and its rate D(t) be smaller than one
and uniformly bounded from below. Consider the closed-loop
system consisting of the plant (19) and the control law (22),
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Fig. 3. Top: A nonlinear system with a delay in the input. Bot-
tom: The equivalent representation of the delay/nonlinear
ODE cascade using a transport PDE for the actuator state.

(23). There exists a class £ .Z function B, such that for all
initial conditions X (fo) € R" and U(fp+ 0);0 € [—D(1),0] €
L*[—D(1y),0] the following holds

Qy(1) < By (Qu(t0),1 —19) (25)
o0 =X+ sup  [U(8)], (26)
t—D(1)<6<t

forallt > 19 > 0.

The proof of this result is based on the following equivalent
representation of the plant (19) using a transport PDE represen-
tation for the actuator state (see also Fig. 3) as

X (1) =f(X(1),u(0,1)) 27)
up(x,1) = mw(x,t)ue(x,2), x€][0,1] (28)
u(l,t) =U(1), (29)
where
I+x (d(q)d;(t)) - 1)
mn) = (30)

and ¢(¢) is defined in (20). The choice of the transport speed
7(x,t) is guided by the fact that we seek a representation for
the infinite-dimensional actuator state u(x,7) such that relations
(29) and

u(0,1) =U(9(1)), (€2
are satisfied. One can verify that u(x,¢) is given by
u(x,t) =U (¢ (t+x (o' (t) 1)), 32)

and consequently both (29) and (31) are satisfied. For a more
detailed discussion about the choice of the transport speed
7(x,t) we refer the reader to Krstic (2009a). Analogously with
representation (27)—(30) of the plant, an equivalent representa-
tion of the predictor defined in (23) is as

p(L0)= (0710 —0) [ (PO ule)dy +X (), G3)

where for all x € [0, 1]

px,t) =P (¢ (t+x(¢7'(t)—1))). (34)
With this representation for the predictor state we are able to
define the backstepping transformation of the actuator state as

Copyright © 2013 IFAC

w(x,1) =u(x,t) — K (t—i—x ((P*l(t) —t) ,p(x,t)) .
Noting that the predictor state p(x,¢) satisfies

(33)

plx,t)=(07"(t)—1) /Oxf(p(y,t)vu(y,t))dy+X(t)7 (36)

and using the control law (22), system (27)—(29) is mapped to
the following “target system”

X(1) =f(X(1), (6, X (1)) +w(0,1)) 37
we(x,1) = (x,0)wye(x,1), x€][0,1] (38)
w(l,t) =0. 39)

One can then construct a Lyapunov functional for the target
system, as in the constant delay case, under the assumption
that the plant X (r) = f (X (¢), k(¢,X (¢)) + ®(¢)) is input-to-state
stable with respect to @ (instead of just globally asymptotically
stable when @ = 0). The Lyapunov functional is given in terms
of the transformed actuator state as

W an(r)

Volt) = S(6,X(0)) + %/0

where ¢ > 0 is arbitrary, b > 0 is a constant that depends on the
delay D, and S, o, are defined in (14) and

dr, (40)

Ly(r) = sup |e“w(x,1)]
x€[0,1]
1

1 2n
= lim (/ ez"”xwzn(xJ)dx) .
n—yoo JO

2.3 State-dependent delay

(41)

In this section we concentrate on nonlinear systems with state-
dependent input delay, i.e.,

X(t) = f(X(1),U (t =D (X(1)))), 42)
where D is a nonnegative-valued continuously differentiable
function. The main challenge in the case of systems with state-
dependent delays is the determination of the predictor state. For
systems with constant delays, D = const, the predictor of the
state X () is simply defined as P(t) = X(¢ + D). For systems
with state-dependent delays finding the predictor P(¢) is much
trickier. The time when U reaches the system depends on the
value of the state at that time, namely, the following implicit
relationship holds P(¢) = X (t + D(P(t))) (and X(t) = P(r —
D(X(1))).

