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Abstract: This paper makes use of the concept of a finite–time Lyapunov function to derive a non–
conservative small-gain theorem for stability analysis of interconnected discrete–time nonlinear systems.
Firstly, it is shown that the existence of a global finite–time Lyapunov function is equivalent to global
asymptotic stability (GAS) of the overall interconnected system. Secondly, it is indicated that existence
of Lyapunov–type functions for each subsystem, together with a small-gain condition implies GAS of the
interconnected system. Thirdly, the main result of this paper establishes that GAS of the interconnected
system always yields a set of Lyapunov–type functions that satisfy the small-gain condition for a rather
general class of GAS nonlinear systems. A simple example demonstrates the non–conservatism of the
proposed small-gain theorem.
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1. INTRODUCTION

For large–scale systems it is in general quite difficult to prove
global stability properties, such as global asymptotic stability
(GAS). On the other hand, given a Lyapunov function for the
system, then this implies GAS. Loosely speaking, a Lyapunov
function is a positive definite function that is decreasing along
solutions of the system, see Kellett and Teel (2005) for a
detailed discussion in the discrete–time case. When we consider
interconnected systems, the knowledge of Lyapunov functions
for the subsystems yields GAS of the overall system provided
a small-gain condition holds (see e.g. Zames (1966); Jiang
et al. (1994, 1996); Jiang and Wang (2001); Dashkovskiy et al.
(2010)). Especially for large–scale systems this approach is
often used as it allows to split the system into several smaller
subsystems for which Lyapunov functions can be derived. The
small-gain idea is that the system is GAS if an associated
comparison system is GAS (see e.g. Rüffer (2010)).

In this work we focus on small-gain results for discrete–time
systems (see Jiang and Wang (2001, 2002); Jiang et al. (2004,
2008); Liu et al. (2012)). The small-gain approach (even in
the continuous–time case) is quite conservative as it requires
the subsystems to be GAS when considered decoupled from
the other subsystems. To reduce this conservatism, we make
use of the concept of a global finite–time Lyapunov function,
which originates from Aeyels and Peuteman (1998), as a gen-
eral concept for relaxing the Lyapunov conditions for time–
varying systems. This concept essentially requires the Lya-
punov function to decrease along the solutions of the system
after a finite time instant, and not at every time instant. This
relaxation was recently exploited in Gielen and Lazar (2012)
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to derive a non–conservative small-gain theorem for globally
exponentially stable (GES) systems and linear gain functions.

Motivated by the results in Gielen and Lazar (2012), we provide
a more general small-gain theorem, which involves nonlinear
gain functions and applies to GAS systems. The proof of the
theorem is based on a construction of a global finite–time
Lyapunov function for the overall system. This construction
requires the existence of a path which scales the Lyapunov-
type functions of the subsystems and leads to an overall global
finite–time Lyapunov function. Note that the existence of this
path follows from the small-gain condition (see Dashkovskiy
et al. (2010)) and we can compute a path using the algorithm in
Geiselhart and Wirth (2012). We will show that the existence
of a global finite–time Lyapunov function for a system is
equivalent to the system being GAS.

We also state a converse of the relaxed small-gain theorem
under which a GAS system can be considered as the inter-
connection of subsystems that admit suitable Lyapunov–type
functions and satisfy a classical small-gain condition. The con-
verse holds under a reasonable assumption, which allows for a
general class of discrete–time systems, including GES systems,
as considered in Gielen and Lazar (2012).

