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Abstract: This contribution deals with flatness based control of a laboratory model of a gantry
crane. The mechanical model has 3DOFs, where a trolley can be moved on a rail, the load is
fixed at the end of a rope and can be lifted or lowered by coiling or uncoiling this rope on a
cylinder. Under the assumption that the rope is always stretched, the underactuated system is
not input to state linearisable but it is flat with the coordinates of the load as flat output. Since
the flat output coincides with the variables to be controlled, a flatness based design for trajectory
tracking and stabilisation is indicated. The design of the tracking control is accomplished in two
steps. First, the system is exactly linearised by a quasi-static state feedback. Subsequently, for
the linear system a feedback with integral parts is designed such that the motion of the load
is stabilised about the reference trajectories. Moreover, the control law is extended by terms
which approximately compensate for the friction occurring at the gantry crane. Finally, the
setting of the controller parameters is discussed and measurement results are presented, which
demonstrate an excellent tracking behaviour and disturbance attenuation.

Keywords: nonlinear tracking control; underactuated mechanical system; differential flatness;
Brunovsky state; exact linearisation; quasi-static state feedback.

1. INTRODUCTION

This paper deals with the nonlinear control of the lab-
oratory model gantry crane. Such a gantry crane can
be modelled as a mechanical system with three degrees
of freedom. Since there are only two control inputs, the
system is underactuated, which makes the design of a
nonlinear control far more challenging than in case of
a fully actuated system. Fortunately, the mathematical
model of the gantry crane represents a differentially flat
system, see e.g. Delaleau and Rudolph [1995], Fliess et al.
[1992], Fliess et al. [1995], Fliess et al. [1993], Rothfuss
et al. [1997], Rouchon et al. [1993], and all the citations
therein, but it is not input to state linearisable, see e.g
Isidori [1995]. Furthermore the coordinates of the load are
a flat output. Since the load coordinates are exactly the
variables which are to be controlled, it is possible to design
a flatness based tracking control combined with distur-
bance rejection in straightforward manner. Therefore there
are several contributions on the flatness based control of
a gantry crane, but according to the knowledge of the
authors they all deal with the “pendulum subsystem” of
the gantry crane, which necessitates the use of cascaded
controllers. In Rudolph [2003b] for instance a feedforward
control for the “pendulum subsystem” is considered and
in Delaleau and Rudolph [1998] a flatness based tracking
control for the “pendulum subsystem” is presented. In
contrast, the present paper deals with the flatness based
control of the gantry crane as a whole. Thus, no cascaded
controllers are required.

2. MODELLING

Fig. 1 shows the laboratory model. Its functionality is as
follows: A trolley is moved by a haulage cable on a rail.
On the trolley a cylinder, denoted in the following as load
cylinder, is mounted. By coiling or uncoiling a rope on this
cylinder, the load, which is fixed at the end of this rope,
can be lifted or lowered.

Fig. 1. Laboratory model gantry crane

For the mathematical modelling of the gantry crane, the
sketch shown in Fig. 2 is used. Here the rope on which the
load is fixed is supposed to be always stretched. Thus, the
force FS which is transmitted by the rope must always be
positive. This assumption is valid as long as the inequality
ÿL < g is fulfilled. The x-coordinate of the centre of
rotation of the pendulum is denoted as xD, the rotation
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Fig. 2. Sketch showing the front view (right) and a side
view (left) of the gantry crane

angle of the load cylinder is denoted as ϕ and θ describes
the pendulum angle. The radius of the load cylinder is
given byRT . The length of the pendulum can be calculated
from L = L0 +RTϕ, where L0 is the pendulum length for
ϕ = 0. The position of the load is given by xL and yL. The
parameter mW describes the mass of the trolley and AT
represents the moment of inertia of the load cylinder. The
load has the mass mL and the gravitational acceleration
g points in the positive y-direction. The driving force FAn
which acts on the trolley and the driving torque MAn

which acts on the load cylinder are the control inputs.