The predictor-based controller for the plant (42) is

U(r) =k (o(1),P(1)), 43)
where the predictor state P and the prediction time ¢ are
_ ' f(P(s),U(s))ds
PO=XO% [ T=05 00 7 (70 5 )
o(t)=t+D(P(t)), (45)

respectively. The initial predictor P(0), 0 € [to — D (X (1)) , 1],
is

P(0)=X(t)

L[ (P09,

7
s
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The fact that P(r) given in (44) is the o(t) —t = D(P(¢))
time units ahead predictor of X (¢), i.e., P(t) = X(o(¢)), can be
established by performing a change of variables t = 6(7) in the
ODE for X () given in (42) and noting from relations ¢ (1) =7 —
D(X(t)) and o(t) = ¢! (¢) that D (X (o(t))) = o(t) —t, which
implies in particular that

do(t) 1
dt - 1=VD(P(t)) f(P(1),U(1))’
As in the case of time-varying delays ¢’ and D must be
positive and bounded. The positiveness of ¢’ (or equivalently

of ¢’) is guaranteed by imposing the following condition on
the solutions

(47)

Fe: VD(P(6)) f (P(6),U(8)) <c,
forall 8 > 1y — D (X (1)), (48)

for ¢ € (0,1]. We refer to % as the feasibility condition of
the controller (43)—(45). Due to this condition, we obtain a
local result. Boundness of ¢’ and D is then guaranteed by the
boundness of the system’s norm. We obtain the following result.
Its proof can be found in Bekiaris-Liberis and Krstic (2013).

Theorem 3. Let X = f (X, ®) be forward complete and X (¢) =
f(X(t),x(z,X(¢))) globally uniformly asymptotically stable.
Consider the closed-loop system consisting of the plant (42)
and the control law (43)—(45). There exist a class .# function
Wroa and a class 7. function s such that for all initial
conditions X (7p) € R" such that U is locally Lipschitz on the
interval [to —D(X (t9)), ) and which satisfy

Q(10) < Wroa (¢) (49)
for some 0 < ¢ < 1, where
Q)= |X(1)|+ sup |U(B)], (50)
t—D(X(1))<0<t
the following holds
-Qs(t) Sﬁs (Qs(t0)7t_t0)7 (51)

for all # > ty > 0. Furthermore, there exists a class .# function
6* such that, for all t > 15 > 0,

D(X (1)) < D(0)+ 8" (c) (52)
ID(X(1))] <c. (53)

A Lyapunov functional for the closed-loop system consisting of
the plant (42) and the control law (43)—(45) is

Ls(t)
Vi(t) = S(6.X(1)) + 2 / @), (54)
8J0 r
where g > 0 is arbitrary, S, o, are defined in (14) and
L()=  sup  [eS@FPPO)-Dy (g) (55)
t—D(X(1))<0<t
W(6)=U(8)—k(6+D(P(0)),P(0)), (56)

where P is given in terms of (X,U) in (44).

The following example illustrates the fact that global stabiliza-
tion is not possible even for linear systems.
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Fig. 4. Response of system (57) with the controller (58)-
(59) with initial conditions U(8) =0, —X(0)> < 6 <0
and four different initial conditions for the state X(0) =
0.15,0.25,0.35,0.43.