The outline of the paper is as follows. In Section 2 the required
preliminaries are given. In Section 3 we state the problem and
show the equivalence of GAS with the existence of a global
finite–time Lyapunov function. The relaxed small-gain theorem
and a converse of it are given in Section 4. Here we further
discuss the additional assumption that is required to state the
converse of the relaxed small-gain theorem. In Section 5 we
give a nonlinear example and apply the proposed small-gain
theorem.
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2. PRELIMINARIES

By N we denote the natural numbers and we assume 0 ∈ N. Let
R denote the field of real numbers, R+ the set of nonnegative
real numbers and RN the vector space of real column vectors
of length N ; further RN+ denotes the positive orthant. For any
vector v ∈ RN we denote by [v]i its ith component. Then
RN+ induces a partial order for vectors v, w ∈ RN+ . We denote
v ≥ w : ⇐⇒ [v]i ≥ [w]i and v > w : ⇐⇒ [v]i > [w]i, each
for i = 1, . . . , N . We further denote v 6≥ w :⇐⇒ there exists
an index i ∈ {1, . . . , N} such that [v]i < [w]i.

For xi ∈ Rni , i = 1, . . . , N we use the notation (x1, . . . , xN ) :=
(x>1 , . . . , x

>
N )>. For x ∈ RN we use any p-norm

‖x‖p =

{(∑N
i=1 |[x]i|p

)1/p
for p ∈ [1,∞)

maxi=1,...,N |[x]i| for p =∞
.

To state the stability results we use standard comparison func-
tions. We call a function α : R+ → R+ a function of class
K (denoted by α ∈ K), if it is strictly increasing, continu-
ous, and satisfies α(0) = 0. In particular, if α ∈ K satisfies
lims→∞ α(s) = ∞, it is said to be of class K∞. A continuous
function β : R+ × R+ → R+ is called a function of class
KL (β ∈ KL), if it is of class K in the first argument and
limt→∞ β(s, t) = 0 for any fixed s ∈ R+.

For any two functions α1, α2 : R+ → R+ we write α1 < α2

if α1(s) < α2(s) for all s > 0. A function η : R+ → R+ is
called positive definite, if η(0) = 0 and η(s) > 0 for all s > 0.
By id we denote the identity function id(s) = s for all s ∈ R+,
and by 0 we denote the zero function 0(s) = 0 for all s ∈ R+.
Definition 1. Let γij ∈ K∞ ∪{0}, for i, j ∈ {1, . . . , N}. Then
we define the map Γ⊕ : RN+ → RN+ by

Γ⊕(s) :=

 max {γ11([s]1), . . . , γ1N ([s]N )}
...

max {γN1([s]1), . . . , γNN ([s]N )}

 . (1)

We note that this map is continuous, satisfies Γ⊕(0) = 0 and
is monotone, i.e., for all s1, s2 ∈ RN+ with s1 ≤ s2 we have
Γ⊕(s1) ≤ Γ⊕(s2).
Definition 2. We say that the map Γ⊕ satisfies the small-gain
condition if for all s ∈ RN+\{0}

Γ⊕(s) 6≥ s. (2)
Remark 3. The definition of the map Γ⊕ depends on taking
the maximum of the functions γij . Note that in other set-
tings summation or so-called monotone aggregation functions
(Dashkovskiy et al. (2010)) are used with, in general, other
functions γij .

A function G : RN → RN is called K-bounded, if there exists
a class K-function ω, such that

‖G(x)‖p ≤ ω(‖x‖p)
holds for all x ∈ RN . Note that this implies that G(0) = 0, but
does not necessarily imply continuity of G(·) except at x = 0.

3. PROBLEM STATEMENT

We consider N interconnected systems of the form
xi(k + 1) = gi(x1(k), . . . , xN (k)) ∈ Rni , k ∈ N (3)

with xi(0) ∈ Rni and gi : Rn1 × . . . × RnN → Rni for
i ∈ {1, . . . , N}. Let n =

∑N
i=1 ni, x = (x1, . . . , xN ) ∈ Rn,

and G : Rn → Rn defined by G = (g1, . . . , gN ), then the
overall system is given by

x(k + 1) = G(x(k)), k ∈ N. (4)

Throughout the paper we will use the following assumption.
Assumption 4. The function G(·) in (4) is K-bounded.

Note that Assumption 4 is rather mild, as it does not even
require continuity of the map G(·) (except at x = 0). On
the other hand, any continuous map G : Rn → Rn with
G(0) = 0 isK-bounded. Observe that existing results on small–
gain theory typically assume continuity of the map G(·).

