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Abstract: We consider the chemostat model with the substrate concentration as the single
measurement. We propose a control strategy that drives the system at a steady state maximizing
the gas production without the knowledge of the specific growth rate. Our approach separates
the extremum seeking problem from the feedback control problem such that each of the two
subproblems can be solved with relatively simple algorithms. We are then free to choose any
numerical optimization algorithm. We give a demonstration for two choices: one is based on
slow-fast dynamics and numerical continuation, the other is a combination of golden-section
and Newton iteration. The method copes with non-monotonic growth functions.

Keywords: adaptive control, self-optimizing control, parameter optimization, biotechnology.

1. INTRODUCTION

The control design of chemostat models have been exten-
sively studied in the literature, with the objective to pro-
vide efficient and reliable control strategies for industrial
applications, such as biotechnological or pharmaceutical
processes [7, 8]. A common task is to drive a continuous
stirred tank bioreactor to a set-point that optimizes an
objective function, for instance the gas production rate
[9, 32]. In this work, we consider the chemostat model
with a single strain

ṡ = −µ(s)b+ u(sin − s)

ḃ = µ(s)b − ub
(1)

where the state variables s and b denote the substrate and
biomass concentrations, respectively (in these equations
the yield coefficient has been chosen equal to unity without
loss of generality). The concentration of substrate in the
feed is denoted by sin, and the dilution rate u ≥ 0
is the manipulated variable. The production rate to be
maximized is given by

r = µ(s)b .

In such bioprocesses, if often happens that the growth
kinetics µ(·) is unknown (or poorly known) and possibly
evolves slowly with time or changes of environment (such
as temperature or pH value). Consequently, the robustness
of the control strategies with respect to uncertainties on
µ(·) is a crucial issue for real applications. Many works
have considered the on-line estimation of the growth func-
tion [16, 11, 35, 26, 6] and the robust stabilization of such
processes about a given reference point [10, 18, 29, 28, 30],
but there are comparatively fewer works concerned with
the maximization of an objective under model uncertain-

ties [12]. Such issues are typically addressed by the design
techniques of extremum seeking controls [21, 19, 3, 33, 34].
Roughly speaking, these techniques consist in adding an
excitation signal to the input u = ū + a sin(ωt), of small
amplitude a and high frequency ω, and capturing an
estimation of the gradient of the objective function by
filtering. Three time scales (excitation signal period=fast,
plant dynamics=medium, filtering=slow) then operate in
the overall closed loop system. Such a technique has been
developed first in [36] for unknown functions µ(·) of Monod
or Haldane type (the term Monod refers to monotone
increasing growth rate µ, whereas growth rates of Haldane
type have a maximum at some intermediate smax < sin and
decrease for s > smax). Later on, an adaptive extremum-
seeking scheme has been proposed to improve the perfor-
mances of the transient response, for the Monod’s case in
[37] and the Haldane’s one in [24]. In these approaches,
the production rate r is assumed to be measured on-
line, and explicit expressions of the unknown function
µ(·) are required. An alternative extremum-seeking scheme
combined with a neural network has been proposed in [15]
to get around the requirement for an analytical expres-
sion of the growth function. Nevertheless, all mentioned
approaches require the on-line measurement of the whole
state (s, b), except for [25] where b only is measured but the
result is restricted to the Monod’s kinetics. In the present
paper, we consider that the single on-line measurement

y = s (2)

is available. One may consider coupling the former
extremum-seeking controllers with state observers [7, 14,
27], but there is an intrinsic difficulty due to the fact
that “good” observers, i.e. whose speed of convergence
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can be arbitrary tuned, require the exact expression of the
dynamics, and that “fast” observers are often sensitive to
measurement noise and input disturbances.