Example 1: We consider a scalar unstable system with a
Lyapunov-like delay

X(t)=X(@)+U (t—X(1)?). (57
The delay-compensating controller is
U(r) = —2P(t), (58)
where for all 6 > —X(0)?
B o (P(s)+U(s))ds
PO=XO* | T o ow)

In Fig. 4 we show the response of the system and the function
¢ (1) =t — X (¢)? for four different initial conditions of the state
and with the initial conditions for the input chosen as U(0) =
0, —X(0)> < 6 < 0. We choose X(0) = 0.15,0.25,0.35,X*.
With X* we denote the critical value of X(0) for the given
initial condition of the input, such that, for any X(0) > X*,
the control inputs produced by the feedback law (58), (59)
for positive ¢ never reach the plant. We calculate this time as
follows: The function ¢ () = — X (0)?e? has a maximum at ¢*

1) ; *) 1 1
T((O)Z) t* > 0. Since ¢(t*) = log < T((O)Z> 5
has to be positive for the control to reach the plant, it follows

* 1
X—\/Z—e—().43.

if log




In the following example we consider the stabilization problem
of a mobile robot with an input delay that grows with the
distance of the robot from then reference position.

Example 2:  We consider the problem of stabilizing a mobile
robot modeled as

X(t) =v(t—D(x(t),y(t)))cos (6(¢)) (60)
y(t) =v(t—D(x(t),y(t)))sin(0(1)) (61)
0(t) = (1 —D(x(1),5(1))), (62)

subject to an input delay that grows with the distance relative to
the reference position as

D (x(r),y(r)) = x(t)* +y(r)?, (63)
where (x(¢),y(t)) is position of the robot, 8(¢) is heading, v(¢)
is speed and w(¢) is turning rate. When D = 0 a time-varying
stabilizing controller is proposed in Pomet (1992) as

o(t) = —5P(t)*cos (3¢ ' (1)) — P()Q(t)
x (14+25cos* (3¢ (r))) —©(1)
v(t) = —P(t) +50(t) (sin (30" (r)) —cos (39" (1))

(64)

+0(t)o(t) (65)
P(t) =X (t)cos(O(t)) + Y (¢)sin(O(¢)) (66)
O(r) =X(t)sin(0O(t)) — Y (¢) cos (O(r)), (67)
with
X=x, Y=y, @=0, ¢ '(1)=r. (68)
The proposed method replaces (68) with
B ! do(s)
X (1) = x(1) + /t Y )eos(@()ds (69
B 't do(s) )
Y(t)=y(t)+ Dty ds v(s)sin(O(s))ds (70)
! do(s)
Q) =0(r)+ d 71
m=e)+[ 2 s a
o(1) =1+ D(X(1),Y (1)) 72)
&(s) : . (73)

—1-2v(s) (X (s)cos (O(s))+Y (s)sin (O(s)))
The initial conditions are chosen as x(0) = y(0) = 6(0) =1
and @(s) = v(s) = 0 for all —x(0)?> —y(0)> < s < 0. From
the given initial conditions we get the initial conditions for
the predictors (69)—(71) as X(s) = Y(s) = O(s) = 1 for all
—2 < 5 <0. From the above initial conditions for the predictors
one can verify that the system initially lies inside the feasibility
region. The controller “kicks in” at the time instant #y at which
to =x(to)> +y(t9)?. Since v(s) = w(s) = 0 for s < 0 we conclude
that x(#) = y(t) = 6(¢r) = 1 for all 0 < ¢ <ty and hence, 1y = 2.
In Fig. 5 we show the trajectory of the robot in the xy plane,
whereas in Fig. 6 we show the resulting state-dependent delay
and the controls v(¢) and @(¢). In the case of the uncompensated
controller (64)—(68), the system is unstable, the delay grows
approximately linearly in time, and the vehicle’s trajectory is
a divergent Archimedean spiral. The compensated controller
(64)—(67), (69)—(73) recovers the delay-free behavior after 2
seconds. From Fig. 5 one can also conclude that the heading
0(r) in the case of the compensated controller converges to
zero with damped oscillations, whereas in the case of the
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Fig. 5. The trajectory of the robot model (60)—(62), with the
compensated controller (64)-(67), (69)—(73) (solid line)
and the uncompensated controller (64)—(68) (dashed line)
with initial conditions x(0) = y(0) = 0(0) = 1 and w(s) =
v(s) = 0 for all —x(0)? —y(0)> <s<0.

uncompensated controller it increases towards negative infinity
(the robot moves clockwise on a spiral).