Since we assumed that the rope is always stretched, we are
dealing with a rigid multi-body system with holonomic
constraints. Therefore the equations of motion can be
derived from the Euler-Lagrange equations (see e.g. Spong
and Vidyasagar [1989]), which read

d
dt (∂q̇T )− ∂qT + ∂qV = QT . (1)

Here T denotes the system’s kinetic energy, V is the
potential, and Q represents the generalised forces. The
variables q and q̇ are the generalised coordinates resp.
the generalised velocities. For the generalised coordinates
the choice qT = [xD, ϕ, θ] is made. The system’s kinetic
energy is given by

T = 1
2mW ẋ

2
D + 1

2AT ϕ̇
2 + 1

2v
T
LmLvL, (2)

where

vL =

ẋD −RT ϕ̇ sin(θ)− (L0 +RTϕ) θ̇ cos(θ)

RT ϕ̇ cos(θ)− (L0 +RTϕ) θ̇ sin(θ)
0

 (3)

is the velocity of the load. The potential of the gantry
crane is given by

V = −mLg (L0 +RTϕ) cos(θ), (4)

and the driving force FAn and the driving torque MAn

result in the generalised forces

QT = [FAn,MAn, 0] . (5)

Plugging T , V , and Q into (1) results in the equations of
motion of the crane, which read as

(mW +mL) ẍD −mLRT sin(θ)ϕ̈

−mL (L0 +RTϕ) cos(θ)θ̈

+mLθ̇
(

(L0 +RTϕ) θ̇ sin(θ)− 2RT ϕ̇ cos(θ)
)

= FAn (6)

−mLRT sin(θ)ẍD +
(
AT +mLR

2
T

)
ϕ̈

−mLRT

(
(L0 +RTϕ) θ̇2 + g cos(θ)

)
= MAn (7)

−mL (L0 +RTϕ) cos(θ)ẍD +mL (L0 +RTϕ)
2
θ̈

+mL (L0 +RTϕ)
(

2RT ϕ̇θ̇ + g sin(θ)
)

= 0. (8)

These equations can be written in the form

M(q)q̈ + g(q, q̇) = Q (9)

with the symmetric and positive definite mass matrix
M(q) and the vector g(q, q̇). Because of its positive
definiteness the mass matrix can be inverted. Hence the
equations of motion can be solved for q̈, which yields

q̈ = M(q)−1 (Q− g(q, q̇)) . (10)

By introducing the state xT = [q, q̇] and the input uT =
[FAn,MAn], a system of first order ODEs

ẋ = f(x,u) (11)

with

f(x,u) =

[
q̇

M(q)−1 (Q− g(q, q̇))

]
(12)

can be derived. Since the generalised coordinates q can be
measured and the generalised velocities q̇ are calculated
by numerical differentiation, the state x is known and
therefore available for the controller design.

3. DIFFERENTIAL FLATNESS

The gantry crane is a differentially flat system and the
coordinates of the load are a flat output. For the exact
argumentation and a general definition of differentially flat
systems see for instance Rudolph [2003b]. Therefore, we
confine us here to show, how all system variables, i.e. all
variables that were used in the mathematical model, can
be expressed by the flat output yT = [xL, yL] and its time
derivatives.

3.1 Parameterisation of the System Variables by the Flat
Output

In addition to the equations of motion (6), (7), and (8),
the gantry crane is subject to the equations

xL = xD − (L0 +RTϕ) sin(θ) (13)

and
yL = (L0 +RTϕ) cos(θ). (14)

Solving (13) and (14) for ϕ and θ we derive

ϕ =

√
(xD−xL)2+y2

L
−L0

RT
(15)

and

θ = arctan
(
xD−xL

yL

)
. (16)

Here it is assumed that the length of the pendulum L =
(L0 +RTϕ) is always positive. The calculation of the time
derivative of (15) results in

ϕ̇ = (xD−xL)(ẋD−ẋL)+yLẏL

RT

√
(xD−xL)2+y2

L

, (17)
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and twofold differentiation of (16) yields

θ̇ = (ẋD−ẋL)yL−(xD−xL)ẏL
(xD−xL)2+y2

L

(18)

θ̈ = f (xD, ẋD, ẍD, xL, ẋL, ẍL, yL, ẏL, ÿL) . (19)

By plugging (15) to (19) into (8), one obtains the relation

xD = xL + ẍLyL
g−ÿL . (20)

By consideration of (20), the equations (15) and (16) result
in

ϕ =

√(
ẍLyL
g−ÿL

)2
+y2

L
−L0

RT
(21)

and

θ = arctan
(

ẍL

g−ÿL

)
. (22)

With (20), (21), and (22), the generalised variables q are
given as functions of y and its time derivatives. Now these
expressions are differentiated two times. One obtains

ẋD = ẋL +
x
(3)

L
yL+ẍLẏL
g−ÿL +

ẍLyLy
(3)

L

(g−ÿL)2
(23)