We present here a rather different and new approach that
does not require any knowledge of the growth function.
Neither do we require the ability to measure the objective
function at all times. Instead of feeding an excitation
signal into the plant (the usual approach in extremeum
seeking) we apply a classical feedback control stabilizing
the plant to guarantee a uniform decay of transients.
This stabilization step is then combined with classical
numerical methods that treat the equilibrium output of
the feedback-stabilized plant as an unknown function
of the input. We demonstrate this approach with two
different numerical methods. In sections 3 and 5.1 we
apply a continuation method [1] tracing out the graph of
equilibrium outputs (depending on the inputs) until we
reach the maximum of the objective. In sections 4 and 5.2
we apply a classical optimization method to the graph, in
our case a golden section iteration and Newton iterations.
Our approach splits the dynamic extrmemum seeking
problem into two subproblems: a feedback stabilization
problem and a numerical optimization problem. This has
several advantages:

First, the proof of convergence of the overall scheme is split
into simpler subproblems: stability of the feedback for fixed
inputs and convergence of the numerical algorithm. In the
case of the chemostat with a growth rate of Haldane type
the first part (stability) is globally true [31]. The second
part (convergence of numerics) follows in general at least
locally from the general theorems developed for numerical
algorithms. For the specific case of the chemostat with
growth rate of Haldane type one can again state global
convergence for the continuation and the golden-section
iteration because of the uniqueness of the local maximum.

Second, the number of different time scales is reduced to
two: the decay time of the feedback controlled system and
the iteration process of the numerical algorithm. In theory
the decay time can be made arbitrarily short by adjusting
the feedback gains. In practice this is limited by intrinsic
noise, measurement noise and sampling time. The numer-
ical convergence speed can be superlinear (quadratic) in
the ideal case for Newton iterations.

Third, one only needs to evaluate the objective at equi-
librium. One can see the importance of this aspect in
the chemostat example: the rate r = µ(s)b depends on
the unknown µ and the internal state b, which is not
measured. However, in equilibrium µ equals the input u
and b equals sin−s such that we can apply the continuation
or optimization to D(sin − s) instead.

Our extremum seeking scheme is an extension of a former
work [31] that gives such a method for the reconstruction
of the graph of µ(·) with the single measurement of the
substrate, without any a priori knowledge on µ (excepted
to be a smooth function). In particular, this technique
can cope with non-monotonic growth functions and allows
to identify unstable states of the open-loop system. The
paper is organized as follows. In Section 2 we first present
our general methodology, and then show how to apply it
on the chemostat model in Section 5. Section 6 is devoted
to numerical demonstrations.

2. ASSUMPTIONS IN THE GENERAL FRAMEWORK

We consider a single-input/single-output dynamical sys-
tem

ẋ = f(x, u)
y = h(x)

(3)

(x(t) ∈ R
n, u(t) ∈ R, y(t) ∈ R) and an objective function

z = φ(y) (4)

to be optimized at steady state, i.e., we are looking for
an output feedback controller that steers the state to an
operating point (x⋆, u⋆) that fulfills

f(x⋆, u⋆) = 0
φ(h(x)) is locally max. w.r.t. u ∈ R at x⋆

(5)

where the functions f and φ are unknown or partially
known. We follow the statement of the general nonlinear
problem of extremum seeking given in [3], that we adapt
here to an output feedback framework.

Assumption A1 (Existence of stabilizing output
feedback). There exists a smooth output feedback u(t) =
α(y(t), ū, ȳ) parametrized by the parameter pair (ū, ȳ) ∈
U × Y (a pair of reference input and output), such that

α(ȳ, ū, ȳ) = ū , (6)

and the closed loop system

ẋ = f(x, α(h(x), ū, ȳ)) (7)

admits a unique equilibrium xeq(ū, ȳ), that is locally
asymptotically stable for any (ū, ȳ) ∈ U × Y.
For example, for the chemostat (1), (2) the output feed-
back could be of the form u(t) = ū + G1(s̄ − s(t)) with a
sufficiently large G1 [31].

Under Assumption A1, we consider the extremum-seeking
problem for the closed-loop dynamics (7) as if the pair
(ū, ȳ) was a new control, and look for pairs such that
h(xeq(ū, ȳ)) = ȳ. For this purpose, we shall consider the
output-input characteristics defined as follows.

Assumption A2 (Output-input characteristics).
There exists a smooth function ψ : Y 7→ U such that

ȳ = h(xeq(ū, ȳ)) ⇔ ū = ψ(ȳ) (8)

for any ȳ ∈ Y.
This assumption means that for each parameter ȳ ∈
Y, there exists an unique input ū ∈ U that is a zero
of the function u 7→ h(xeq(u, ȳ)) − ȳ. For instance, in
the chemostat model, positive equilibriums have to fulfill
α(seq , ū, s̄) = µ(seq), and then having seq = s̄, along with
(6), amounts to write ū = µ(ȳ) .