3. NONLINEAR SYSTEMS WITH A WAVE PDE IN THE
INPUT

In this section we consider the following system

X(1) = f(X(t),u(0,1)) (74)
Upy (x,1) = tre(x,1) (75)
uy(0,1) =0 (76)
u(1,6) =U(t), (77

where X e R", U € R, t € R and f: R" x R — R” is locally
Lipschitz with f(0,0) = 0. Our controller design is based on
converting the wave equation to a 2 x 2 system of first order
transport equations which convect in opposite directions (see
Fig. 7). To achieve this we define the following transformations

C()C,f) :ul(x,t)+ux(x,t) (78)
o(x,1) = u(x,1) — ux(x,1), (79)

together with their inverses given by
7
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Fig. 6. Top: The delay (63) for the robot model (60)—(62) with
the controller (64)—-(67), (69)—(73) (solid line) and the
controller (64)—(68) (dashed line) with initial conditions
x(0) = y(0) = 6(0) = 1 and (s) = v(s) = 0 for all
—x(0)> —y(0)? < s < 0. Bottom: The control efforts v(z)
and o(¢) for the robot model (60)—(62) with the controller
(64)—(67), (69)—(73) with initial conditions x(0) = y(0) =
0(0) =1 and ®(s) = v(s) = 0 for all —x(0)2 —y(0)> <s <
0.

C(x,0)+ o(x,1)

u(x,1) = 5 (80)
uy(x,1) = w (81)

Noting from (76) that £(0,¢) = u,(0,¢) and defining
(1) =u(0,1), (82)

system (74)—(77) can be written as

Z(t) = g(Z(t),£(0,1)) (83)
@, (x,1) = — @ (x,1) (84)
o(0,1) ={(0,1) (85)
G (x,1) = Gu(x,1) (86)
C(L)=U()+u(l,1), (87)

where
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U (nonlinear) | x
—> wave PDE > ODE — >
¢
+ £(0,1) = w(0,1) (nonlinear)
- transport PDE ODE >

transport PDE

()

Fig. 7. Top: A nonlinear system with a wave PDE in the
input. Bottom: The equivalent representation of the wave
PDE/nonlinear ODE cascade using the change of variables

(78), (79).
z-[§]

o(Z.v) = { f(Xvé) ]

Our feedback design, that compensates the wave actuator dy-
namics, is based on a nominal feedback law u : R"*! — R that
stabilizes the plant Z = g(Z,U) defined in (83), i.e., that sta-
bilizes the following system (which is identical to the original
system (74) augmented by one integrator)

(88)

(89)

X(1) = f (X(1),6(1)) (90)
S)=U(). ©n
Note that such a nominal control law for the augmented system
(90), (91) can be constructed, using backstepping, if there exists
a control law x that stabilizes the plant X = f(X,U), i.e.,

X = f(X,x(X)) is globally asymptotically stable. A choice of
the feedback law u is then as

(X (1),E () = —c1 (E(1) — k(X (1)) + w
< F(X(0),E()). o

Noting that the input to the Z system is the delayed version of
the signal {(1,7) = U(¢) +u,(1,t) we conclude that our control
law has to employ the prediction of Z.

The control law that compensates the wave dynamics is given
by

U(t) = —u(1,t) — 1 (p2(1,1) — k(p1(1,1))) + W
xf(p1(1,1),p2(1,1)), ©93)

where ¢; > 0is arbitrary, and p; € R" and p, € R, the predictors
of X(¢) and u(0,¢) respectively, are given for all x € [0, 1] by

X
P =X+ [ F(pr0)pa(n0)dy O
X
paet) = u(xn)+ [ w0y ©3)
with initial conditions for all x € [0, 1] as
8



pi(x.0)=X(0)+ [ CF(01:0).p2(.0))dy  (96)

p2(x,0) = u(x,0) Jr/oxu,(y, 0)dy.