ẍD = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
(24)

as well as

ϕ̇ = f
(
ẍL, x

(3)
L , yL, ẏL, ÿL, y

(3)
L

)
(25)

ϕ̈ = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
(26)

and

θ̇ =
ẍLy

(3)

L
+x

(3)

L
(g−ÿL)

ẍ2
L
+(g−ÿL)2

(27)

θ̈ = f
(
ẍL, x

(3)
L , x

(4)
L , ÿL, y

(3)
L , y

(4)
L

)
. (28)

Plugging (21), (22), and (24) to (28) into (6) and (7) yields

FAn = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
(29)

MAn = f
(
ẍL, x

(3)
L , x

(4)
L , yL, ẏL, ÿL, y

(3)
L , y

(4)
L

)
, (30)

which is the parameterisation of the control input by the
flat output and its time derivatives.

4. FLATNESS BASED TRACKING CONTROL

For differentially flat systems it is possible to design a
flatness based tracking controller, see for instance Rudolph
[2003a]. With such a control the flat output can be
forced to track preset reference trajectories. The design
is accomplished in two steps. First, the system is exactly
linearised by defining an appropriate new input. In the
present paper, this linearisation is performed by means of
a quasi-static state feedback as discussed in Delaleau and
Rudolph [1998]. Then the new input is chosen such that
the tracking-error systems are rendered linear and stable.

4.1 Exact Linearisation by Quasi-Static State Feedback

According to Rudolph [2005], the tuple

x̃T =
[
xL, ẋL, ẍL, x

(3)
L , yL, ẏL

]
(31)

represents a Brunovsky state for the gantry crane. There-

fore, the new input v1 = x
(4)
L , v2 = ÿL defines a quasi-static

state feedback which obviously results in the linear system

x
(4)
L = v1
ÿL = v2.

(32)

Information on Brunovsky states and quasi-static state
feedback can be found for instance in Delaleau and
Rudolph [1998] and Rudolph [2005].

For the realisation of the feedback, the control inputs FAn
and MAn must be expressed by functions which depend on
the known state x, the new input v, and time derivatives
of v only. Now, we present the derivation of the relations
for the control input in detail, because one cannot find
them in the literature according to the knowledge of the
authors. Let us consider (13) and (14). Differentiation with
respect to the time gives

ẋL = ẋD −RT sin(θ)ϕ̇− (L0 +RTϕ) cos(θ)θ̇ (33)

ẏL = RT cos(θ)ϕ̇− (L0 +RTϕ) sin(θ)θ̇. (34)

Calculation of the time derivatives of (33) and (34) yields
expressions that contain q̈. By replacing q̈ with (10) one
obtains

ẍL = f (x,u) (35)

ÿL = f (x,u) . (36)

Equation (35) is now differentiated another two times, each
time replacing q̈ with (10). This results in

x
(3)
L = f (x,u, u̇) (37)

and
x
(4)
L = f (x,u, u̇, ü) . (38)

Now the right-hand side of (38) is equated with v1 and the
right-hand side of (36) is equated with v2. This gives the
equations

v1 = f (x,u, u̇, ü) (39)

v2 = f (x,u) . (40)

Solving (40) for MAn one gets

MAn = f (x, FAn, v2) . (41)

This expression is now differentiated with respect to the
time. By replacing q̈ with (10) and subsequently MAn with
(41), one obtains

ṀAn = f
(
x, FAn, ḞAn, v2, v̇2

)
. (42)

Repeating this procedure yields

M̈An = f
(
x, FAn, ḞAn, F̈An, v2, v̇2, v̈2

)
.

Plugging the above expressions for MAn, ṀAn, and M̈An

into (39) gives an equation of the form

v1 = f (x, FAn, v2, v̇2, v̈2) . (43)

It is important to state that in this equation there does not
occur any time derivative of FAn. Solving for FAn yields

FAn = f (x, v1, v2, v̇2, v̈2) . (44)

Eventually, by plugging (44) into (41) one obtains

MAn = f (x, v1, v2, v̇2, v̈2) . (45)

The equations (44) and (45) represent the required func-
tions for the control inputs.