Assumption A3 (Existence of local maximum).
There exists y⋆ ∈ Y such that the function φ(·) has a
local strict maximum at y⋆.

Finally, we shall assume that the unknown objective
function φ(·) possesses a known structure.

Assumption A4 (Structure of objective function).
There exists a smooth function ϕ : R2 7→ R such that

φ(y) = ϕ(y, ψ(y)) , ∀y ∈ Y (9)

Assumptions A2 and A4 imply that the extremum seeking
problem amouts to optimize a known function of y and u
at steady state. Thus, the problem consists then in finding
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an output feedback strategy that drives the state of the
system to x⋆ such that h(x⋆) = y⋆ using the knowledge of
the feedback law α and the objective ϕ only. The following
two sections present two approaches.

3. CONTINUOUS-TIME ADAPTATION

The continuous-time approach first constructs a differen-
tial equation for ū that achieves ū = ψ(ȳ) (and, thus,
ȳ = h(x̄)) asymptotically, and then applies a gradient
search (again through a differential equation) along the
curve of (ū, ȳ) given implicitly by ȳ = h(x̄(ū, ȳ)). Note
that for feedback laws of the form u(t) = ū + G[ȳ − y(t)]
this implicit curve corresponds to the curve of open-loop
equilibrium outputs.

3.1 Step 1: an adaptive scheme for ū

We look for a dynamics
˙̄u = β(y, ū, ȳ) (10)

with β(ȳ, ū, ȳ) = 0, such that

Ē(ȳ) =

[

xeq(ψ(ȳ), ȳ)
ψ(ȳ)

]

(11)

is a locally asymptotically stable equilibrium of the cou-
pled dynamics

ẋ = f(x, α(h(x), (ū, ȳ)))
˙̄u = β(h(x), ū, ȳ)

(12)

Note that Assumptions A1 and A2 ensures that E(ȳ) is
an equilibrium of (12) for any ȳ ∈ Y, and that one has

lim
t→+∞

y(t) = ȳ . (13)

This is a classical adaptive output control problem, for
which several techniques are available in the literature
[5, 20]. We simply require the convergence

lim
t→+∞

ū(t) = ψ(ȳ) (14)

to be uniform w.r.t. ȳ ∈ Y.

3.2 Step 2: a continuation method for ȳ

Step 1 with Assumption A4 provides an approximation of
the unknown objective function φ(·) at a fixed ȳ:

φ(ȳ) ≃ φ̄(ȳ) = ϕ(ȳ, ū) . (15)

The continuation consists in having ȳ evolving slowly
(step-wise or continuously) with a steepest descent based
on an estimation of the gradient of the function φ. A
continuous adaptation can be written as

˙̄y = −ǫ
[

∂1ϕ(ȳ, ū) + ∂2ϕ(ȳ, ū)ψ̂
′(ȳ, ū)

]

(16)

where ǫ > 0 is small compared to the time scale of dynam-

ics (12), and ψ̂′(ȳ, ū) is an estimation of the derivative of
the function ψ at ȳ, for which ū is an estimation of ψ(ȳ).
Several gradient estimations techniques are available in the
literature [23, 13]. In the scalar case, an estimation of the
sign of the derivative of the function φ is enough to choose
the steepest descent. We can use for instance a dynamics
with delay:
1

ǫ
˙̄y = δ(ȳ, ū, ȳ(t− τ), ū(t− τ))

= sgn [(ϕ(ȳ, ū)− ϕ(ȳ(t− τ), u(t− τ))(ȳ − ȳ(t− τ))] .
(17)

Then, the overall dynamics

ẋ = f(x, α(h(x), ū, ȳ))
˙̄u = β(h(x), ū, ȳ)
˙̄y = ǫδ(ȳ, ū, ȳ(t− τ), ū(t− τ))

(18)

is slow-fast where ū = ψ(ȳ) is the (attracting) critical
manifold. Finally, the output feedback strategy that we
consider takes the following form

u = α(y, ū, ȳ) with

{

˙̄u = β(y, ū, ȳ)
˙̄y = ǫδ(ȳ, ū, ȳ(t− τ), ū(t− τ))

(19)
Let us underline that the output y is naturally filtered by
the dynamics to obtain the estimation y⋆ as

ŷ⋆ = lim
t→+∞

ȳ(t) (20)

that provides a robustness w.r.t. to measurement noise. Of
course, the price to pay is to have a slow convergence due
to small ǫ.

