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Abstract—The present work addresses the problem of 

chemostat stabilization around an optimal steady state, in the 

sense of enlargement of its stability region. The need for 

stabilization becomes imperative under conditions where the 

growth of biomass is subject to substrate inhibition, and the 

primary concern is to prevent washout of the biomass in the 

presence of disturbances. Inspired by the empirical concept of 

constant-yield control, a nonlinear state feedback control law is 

derived, and the stability basin of resulting closed-loop system 

is estimated using a Lyapunov function approach. Our analysis 

extends previous results in the sense that it accounts for 

biomass decay and endogenous metabolism and, moreover, it 

covers the case where the product is soluble in the effluent 

stream. 

 

I. INTRODUCTION 

Continuous stirred microbial bioreactors, often called 
chemostats, cover a wide range of applications; specialized 
“pure culture” biotechnological processes for the production 
of specialty chemicals (proteins, antibiotics etc.) as well as 
large-scale environmental technology processes of mixed 
cultures such as wastewater treatment.  The dynamics of the 
chemostat [1,2] is often adequately represented by a simple 
dynamic model with state variables the concentration of the 
microbial biomass x , the concentration of the limiting 

organic substrate s and, possibly, the concentration P of the 

product in the reacting mixture: 
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where D  is the dilution rate, 
0S  is the feed substrate 

concentration, 
/x sY  is a biomass yield factor, 

dK  is the 

biomass decay rate constant,m is the endogenous metabolism 

rate constant, 
pY  is a yield coefficient of  product formation  

and ( )s is the specific growth rate, a given function of s . 

The most widely used expressions for the specific growth 
rate are the Haldane equation 
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and the Monod equation, 
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  max( )  Ss s K s   (2b) 

where
max  is the maximum specific growth rate, 

SK  the 

saturation constant and 
IK  the substrate inhibition kinetic 

constant, with the Monod kinetics being a special case of the 

Haldane kinetics  1 0IK  for biological reactions where 

substrate inhibitory phenomena can be neglected. 

The problem of chemostat stabilization has received 
considerable attention in the literature [3-9]. In the vast 
majority of cases, the control input is the dilution rateD . 
Usually, the objective of control is to regulate the system at 
specific design conditions, which will net optimal 
performance. 

One important class of applications taking place in a 
chemostat is related to anaerobic digestion, which is a key 
process in wastewater treatment, sludge management, 
production of energy from biomass, etc. During the process 
of anaerobic digestion, the organic compounds are 
mineralized to biogas, a useful energy product, consisting 
primarily of methane and carbon dioxide, through a series of 
reactions mediated by several groups of microorganisms. 

In anaerobic digestion, the product (biogas) is insoluble 
and the overall dynamics can be described by a second-order 
model: 
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where P , the rate of production of biogas, is a nonlinear 
algebraic function of the states. Control of anaerobic 
digesters has received significant attention in the literature 
[4,10-18], including recent work of the authors [19], the aim 
being stabilization  and regulation at proper operating 
conditions in the presence of disturbances. 

Comparing dynamic models (1) and (3), we observe that 
the dynamic equations of (3) are exactly the first two state 
equations of (1). In fact, dynamic system (3) can be viewed 
as a simplification of (1) when the production rate is not 
directly affected by changes in the dilution rate.  

In the present study, we develop a mathematical 
formulation of constant-yield control for system (1) and we 
investigate its effectiveness in enhancing the stability 
properties of the chemostat. The results to be presented in 
this study can be specialized to system (3) in a direct and 
immediate way. 
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II. OPEN-LOOP SYSTEM: PROPERTIES AND OPTIMAL 

OPERATING CONDITIONS 

A. System steady states 

Consider the dynamic system (1), with ( )s given by 

(2a) or (2b), where the dilution rate D  is the input variable 

of the system and 
0 max, , , , , , ,d x s p S IS K Y Y K K m

 
are 

constant parameters. The following hypothesis will be made 
throughout this paper: 

  / 0  x s dmY K S  (H) 

Assumption (H) guarantees the existence of positive steady 

state(s) for the bioreactor ( 0, 0, 0  s s sx s P

corresponding to 0sD ). These are calculated from the set 

of equations: 
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Hence the equilibrium curve of the system is defined by the 

set of equations 
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Under assumption (H), the equilibrium curve has the shape 

shown in Fig. 1. 

One end of the equilibrium curve is on the s -axis, at the 

point
0( , , ) (0, ,0)x s P S . The other end is on the plane x =0, 

 

 
 

Figure 1.  Equilibrium curve of the open loop system. 
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, where 
*s is the 

smallest root of the equation ( )  ds K and is given by: 
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In the special case of Monod kinetics  1 0IK , 
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is the unique root of ( )  ds K . 