By x(k, ξ) ∈ Rn we denote the solution of system (4) at
instance k ∈ N with initial condition x(0) = ξ ∈ Rn.
Definition 5. The system (4) is called globally asymptotically
stable (GAS) if there exists a KL-function β such that for all
ξ ∈ Rn and all k ∈ N

‖x(k, ξ)‖p ≤ β(‖ξ‖p , k).

As all norms on finite dimensional spaces are equivalent, the
definition of GAS is of course independent of p.
Remark 6. It is known that if for any fixed t ≥ 0 the function
β(·, t) is of class K∞, then the system is even uniformly
globally asymptotically stable (UGAS). Note that for time-
invariant systems every continuous GAS system is UGAS, see
(Jiang and Wang, 2002, Proposition 3.2).
Definition 7. A function W : Rn → R+ is a global Lyapunov
function for system (4) if for some p ∈ [1,∞] it holds that

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖p) ≤W (ξ) ≤ α2(‖ξ‖p),
(ii) there exists a K-function ρ satisfying ρ < id such that for

all ξ ∈ Rn

W (x(1, ξ)) ≤ ρ(W (ξ)).

Remark 8. (i) In many prior works (e.g. Jiang and Wang
(2002)) the definition of a Lyapunov function requires the exis-
tence of a positive definite function α3 such that W (x(1, ξ))−
W (ξ) ≤ −α3(‖ξ‖p) holds for all ξ ∈ Rn. Let us briefly
explain, that this requirement is equivalent to Definition 7. Note
that by following similar steps as in (Lazar, 2006, Theorem
2.3.5) we conclude 0 ≤ W (x(1, ξ)) ≤ W (ξ) − α3(‖ξ‖p) ≤
(id−α3 ◦ α−12 )(W (ξ)) = ρ(W (ξ)) with ρ := (id−α3 ◦ α−12 )
positive definite. We further have 0 ≤ W (x(1, ξ)) ≤ (α2 −
α3)(‖ξ‖p), so α2 ≥ α3 and hence ρ < id. Without loss of
generality we can assume that ρ ∈ K. On the other hand for
given ρ < id we get W (x(1, ξ)) − W (ξ) ≤ −α3(‖ξ‖p) for
α3 := (id−ρ) ◦ α1.

(ii) For the case α1(s) := asλ, α2(s) := bsλ, α3(s) := csλ

for some a, b, c, λ > 0 we obtain W (x(1, ξ)) ≤ ρW (ξ) with
ρ := (1− c

b ) ∈ [0, 1), see (Lazar, 2006, Theorem 2.3.5).

We will now relax the assumptions on the global Lyapunov
function given in Definition 7.
Definition 9. A function W : Rn → R+ is called a global
finite–time Lyapunov function for system (4) if for some p ∈
[1,∞] it holds that

(i) there exist α1, α2 ∈ K∞ such that for all ξ ∈ Rn

α1(‖ξ‖p) ≤W (ξ) ≤ α2(‖ξ‖p),
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(ii) there exists an M ∈ N, M ≥ 1, and a K-function ρ
satisfying ρ < id such that for all ξ ∈ Rn

W (x(M, ξ)) ≤ ρ(W (ξ)).

Remark 10. Here the function W is required to decrease after
M steps, whereas a classical Lyapunov function is required
to decrease at each step. In particular, any global Lyapunov
function is a particular global finite–time Lyapunov function.

The next results show that the existence of a global finite–
time Lyapunov function is sufficient and necessary to conclude
GAS of the underlying system class at least if G(·) in (4) is
continuous.
Proposition 11. If system (4) is GAS then there exists a global
finite–time Lyapunov function.
Remark 12. Any global Lyapunov function as defined in Defi-
nition 7 is a global finite–time Lyapunov function with M = 1.
So with (Jiang and Wang, 2002, Theorem 1) GAS together
with a continuous dynamic map G(·) implies the existence of
a global finite–time Lyapunov function. Note that in Jiang and
Wang (2002) the authors take the Euclidian norm and define
stability with respect to a set A. Since the proof does not
change by taking any arbitrary p-norm this results holds with
A = {0}. See also Nešić et al. (1999) for the case that G(·) is
discontinuous.