The name “predictors” for p; and p, is chosen to emphasize
that p;(1,7) and py(1,#) are actually the 1-time units ahead
predictors of X(¢) and u(0,¢) respectively, i.e., it holds that
p1(l,t) =X (t+1) and py(1,¢) = u(0,#+ 1). This fact is shown
in the next section . Note that the control law (93) is directly
implementable. To see this note that the predictors p;(1,7),
p2(1,1) are computed, at each time #, based on the numerical
integration of the integrals in relation (94), (95) on the triangu-
lar domain 0 <y < x, starting from the initial condition (in x)

p1(0,1) =X(1), p2(0,2) = u(0,1).

Defining for any 6 € L*[0, 1] its supremum norm

o7

sup [0(x,1)] = [|6(7)]|o-,
x€[0,1]

(98)

we are able to state the following result.

Theorem 4. Consider the closed-loop system consisting of the
plant (74)—(77) and the control law (93), (94), (95). Let the
plant X = £(X,v) be complete and the “disturbed” closed-loop
system X = f(X,(X) +v) input-to-state stable and backward
complete. There exist a class J#.% function 3 such that

Q(r) < B (2(0),1) 99)

Q(t) = [X(0)[ + [Ju()lleo + [t (1) | oo + [[ux () | oo, (100)
forallt > 0.
The proof of this result is based on the introduction of the

following invertible backstepping transformations of @ and §
defined for all x € [0,1] as

2(x,1) = o(x,1) — w(r(x,1)) (101)
W(X,I)ZC()C,I)—H(])(X,I)), (102)

respectively, where for all x € [0, 1]
) =20~ [ gl @)y (103)
plen) =20+ ["g(pu). Loy (104

and u is defined in (92). Transformation (101), (102) and the
control law (93)—(95) transform system (83)—(87) to the “target
system” given by

2(1) = g (Z(1), u(Z(1)) + w(0,1)) (105)

7 (x,1) = —z,(x,1) (106)
2(0,¢) = w(0,1) (107)

wy (X, 1) = wy(x,1) (108)
w(l,7) =0. (109)

The stability of the “target system” can be then studied using
the following Lyapunov functional

3 Another way to see this is as follows. Construct first the standard 1-time unit
ahead predictor for Z satisfying (83) as P(t) = Z(t) + [, g (P(0),2(9))d8,
where Z(t +x — 1) = {(x,t). Defining P(r +x — 1) = p(x,t) we rewrite the
predictor as p(1,1) =Z(t) + fol g(p(x,1),§(x,1))dx. Using definitions (88), (89)
and noting that py(1,7) = u(0,7) + fol uy(x,1)dx + [01 u; (x,1)dx, we get after
integrating u, relations (94), (95) forx = 1.
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V(1) lc.oo
+2 / az—(r)dn (110)
r

cJo
where ¢ > 0 is arbitrary, S and a are defined in (14) (note that
in the present case the closed-loop system is autonomous so
can be chosen independent of ¢), and the new variable v(x,?),
x € [—1,1] is defined as

v(x,t)—{ o),

7" (x,1),

where [[v(1) o = Supye 1y I u(r.)], 2 (1.0) = 2(—x,0).

for all x € [0, 1]

forallx € [—1,0] ~ (a1n

3.1 Example

We consider the following system

X (1) = Xa(t) — Xa(1)*u(0,1) (112)
Xa(t) = u(0,1) (113)
Ugr (1) = Uy (x,1) (114)
uy(0,) =0 (115)
u(1,0) =U(r). (116)

System (112)—(113) is in the strict-feedforward form, and
hence, is complete with respect to the input u(0,). The nominal
control law (i.e., in the case where u(0,7) = U(r))