 

Remark: For1 0IK , the equation ( )  ds K  has two 

roots, which are both real and positive; the smallest root
*s is 

given by (6a) and the largest root is 
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Assumption (H) implies that  * 0min , s IK KSs and 

 *

0max , s IK KSs .In the special case of Monod 

kinetics  1 0IK , assumption (H) implies that the unique 

root 
*s of ( )  ds K satisfies 

* 0 Ss . 

B. Optimal steady state corresponding to maximal 

production rate 

From a practical point of view, it makes sense to try to 
operate the bioreactor at steady state conditions 
corresponding to maximal production rate (which 
corresponds to the product D P ). A simple calculation 
gives: 
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In this case the production rate is maximized when: 
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For ( )s given by (2a) or (2b), condition (8) leads to a 

polynomial equation with respect to
ss , of up to 6th-degree. 

Only one of its roots corresponds to a positive steady state

 0, 0, 0, 0   s s s sx s P D and this is the optimal steady 

state value opt

ss . 
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For the following values of the parameters 
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The optimal nontrivial, positive steady state calculated 

through (8) and (5) is 

  0.112 / , 0.259 / , 0.134 /  opt opt opt

s s sx g L s g L P g L  

The optimal steady state is achieved for the value of the 

dilution rate of 10.051 opt

sD d . The optimal steady state for 

a process characterized by the above set of parameters is 

indicated by the green dot on the equilibrium line of Fig. 1. 

C. Local asymptotic stability 

The dynamics of the open-loop system (1) has serial 

structure, consisting of the dynamics of x and s , followed 

by the dynamics of P . The eigenvalues of the linearization 

of (1) associated with the dynamics of x  and s  are the roots 

of the quadratic polynomial 
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whereas the eigenvalue associated with the P dynamics is

( ( ) )  s ds K  . 

Because hypothesis (H) guarantees that 
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Note that from (8) the optimal steady state satisfies
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, therefore it is locally asymptotically stable. 

D. The need for control 

Fig. 2 depicts the three-dimensional trajectories of the 

system dynamics under constant dilution rate and in 

particular for the optimal value of the dilution rate opt

sD

calculated in the previous subsection. Fig. 3 is a projection 

of the three-dimensional phase portrait on the x s  plane. 

For this value of the dilution rate, the system has two non-

trivial steady states; one is the optimal steady state (marked 

with green dot), which is stable, and the other one is an 

unstable steady state (marked with red dot): 

  0.107 / , 0.386 / , 0.128 /  unstable unstable unstable

s s sx g L s g L P g L  

There is also a trivial steady state corresponding to washout 

of the biomass  / / /

00, 3 / , 0   w o w o w o

s s sx s S g L P , which 

represents a completely undesirable situation. One can 

immediately observe that the washout steady state is stable 

and has a large region of attraction that extends up to the 

vicinity  of  the  stable  optimal  steady  state.  This  makes  the  

 

 
 

Figure 2.  Three-dimensional phase portrait of the open loop system under 

constant dilution rate. With green dot is the stable design steady state. With 
red dot is the unstable steady state. 

 

 

Figure 3.  Phase portrait of the open loop system in x s plane. With green 

dot is the stable design steady state. With red dot is the unstable steady 
state. 

operation of the chemostat at the optimal steady state 

conditions very sensitive to disturbances. 

The goal of the proposed nonlinear controller is the 

stabilization of the system in the sense of enlargement of the 

stability region. 

 

III. CONSTANT-YIELD CONTROL POLICY 

The intuitive concept of constant yield control [14] has 

been motivated by anaerobic digestion applications, based 

on the intuitive idea that the controller must try to keep 

 
biogas production rate

= constant
organic substrate feed rate

 

When this intuitive idea is applied to a bioreactor in the 

absence of biomass decay or endogenous metabolism

 0, 0 dK m , it leads to a proportional control law in the 

biogas production rate that has very attractive theoretical 

properties.  In particular, it was shown that it leads to global 

asymptotic stability of the resulting closed loop system 

unstable
stable
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[4,5], with robustness with respect to bounded errors in 
0S

[8].  In what follows, we will generalize the concept of 

constant yield control in the presence of death rate of the 

biomass 0dK and/or consumption of the substrate for 

endogenous metabolism 0m , which will lead to a similar 

control law, proportional to the reaction rate. 

Consider the dynamic system (1). Requesting that the 

control law must keep 

 
ProductionRate

constant
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and equal to its value at design conditions, leads to 
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from which, solving for the dilution rate, leads to the 

following control law: 
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The superscript “des”, wherever it is used, denotes design 

steady state conditions; these can be arbitrary, even though 

the most meaningful is the optimal steady state calculated in 

section II-B. 

It is important to observe at this point that control law (9): 

i. is a nonlinear state feedback law, proportional 

to the production rate ( )pY s x ; 

ii. depends only on the states x and s  but not on P . 