We note that that Proposition 11 also holds true for any K-
bounded function G, which is not proved here due to space
limitations.
Theorem 13. The existence of a global finite–time Lyapunov
function for (4) implies that system (4) is GAS.

Proof. Assume that there exists a global finite–time Lyapunov
function W as defined in Definition 9. First note that from the
standing Assumption 4 we conclude that for any j ∈ N

‖x(j, ξ)‖p ≤ ω
j(‖ξ‖p). (5)

Then for any k = lM + j, l ∈ N, j ∈ {0, . . . ,M − 1} we have

‖x(k, ξ)‖p ≤ α
−1
1 (W (x(k, ξ)))

≤ α−11 (W (x(lM, x(j, ξ))))

≤ α−11 ◦ ρl(W (x(j, ξ)))

≤ α−11 ◦ ρl ◦ α2(‖x(j, ξ)‖p)
(5)
≤ α−11 ◦ ρl ◦ α2 ◦ ωj(‖ξ‖p)
≤ max
i∈{0,...,M−1}

α−11 ◦ ρl ◦ α2 ◦ ωi(‖ξ‖p)

≤ max
i∈{0,...,M−1}

α−11 ◦ ρ
k
M −1 ◦ α2 ◦ ωi(‖ξ‖p)

=: β(‖ξ‖p , k).

It is easy to see that β is a KL-function. Then by Definition 5
system (4) is GAS. �

4. MAIN RESULTS

We will now relax the assumption of standard small-gain the-
orems, that the subsystems have to admit Lyapunov functions.
Here we only assume that there exist Lyapunov–type functions
for the subsystems. The first result, Theorem 14, states the
sufficiency to conclude GAS. On the other hand, we state a
converse of this result in Theorem 17. This shows the non–
conservativeness of the proposed small-gain theorem.

Theorem 14. The system (4) is GAS if there exists an M ∈ N,
M ≥ 1, functions Vi : Rni → R+, and γij ∈ K∞ ∪ {0} such
that the following conditions hold.

(i) For all i ∈ {1, . . . , N} there exist α1i, α2i ∈ K∞ such
that for all ξi ∈ Rni it holds

α1i(‖ξi‖p) ≤ Vi(ξi) ≤ α2i(‖ξi‖p). (6)
(ii) For all ξ ∈ Rn it holds V1(x1(M, ξ))

...
VN (xN (M, ξ))

 ≤ Γ⊕


 V1(ξ1)

...
VN (ξN )


 . (7)

(iii) The map Γ⊕ from (1) satisfies the small-gain condi-
tion (2).

Proof. Assume that we have Vi and γij satisfying the hy-
pothesis of the theorem. Then from Theorem 14-(iii) and
(Dashkovskiy et al., 2010, Theorem 5.2-(iii)) it follows that
there exists an Ω-path σ ∈ KN∞, i.e. a function σ : R+ → RN+ ,
for which any component function σi ∈ K∞, i ∈ {1, . . . , N},
and that satisfies

Γ⊕(σ(r)) < σ(r) (8)
for all r > 0. Let in the following i, j, j′ ∈ {1, . . . , N}. Define

W (ξ) := max
i
σ−1i (Vi(ξi)). (9)

We will show that W is a global finite–time Lyapunov function
for the overall system (4). To show this note that 14-(i) implies
W (ξ) ≥ maxi σ

−1
i (α1i(‖ξi‖p)) ≥ α1(‖ξ‖p) with α1 :=

minj σ
−1
j ◦ α1j ◦ 1

N1/p id ∈ K∞. On the other hand we have
W (ξ) ≤ maxi σ

−1
i (α2i(‖ξi‖p)) ≤ α2(‖ξ‖p) with α2 :=

maxi(σ
−1
i ◦α2i) ∈ K∞, which shows the properness (6) of

W . To show the decay of W note that (8) implies
max
i,j

σ−1i ◦ γij ◦ σj(r) < r, ∀r > 0.