4. EXTREMUM-SEEKING USING NUMERICAL
OPTIMIZATION ALGORITHMS

We compare the continuous-time adaptation with classical
numerical optimization algorithms that are difficult to
express as dynamical systems such as golden-section iter-
ation (which is applicable for single-parameter problems)
and Newton iterations. These algorithms do not require
any knowledge of the underlying system apart from the
ability to evaluate the asymptotic output limt→∞ y(t) for
any given admissible inputs (ū, ȳ). Once the stabilizing
feedback law u(t) = α(y(t), ū, ȳ) is implemented, the
problem is reduced to a classical numerical optimization
problem: φ(h(xeq(ū, ȳ))) → max. In fact, if the feedback
law is linear of the type

u(t) = α(y(t), ū, ȳ) = ū+G[ȳ − y(t)] (21)

this is an optimization problem in the single parameter
v̄ = ū+Gȳ:

φ(h(xeq(ū+Gȳ))) =: F (v̄) → max w.r.t v̄. (22)

We test a combination of two classical optimization al-
gorithms. We start with an initial admissible interval
[v̄low, v̄up]. Then we use golden section search to narrow the
initial interval down to a given fraction of its original size.
Finally we apply a Newton iteration to solve F ′(v̄) = 0 in
the remaining interval. Neither of these two methods re-
quires knowledge about the structure of F . We only have to
evaluate F and its derivatives at any desired point (where
derivatives can be approximated by finite differences). For
the evaluation of F and its derivatives in a given point v̄0
we use a naive act-and-wait approach [17]. First, one sets
the parameter v̄ = v̄0, such that the feedback control law
is u(t) = v̄0 − Gy(t). Then one waits until the transients
have settled (such that x = x̄0 := xeq(v̄0)). Then one
reads off y = h(x̄0) and evaluates φ(y) = ϕ(y, v̄0 − Gy).
For the golden section search we iterate from an initial
interval [v̄1, v̄3] by setting v̄2 = v̄1 + (v̄3 − v̄1)(3 −

√
5)/2

and evaluating F1 = F (v̄1), F2 = F (v̄2) and F3 = F (v̄3).
In this way we obtain an initial triplet (v̄1, v̄2, v̄3) and the
corresponding objective function values (F1, F2, F3). Then
we proceed with the standard golden search to iteratively
obtain new triplets (v̄1, v̄2, v̄3) until v̄3 − v̄1 < tol. Corre-
spondingly, for the Newton iteration with an initial guess
v̄old we evaluate F at the three points (v̄old−h, v̄old, v̄old+
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h) (where h is a small finite-difference deviation). Then
we choose as the new point v̄new the maximum point of
the interpolating parabola. The golden section search is
known to converge globally for unimodal functions with
rate (

√
5 − 1)/2, whereas the Newton iteration converges

quadratically close to a local maximum. In the presence of
random disturbances in the evaluation of F we gradually
increase the accuracy of the evaluation of F during the
iteration by using the mean of y over a longer time interval
after the transients have settled. Note that, when using
act-and-wait and a discrete-time optimization algorithm,
one has removed two of the two slower time scales present
in [4]. They are replaced with the algorithmic iteration
(the Newton iteration converges super-exponentially).

5. EXTREMUM SEEKING FOR THE CHEMOSTAT

Reference [31] has shown that there exists an output
feedback that satisfies the assumptions A1, A2 and A4
for the model (1), with a simple saturated proportionate
controller. Define first the saturation function as follows.

sat[Dmin,Dmax](ξ) =

∣

∣

∣

∣

∣

Dmax if ξ > Dmax,
ξ if ξ ∈ [Dmin, Dmax],
Dmin if ξ < Dmin,

(23)

For this saturation function [31] proved the following
proposition.

Proposition 1. Assume that the reference values (s̄, D̄) are
in [smin, sin)× [Dmin, Dmax], where the bounds satisfy

Dmin < µ(s) for all s ∈ [smin, sin],
Dmax > µ(s) for all s ∈ [0, sin].