4.2 Stabilisation about the Reference Trajectories

In order to receive linear tracking-error systems, the input
v of the linear system (32) is chosen as

v1 = x
(4)
L,d − a1,3

(
x
(3)
L − x

(3)
L,d

)
− a1,2 (ẍL − ẍL,d)

− a1,1 (ẋL − ẋL,d)− a1,0 (xL − xL,d)− a1,Ie1,I (46)
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and

v2 = ÿL,d − a2,1 (ẏL − ẏL,d)
− a2,0 (yL − yL,d)− a2,Ie2,I , (47)

where

e1,I =

∫ t

t0

(xL(τ)− xL,d(τ)) dτ (48)

and

e2,I =

∫ t

t0

(yL(τ)− yL,d(τ)) dτ (49)

are the integrated tracking errors in x- and y-direction.
The variables xL,d and yL,d denote the x- and the y-
coordinate of the reference trajectory yd of the flat output.
With the tracking error in x-direction e1 = (xL−xL,d) and

eT1 =
[
e1,I , e1, ė1, ë1, e

(3)
1

]
, (50)

the resulting tracking-error system for the x-direction
reads

ė1 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−a1,I −a1,0 −a1,1 −a1,2 −a1,3

 e1. (51)

Likewise, with the tracking error e2 = (yL − yL,d) and

eT2 = [e2,I , e2, ė2] (52)

one obtains the tracking-error system

ė2 =

[
0 1 0
0 0 1
−a2,I −a2,0 −a2,1

]
e2 (53)

for the y-direction. The eigenvalues of the error systems
can be placed freely by setting the values of the parameters
ai,j and ai,I .

For the calculation of the control inputs from (44) and
(45), in addition to v1 and v2 the first and the second time
derivative of v2 are also required. The differentiation of
(47) yields

v̇2 = y
(3)
L,d − a2,1 (ÿL − ÿL,d)

− a2,0 (ẏL − ẏL,d)− a2,I (yL − yL,d) . (54)

Because of (32), ÿL can be replaced with v2, which results
in

v̇2 = y
(3)
L,d − a2,1 (v2 − ÿL,d)

− a2,0 (ẏL − ẏL,d)− a2,I (yL − yL,d) . (55)

Further differentiation and subsequent replacement of ÿL
gives

v̈2 = y
(4)
L,d − a2,1

(
v̇2 − y(3)L,d

)
− a2,0 (v2 − ÿL,d)− a2,I (ẏL − ẏL,d) . (56)

For the realisation of the stabilising feedback, v1, v2, v̇2,
and v̈2 have to be expressed by known variables, more
precisely meaning the state x, the integrated tracking
errors e1,I and e2,I plus the desired trajectories yd and
their time derivatives. By means of (14) and (34), the
variables yL and ẏL can be calculated from x. Thus, v2
and its time derivatives are given by expressions of the
form

v2 = f (x, e2,I , yL,d, ẏL,d, ÿL,d)

v̇2 = f
(
x, e2,I , yL,d, ẏL,d, y

(3)
L,d

)
v̈2 = f

(
x, e2,I , yL,d, ẏL,d, y

(4)
L,d

)
.

(57)

For the computation of v1, the time derivatives of xL up
to the order of three are required. Via (13) and (33), the
variables xL and ẋL can be expressed by x. The variables

ẍL and x
(3)
L additionally depend on the control input u and

its time derivative u̇. However, because of the quasi-static
state feedback the components of u and u̇ are related by
(41) and (42). The substitution of (41) for MAn in (35)
yields

ẍL = (g − v2) tan(θ). (58)
Similarly, the insertion of (41) and (42) into (37) results
in

x
(3)
L = (g−v2)θ̇−v̇2 sin(θ) cos(θ)

cos(θ)2 . (59)

Since it has already been shown that v2 and v̇2 can be cal-

culated, ẍL und x
(3)
L are also known and therefore available

for the computation of v1. One obtains an expression of the
form

v1 = f
(
x, e1,I , e2,I ,yd, ẏd, ÿd,y

(3)
d ,y

(4)
d

)
. (60)

With (60) and (57), the required expressions for v and its
time derivatives are given.

4.3 Approximate Compensation of the Friction

Although the mechanical quality of the laboratory setup
is rather high, viscous and even more important Coulomb
friction are not negligible. For the compensation of the
friction which acts on the trolley, a correction term

FR,W,d =


rv,WpẋD,d + rC,Wp for ẋD,d > 0

rv,WnẋD,d − rC,Wn for ẋD,d < 0

0 for ẋD,d = 0

(61)

is added to the value of FAn resulting from (44). Similarly,
to compensate for the friction acting on the load cylinder,
we add the term

MR,T,d =


rv,Tpϕ̇d + rC,Tp for ϕ̇d > 0

rv,Tnϕ̇d − rC,Tn for ϕ̇d < 0

0 for ϕ̇d = 0

(62)

to the value of MAn resulting from (45). For the evaluation
of (61) and (62), the variables ẋD,d resp. ϕ̇d are required.
They can be calculated easily by insertion of the reference
trajectories into (23) resp. (25), which yields