U(t) = =X (1) —2Xa (1) — %Xz(t)37 (117)

renders the closed-loop system input-to-state stable and back-

ward complete # . The control design that compensates the wave
dynamics is

U(t) = _ul(lvt) _2(p3(17t)+p1(15t) +2P2(17t))
=2 pa(1L0)* = pa(1,0) + 21, (1,1)

— 2+ pa(1,0)?) p3(L,1), (118)

where
1
p1<1,¢):x1<;)+x2<t)+/0 (1 = x)u(x, )dx

1
—1—/() (1 —x)%u; (x,1)dx

1 X
—/0 dx (u(x,t)+/0 ul(y,t)dy>
X 2
< (30 [ wn) + (1 =3y 19
1 I
pg(l,t):Xg(t)—i—./O u(x,t)dx+/0 (1= x)u; (x,1)dx (120)
p3(L,1) :u(l,t)+/01u,(x,t)dx.

(121)

We choose the initial conditions for the system as X;(0) = 1,
X>(0) = 0 and the initial conditions for the actuator state as
u(x,0) = u;(x,0) = 1, for all x € [0,1]. In Fig. 8 we show the

4 This fact follows from the fact that the control law (117) can be written as
U = —¢; — ¢, where ¢ is the linearizing diffeomorphic transformation ¢; =
X1 +Xo+ %X; ¢ = X», which transforms system (112)—(113) to ¢; = ¢» + U,
¢, = U (see Krstic (2004)) .



Fig. 8. The response of the states of the plant (112)—(113)
with the control law (118)—(121) (solid line) and with
the nominal control law (117) (dashed line) for initial
conditions as X; (0) = 1, X»(0) = 0 and u(x,0) = u; (x,0) =
1, forall x € [0,1].

response of the states of the plant (112)—(113) for the case of
the uncompensated nominal control law (117) and the case of
the proposed control law (118)—(121). As one can observe, in
the latter case stabilization is achieved, whereas the states grow
unbounded in the former case, in which a control law that does
not take into account the wave dynamics is employed. In Fig. 9
we show the response of the actuator state and the control effort
in the case of the proposed control law (118)—(121). As one can
observe, both the actuator state and the control effort converge
to zero.

4. SYSTEMS OF NONLINEAR HYPERBOLIC PDES

In this section we present the results developed by Coron et al.
(2012) and Vazquez et al. (2011b). We consider the following
system

Zt(xvt) +A(Z(xat)7x) Zx(xvt) +f(z(x,t),x) =0, (122

with the following boundary conditions
21(0,1) = Go (22(0,1)) (123)
ZZ(lvt):U(t)a (124)
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Fig. 9. The response of the actuator state (top) and the control
effort (bottom) of the plant (112)-(116) with the con-
trol law (118)—(121) for initial conditions as X;(0) = 1,
X>(0) =0 and u(x,0) = u,(x,0) = 1, for all x € [0, 1].

where x € [0,1], z: [0,1] x [0,00) — R2, A : R? x [0,1] —
Moo (R), f:R?x[0,1] — R?, with .#,, denoting the set of
2 x 2 real matrices. We further assume that A(z,x) is twice
continuously differentiable with respect to z and x, and we
assume that (possibly after an appropriate state transformation)
A(0,x) is a diagonal matrix with nonzero eigenvalues Aj(x),
A;(x) which are, respectively, positive and negative, i.e., for all
x€0,1]

A(0,x) = diag (A1 (x),Az2(x)), Ai(x) > 0,Ax(x) < 0(125)

where diag(A,A;) denotes the diagonal matrix with A; in the
first position of the diagonal and A, in the second. We also
assume that f(0,x) = 0, implying that there is an equilibrium at
the origin, and that f is twice continuously differentiable with
respect to z. Denote

af fii(x)  fialx
Low=] 1 120 ]

and assume that f;; € C'([0,1]). Finally, we assume that Go(x)
is twice differentiable and vanishes at the origin. We seek a
control law U(r) that makes the origin of (122)—(124) locally
exponentially stable. Our control design is based on the lin-
earization of system (122)—(124). Before we linearize system
(122)—(124) around the origin we rescale the variable z so that