(24)

Then the output feedback

u(y, D̄, s̄) = sat[Dmin,Dmax]

(

D̄ −G1(y − s̄)
)

(25)

with a gain G1 satisfying

G1 > max

(

max
s∈[0,sin]

−µ′(s) ,
D̄ − µ(sin)

sin − s̄

)

(26)

guarantees that the closed-loop dynamics (1), (25) has
a stable equilibrium (seq, beq) ∈ [0, sin) × (0,∞), which
attracts all initial conditions (s(0), b(0)) ∈ [0, sin)×(0,∞).

See [31] for a proof. From system (1), one has at steady
state

µ(seq) = D̄ −G1(seq − s̄), (27)

and consequently one has

seq = s̄ ⇔ D̄ = µ(seq), (28)

that is, Assumption A2 is fulfilled.

Note that in system (1) at steady state one has b = sin−s.
Thus, the objective function

φ(s) = µ(s)(sin − s), (29)

which is non-negative such that φ(0) = φ(sin) = 0,
is equivalent to the production rate µ(s)b. For φ the
assumptions A3 and A4 are fulfilled.

5.1 Implementation of continuous-time adaptation

For the continuous-time adaptation we can choose the
same adaptive scheme for ū for the step 1 described in
Sec. 3.1 as was chosen in [31] for the identification of µ.

Proposition 2. For any s̄ ∈ (0, sin) and numbers Dmin,
Dmax such that 0 < Dmin < µ(s̄) < Dmax, the dynamical
feedback law

u(y, D̄, s̄) = sat[Dmin,Dmax]

(

D̄ −G1(y − s̄)
)

˙̄D = −G2(y − s̄)(D̄ −Dmin)(Dmax − D̄)
(30)

exponentially stabilizes the system (1) locally about
(s̄, sin − s̄), for any positive constants (G1, G2) such that
G1 > −µ′(s̄). Furthermore one has

lim
t→+∞

D̄(t) = µ(s̄)

See [31] for the proof.

Our continuous-time extremum seeking output feedback
for the chemostat model (1) is thus given by the following
equations

u(y, D̄, s̄) = sat[Dmin,Dmax]

(

D̄ −G1(y − s̄)
)

(31)

˙̄D = −G2(y − s̄)(D̄ −Dmin)(Dmax − D̄) (32)

1

ǫ
˙̄s = sgn

[

(D̄(sin − s̄)− (33)

D̄(t− τ)(sin − s̄(t− τ)))(s̄ − s̄(t− τ))
]

5.2 Implementation of discrete-time optimization

The discrete-time optimization uses only the saturated
feedback, combining the parameters D̄ and S̄ into a single
parameter v̄ = D̄ +G1s̄, such that

u(y, v̄) = sat[Dmin,Dmax](v̄ −G1y). (34)

The initial bracketing interval [v̄1, v̄2] for v̄ is chosen such
the line ℓ(v̄) = {(D̄, s̄) : D̄ + G1s̄ = v̄} intersects
the domain of admissible reference values [smin, sin) ×
[Dmin, Dmax] for all v̄ ∈ [v̄1, v̄2]. Thus, Proposition 1
ensures the existence of a unique equilibrium seq(v̄) for
all v̄ ∈ [v̄1, v̄2]. This implies that we can proceed with the
golden section search for the objective functional

F (v̄) = u(seq(v̄), v̄)[sin − seq(v̄)], (35)

where u, as defined in (34), is the asymptotic value of the
input u. Once, the golden section search has shrunk the
bracketing interval to a certain size, we apply a single step
of the Newton iteration for the objective functional F .

6. NUMERICAL SIMULATIONS

The output feedback law (31)–(33) has been simulated for
a Haldane function

µ(s) =
µmaxs

K + s+ s2/Ki

(36)

and values of the parameters: µmax = 1, K = 1, Ki = 0.1,
Sin = 1, Dmin = 0 and Dmax = 1. Note however, that
in our simulations we make no assumptions about the
type of µ apart from those required in the assumptions
of propositions 1 and 2 (leading to the validity of as-
sumptions A1–A4). For the control laws in (31)–(33), we
have chosenG1 = 1, G2 = 1 and ǫ = 1e−3. To simulate
measurement noise, we have considered that the output is
corrupted in the following way

y(t) = s(t)(1 + b(t)) (37)

where b(·) is a random square signal of frequency ω and
amplitude a, whose values have been chosen with ω = 0.2
and a = 0.05. The random function b mimics disturbances
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of the measurements. The low frequency ω prevents the
disturbances from averaging out too quickly (to get an
averaging effect one has to wait for a time twait ≫ 1/ω).