ẋD,d = ẋL,d +
x
(3)

L,d
yL,d+ẍL,dẏL,d

g−ÿL,d
+

ẍL,dyL,dy
(3)

L,d

(g−ÿL,d)
2 (63)

and

ϕ̇d = f
(
ẍL,d, x

(3)
L,d, yL,d, ẏL,d, ÿL,d, y

(3)
L

)
. (64)

The parameters rv,Wp, rv,Wn, rC,Wp, and rC,Wn resp.
rv,Tp, rv,Tn, rC,Tp, and rC,Tn are the viscous and the
Coulomb coefficients of friction. Since experiments have
shown that the friction depends slightly on the direction
of movement, a distinction between positive and negative
direction is made.

4.4 Measurement Results

The control law was implemented on a dSPACE R© real-
time system. The sampling time was set to 10 ms. The
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Fig. 3. Tracking behaviour without integral parts and
without compensation of the friction

reference trajectories xL,d and yL,d for the x- and the
y-coordinate of the load are polynomials of degree nine.
Their coefficients were calculated from the initial and the
final values of yd and its time derivatives. Since the load
should be transferred from one equilibrium to another one,
the initial and the final values of the time derivatives of yd
are set to zero. To show the impact of the integral parts
and the compensation of the friction on the performance
of the control circuit, the measurements were made with
different controller settings. First, the integral parts were
not used and the terms compensating for the friction were
also omitted. The integral parts can be disabled by setting
a1,I = a2,I = 0. As a consequence, the order of both error
systems is decremented by one. To obtain stable tracking-
error systems, the coefficients ai,j of the feedback must be
chosen such that the resulting eigenvalues have negative
real parts. By placing the eigenvalues sufficiently far left
in the complex plane, excellent simulation results can be
achieved (of course, friction is considered in the simulation
model). In contrast, experiments with the gantry crane
have shown that the eigenvalues may not be placed too
far left because otherwise there occur oscillations in the
haulage cable that moves the trolley. The characteristic
polynomials of the error systems were set as

p1(s) = (s+ 5.5)4 (65)

p2(s) = (s+ 15)2. (66)

It may be remarked that of course it is not necessary
to set all eigenvalues of an error system to the same
value, but since other settings did not result in a better
performance of the control circuit, the above, very simple
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Fig. 4. Tracking error without integral parts

choice was made. The measurement results are shown in
Fig. 3. Obviously, there is a significant deviation between
the reference and the actual trajectory of the load both
in x- and y-direction. This is due to the fact that it was
not possible to place the eigenvalues of the error systems
farther left because of the problems with the haulage cable.

In the following it shall be shown how the tracking be-
haviour can be improved by use of the integral parts and
the compensation of the friction. In order to facilitate
the comparison of the measurement results which were
achieved with the different controller settings, only the
tracking error is shown. The underlying reference trajec-
tory is the same as in Fig. 3, i.e. the trajectory leaves the
initial rest position at t = 1 s and reaches the final rest
position at t = 3 s. Fig. 4 shows a comparison between
the measured tracking error with and without compen-
sation of the friction. It can be seen that compensating
for the friction considerably reduces the tracking error.
Since the integral parts were not used, there remains a
steady state control deviation. As for the integral parts,
it turned out to be useful to activate them only after the
reference trajectory has reached the final rest position. As
long as the integrators are not activated, the tracking-error
systems are of order four resp. two as above. Thus, it is
straightforward to use the same values for the coefficients
ai,j . Once the integrators are activated, the tracking-error
systems are given by (51) resp. (53). Hence, the coefficients
ai,I must be set such that these error systems are stable.
Experiments have shown that the choice a1,I = 1500 and
a2,I = 200 yields very satisfying results. Fig. 5 shows the
measured tracking error with and without compensation
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Fig. 5. Tracking error with integral parts

of the friction. In both cases, a comparison with Fig. 4
shows that thanks to the integral parts, the final position
of rest is reached with a significantly increased accuracy.

The comparison of the presented measurements clearly
shows that the best results are achieved by the applica-
tion of both the integral parts and the compensation of
the friction. Fig. 6 shows the measured and the desired
trajectories for this case. In conclusion it can be stated that
thanks to the integral parts and the compensation of the
friction, the presented control algorithm yields excellent
results.
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