(126)

10



we make the linear part of f antidiagonal since we present our
linear design for the case of an antidiagonal linear f (with no
generality loss). Defining the new variable w as

w=d(x)z (127)
®(x) = diag (¢1(x), p2(x)) , (128)
where
lx 11
o1(x)=e" A‘ (129)
ba(x) = 0 BT (130)

we rewrite system (122)—(124) in the new variables as (see Fig.
10)

we (x,1) — Z(x)wy(x,1) — C(x)w(x,1)
+ANL (W(x,2), )Wy (x,8) + L (w(x,2),x) =0,  (131)
with boundary conditions as
Wl(Ovt):qWZ(Ovt)+GNL (WZ(Ovt)) (132)
W2<17t):V(t)a (133)
where
X(x) (0,x) (134)
0 —fia(x)
C(x) — () 0 (135)
V(1) =¢:(1)U(1) (136)
g=200 (137)
dz
and the nonlinear perturbation terms Ay, and fxi are such that
AnL(0,x) = 0, f (0,x) = 2L (0, %) = 0, G (0) = 0.

Our design is based on a backstepping design for the linear part
of system (131). Definingw=[ u v ", Al =€, Ay = —&,

fio = —c1 and fo1 = —cp we rewrite the linear part of system
(131) as
u (x,1) = —&1 ()uy(x,2) + 1 (x)v(x,1) (138)
ve(x,1) = & (x)vi(x,1) + ca(x)u(x,1) (139)
u(0,1) = qv(0,1) (140)
(1,1)=V(t). (141)
System (138)—(141) is mapped to the following “target system”
oy (x,1) = —&1 (x) o (x, 1) (142)
Bi(x,1) = &2(x) B (x,1) (143)
(0,) = gpB(0,1) (144)
B(1,1)=0, (145)
using the invertible backstepping transformation
t) = uxr) = [ K" E)ulE.r)dg
0
- [ K EmiEnare (146)
Bxr) =v(x) / K (. )ulE 1
/ K" (x En)déE, (147)
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and the control law

1 1
V(t) :/0 K“‘(l,x)u(x,t)dx—{—/() K" (1,x)v(x,t)dx.(148)

The kernels of the backstepping transformation satisfy the fol-
lowing 2 x 2 system of linear hyperbolic PDEs on the triangular
domain 7 = {(x,&):0 <& <x <1} which can be shown to
be well-posed (Vazquez et al. (2011a))

el ()K" + &1 (E)KE" =~ (E)K" —c2(E)K™  (149)
e (K — (8K =& (E)K™ —ci ()K" (150)
ek —a(§)K =€ (5K +(E)K” (151
@)K +& (5K = —&(E)K" +(E)K™, (152)
with boundary conditions
K“(x,0) = ;21(8)))1(%;,0) (153)
uv _ C1 (x)
Ko en) = e+ a0 (154)
K™ (x,x) = R (xc)z—&(—xe)‘z B (155)
K (x,0) = £ g o) (156)
’ 82(0) e

Using definition (127) and (136), the control law for the original
nonlinear system (122)—(124) is

1 1 Vu
U= o | (1,001 )z ()

1

] 1A%
) /O K™ (1) (x)22 (x,1)dx.