 

IV. PROPERTIES OF THE CONSTANT-YIELD CONTROLLER 

A. The closed-loop system under constant-yield control 

Consider the dynamic system (1) under the control law (9). 

The resulting closed-loop system is 
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for which 
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is a steady state (the design  steady state). Note, however, 

that (10) may have an additional positive steady state. In 

particular, let 
us  be the solution of the equation 
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with respect to s . 

(For ( )s given by (2a) or (2b), it is easy to see that 

existence, uniqueness and positivity of 
us  is guaranteed.) 
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an additional positive steady state: 
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It is not difficult to see that this additional steady state is 

unstable when the design steady state is chosen to be the 

optimal steady state, and moreover, that  des

su ss . 

B. Estimation of the size of the stability basin 

Consider the closed loop system (10) and notice that it 

possesses the same serial structure as the open-loop system: 

x  and s dynamics, followed by P dynamics. Moreover, 

integrating the differential equation for the P dynamics, 
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is asymptotically stable, with ( ) des
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the entire system is stable. Thus, the development of 

sufficient stability conditions for the closed loop system (10) 

reduces to finding appropriate conditions for the subsystem 

(11). 

 

For this purpose, it is possible to use a quadratic Lyapunov 

function, accounting for the distance from the design steady 

state and prove the following proposition (see [19]): 

 

Proposition: Assume that ( )s is given by (2a) or (2b) and

0m  . Also, assume that
des
ss is chosen to be the optimal 

steady state that corresponds to maximal steady state 

production rate.  Then, the set 
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is contained in the stability basin of (11). 

 

Remark: When both 0dK and 0m , the set I can be 

equivalently represented as 

  *
*

2 ,0, max( )( , ) |     ux s s s sI x s   

This representation is useful since it defines explicit upper 
and lower bounds on the initial substrate concentration that 
guarantee that the system trajectory will asymptotically 
approach the design steady state.

 

V. SIMULATION STUDY 

Numerical simulations of the closed loop system (10) 

were performed with the parameter values given in section 

II-B. Fig. 4 depicts a three-dimensional phase portrait of the 

system. From Fig. 4, it is also clear that there is no unstable 

steady state in the vicinity of the stable steady state. As a 

result, a large region of attraction is obtained. 

Specifically, for the values of the parameters used, the 

unstable steady state is now pushed further towards the 

x P  plane creating a lower limit of the stability region at

0.015 /us g L . This lower limit (green horizontal line) 

along with the unstable steady state (red dot) can be seen in 

Fig. 5, which is a projection of the three-dimensional phase 

portrait of Fig. 4 on the x s  plane.  

A similar graph in the region of very high initial 

concentrations of the substrate reveals that there exists an 

upper limit of the stability region, which corresponds to 

unrealistically  high  substrate  concentrations  in  practice. As 

 

 
Figure 4.  Three-dimensional phase portrait under the nonlinear state 

feedback controller. The green dot marks the design steady state. 

 

 

Figure 5.  Phase portrait of the closed loop system in the x s  plane close 

to the lower threshold of stability. With green line is the stability threshold. 

With red dot is the unstable steady state. With green dot is the stable steady 
state. 

unstable

stable

    
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Figure 6.  Phase portrait of the closed loop system in the x s  plane close 

to the upper threshold of stability. With green line is the stability threshold. 

With green dot is the stable steady state. 

one can see in Fig. 6, there exists a trajectory (green line) 

starting from very high values of the substrate and 

terminating on the s-axis at the point * 8.989 /s g L . 

Note that in the case considered, the closed loop system 

possesses an unstable steady state in addition to the stable 

steady state. If we had a lower value of endogenous 

metabolism rate constant, e.g. 10.015 m d , and the rest of 

the parameters were the same, the closed loop system would 

have only one positive steady state (the design steady state). 

Fig. 7 shows the corresponding phase portrait in the x s  

plane, and for low values of s . We observe that there is still 

a lower limit in the region of stability, despite the non-

existence of an additional positive steady state (in fact, the 

steady state ( , )u us x is now pushed into the second quadrant). 

The stability region is now limited by the trajectory that 

terminates at the point
* 0.011 /s g L  of the s -axis. 

 

 

Figure 7.  Phase portrait of the closed loop system in the x s  plane close 

to the lower threshold of stability for the case of low endogenous 

metabolism. 

The graphs near the upper limit of the stability region are 

similar and are skipped due to space limitations. 
 

VI. CONCLUSION 

In the present study, a nonlinear state feedback control 

law has been developed for the control of chemostats. The 

control law has been derived on the basis of intuitive 

considerations, in particular on the idea of trying to maintain 

constant yield between the feeding rate of the nutrients and 

the rate of production of the product. Even though the 

controller cannot guarantee global stability in closed loop, it 

manages to significantly increase the stability basin of the 

system and thus prevent the washout of the biomass.  
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