6.1 Continuous-time adaptation

D

ss*

µ

φ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fig. 1. Trajectory of (1) with feedback laws (31)–(33) in
the (s̄, D̄) plane.

Figure 1 shows how the trajectory of the variables (s̄, D̄)
converges to the graph of the function µ(·) i nthe (s̄, D̄)-
plane initially up to disturbances due to the measurement
noise. This convergence toward µ(·) is effected by the
control laws (31) and (32) on the fast timescale. Once
the feedback laws (31) and (32) have achieved quasi-
equilibrium for fixed s̄ the dynamics of (33) maximizes the
functional φ on the slow timescale. Timescale separation
ǫ = 10−3 is chosen for our simulations. In Figure 1 one can
also see that the adaptation of s̄ via (33) forces the state
(s, b) to converge near the equilibrium (s⋆, b⋆) (indicated as
intersection between dotted line and graph µ(·), where s⋆ is
maximizing the function φ(·). We note that the adaptation
has converged already after t = 3500.

Remark If we choose the timescales not sufficiently dif-
ferent (say, ǫ = 10−2 in our example) we observe that
the chemostat (1) with feedback laws (31)–(33) becomes
dynamically unstable in in its fixed point (s, b, s̄, D̄) =
(s⋆, b⋆, s⋆, µ(s⋆)).

6.2 Discrete-time algorithms

For the discrete-time optimization algorithm we chose
an initial bracketing interval [v̄1, v̄2] = [0.04, 1] (gain
G1 = 1 in feedback law (34) identical to the continuous-
time adaptation). During the golden section search (until
t ≈ 700 in Figure 2(a)) we checked every tinc = 25 time
units if the transients have settled (criterion is a decrease
of the standard deviation compared to the previous time
interval). Once the output is accepted as stationary we
used the mean of output and input over the last time
interval to calculate the objective F . A larger tinc inceases
the accuracy of the evaluation of F in the presence of
disturbances due to averaging. We observe that after 7
evaluations of F the golden section search reduces the
bracketing interval to length 0.2 and the estimated optimal
value of s is already close to s⋆ (t ≈ 700 in Figure 2(a)).
The Newton step then only confirms the optimality of
the final estimate of s⋆ (up to disturbance level). For
the Newton iteration we chose tinc larger (tinc = 100) to
increase the accuracy of F evaluations and use the points

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

s

D

0 500 1000 1500 2000
0

0.5

1

1.5

time

D
,s

φ

µ

(a)

(b)

s
?

s
?

Fig. 2. Time profiles (a) and input-output plane (b) for
time-discrete optimization. The grey time profile in
(a) is u(t) = D(t) and the black profile is s(t). Full
circles in (a) and (b) indicate inputs and outputs
where the objective F was evaluated.

(v̄−h, v̄, v̄+h) with h = 0.05 to evaluate the approximating
parabola for F in v̄. Figure 2(b) shows the trace (grey
dots) of outputs s and inputs u (equaling dilution rate D)
in the (s,D)-plane. The gaps in the trace are due to finite
sampling time. The full circles show the points where the
transients were accepted as settled.

The speed and accuracy of the discrete-time optimization
is limited by the choice of tinc, which in turn has to be
determined sufficiently large to enable an averaging effect
for the disturbances.

7. CONCLUSION

We have proposed two extremum-seeking schemes: one
approach uses dynamical output feedback that is based
on a continuation method. Its closed-loop dynamics pos-
sesses two time scales: the timescale of the original sys-
tem with stabilizing feedback and a slow timescale for
the adaptation scheme. As an alternative we test classi-
cal optimization algorithms, applied to the steady-state
outputs of the feedback-stabilized system, which have a
continuous timescale (which is exponentially convergent)
and a discrete timescale (which is exponentially or super-
exponentially convergent). This is in contrast to extremum
seeking techniques that use dither signals, which need
three timescales for nonlinear systems (the time scale of
the stabilized system is the fastest).
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