With the control law (157) the boundary condition (124) for the
closed-loop system is written as

(157)

z1(1,0) = L/lKV“(I,x)(i)l(x)zl(x,t)dx

$(1) Jo
1 ! 4%
+¢z(1)/o K™ (1,x)¢2(x)z2(x, 1)dx.  (158)
Defining the Hy normof z=[ z1 22 ]T as

1 1
a0 = [ 20 een)dr+ [ a0 arr)ds

1
+ /0 2o (0,0) Tz (3, 1) dix, (159)

and imposing the following compatibility conditions
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0 =21(0,0) — Go(22(0,0)) (160)
Ozzz(lyo)—¢211)/()IKV“(17X)¢1(X)Z1(X70)dX
1 1 vy
%(1)/ K™ (1,%)6 (x)25 (x, 0)dx (161)
=—A1 (2(0,0),0)21.4(0,0) — £1(2(0,0),0) + Gy (22(0,0))
A2(2(0,0),0)22.4(0,0) + f2(2(0,0),0)) (162)
—/l k(1 x ¢1 ) Aj (z(x,0),x) 21 x(x,0)dx
‘KV” 1,X)¢1( ) PE™(1,x)¢a(x)
H ey A0 [
X (A2 (z(x,0),x) 22.4(x,0) + f2 (z(x,0),x)) dx
—A2(z(1,0),1)22..(1,0) — f2(z(1,0),1), (163)

we obtain the following result.

Theorem 5. Consider the closed-loop system (122), (123),
(158). Under the assumptions that A € C* (R? x [0,1]), f(-,x) €

2 (R?), %) e 1 ([0,1]), Gy € C*(R), for all initial con-
dition zp € Hz([O, 1]) that satisfy the compatibility conditions

(161)—(163), there exist 6 > 0, A > 0 and ¢ > 0 such that if
12(0) ||, < 8, then for all 7 >0

() 1y < ce12(0) |-

Note that the compatibility conditions (161) and (163) depend
on our feedback laws and therefore are not natural. They can
be omitted by considering a dynamical extension (see Coron et
al. (2012)). The proof of Theorem 5 is based on employing the
linear backstepping transformation (146), (147) on the rescaled
nonlinear system (131), which results in the following target
system

(164)

% —Z(X)%+F (v, %]+ Fiy] =0, (165)

where y=[ a f ]T and F3, F; are nonlinear functionals of
Y and ¥, (see Coron et al. (2012) for details). The H, local
exponential stability of the target system can be then studied
with the following Lyapunov functional

S@O)=U0)+V()+W() (166)
/ ¥ (x,1)D(x)y(x,t)dx (167)

= [Heorm@rena as
/ 0 ()R] () Y (3, 1) dix, (169)

where D(x) = diag(D;(x),D;(x)) is positive definite for all
x € [0,1] and R[y] is a symmetric and positive definite matrix
for all sup,c( [ 7(x,1)| < 6.

5. CONCLUSIONS

In our development we assume that the nonlinear plant under
consideration is forward complete and globally stabilizable.
However, our predictor-based design can be applied to systems
that are not forward complete (but they are globally stabilizable
in the absence of the input delay) Krstic (2008) and to systems
that are only locally stabilizable Bekiaris-Liberis and Krstic
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Fig. 10. Top: A 2 x 2 quasilinear system of transport PDEs.
Bottom: An equivalent representation of the system as a
nonlinear transport PDE/nonlinear transport PDE cascade
with boundary and in domain coupling.

(2013). One of the topics of ongoing research is to extend
the predictor idea to nonlinear systems with distributed input
and state delays (see Bekiaris-Liberis and Krstic (2011a,b) for
linear results) and to systems with input-dependent delay.

Although we focus on the stabilization of a wave PDE/nonlinear
ODE cascade, our results opens an opportunity to tackle stabi-
lization problems of other PDE/nonlinear ODE cascades, for
example, when the PDE is of diffusive type.

We present results on the stabilization of 2 x 2 systems of first
order hyperbolic quasilinear PDEs assuming measurement of
the full state. Yet, we remove this requirement in Vazquez et
al. (2012) where we design an output feedback control law. In
the future we would like to extend the present methodology
to the case of n x n systems. For the linear case an extension
to n x n systems is presented in Di Meglio et al. (2012a) for
system that have n positive and one negative transport speeds,
with actuation only on the state corresponding to the negative
velocity.
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