Define ρ := maxi,j σ
−1
i ◦ γij ◦ σj , then ρ < id and we have

W (x(M, ξ)) = max
i
σ−1i (Vi(xi(M, ξ)))

(7)
≤ max

i,j
σ−1i ◦ γij(Vj(ξj))

= max
i,j

σ−1i ◦ γij ◦ σj ◦ σ
−1
j (Vj(ξj))

≤ max
i,j,j′

(
σ−1i ◦ γij ◦ σj

)
◦
(
σ−1j′ (Vj′(ξj′))

)
= ρ(W (ξ)).

This shows that W is a global finite–time Lyapunov function.
Then from Theorem 13 we conclude that system (4) is GAS. �
Remark 15. In the case that M = 1, the proof shows that W
defined in (9) is a global Lyapunov function. ForM > 1 this is,
in general, false.

The converse of Theorem 14, i.e. the existence of particular
functions Vi and γij , holds under an appropriate assumption,
which we will state now, and which we will discuss in the
remainder of this section.
Assumption 16. System (4) admits a global Lyapunov function
W that satisfies for some M ∈ N, M ≥ 1 and all s > 0

ρM (s) < α1 ◦ 1
N1/p id ◦α−12 (s), (10)

where α1, α2, ρ are related to W as defined in Definition 7.

Note that p comes from the norm ‖·‖p and for the case p = ∞
we define 1

N1/∞ = 1. Under this assumption we prove the
converse of Theorem 14.
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Theorem 17. If the system (4) is GAS and satisfies Assump-
tion 16, then there exist functions Vi : Rni → R+ and
γij ∈ K∞ ∪ {0} such that the following holds.

(i) For all i ∈ {1, . . . , N} there exist α1i, α2i ∈ K∞ such
that for all ξi ∈ Rni , (6) holds.

(ii) For all ξ ∈ Rn and each M ∈ N, M ≥ 1 satisfying (10) it
holds (7).

(iii) The map Γ⊕ from (1) satisfies the small-gain condi-
tion (2).

Proof. Since the system (4) is GAS there exists a global Lya-
punov function W as defined in Definition 7. From Defini-
tion 7-(ii) we get by iteration

W (x(k, ξ)) ≤ ρk(W (ξ)). (11)
Take any η ∈ K∞ and define

Vi(ξi) := η(‖ξi‖p) (12)

for i ∈ {1, . . . , N}. Then Theorem 17-(i) holds for α1i =
α2i = η for all i ∈ {1, . . . , N}. Let M ∈ N satisfy (10). Then
Vi(xi(M, ξ)) = η(‖xi(M, ξ)‖p)

≤ η(‖x(M, ξ)‖p)
≤ η ◦ α−11 (W (x(M, ξ)))
(11)
≤ η ◦ α−11 ◦ ρM (W (ξ))

≤ η ◦ α−11 ◦ ρM ◦ α2(‖ξ‖p)
(13)
≤ max

j
η ◦ α−11 ◦ ρM ◦ α2(N1/p ‖ξj‖p)

≤ max
j
η◦α−11 ◦ρM ◦α2◦N1/pid◦η−1(Vj(ξj)),

where we used
‖ξ‖p ≤ max

j
N1/p ‖ξj‖p . (13)

By (10) we obtain

γ := η ◦ α−11 ◦ ρM ◦ α2 ◦N1/p id︸ ︷︷ ︸
<id

◦η−1 < id .

Let γij := γ, for i, j ∈ {1, . . . , N}, then Vi(xi(M, ξ)) <
maxj γij(Vj(ξj)) holds for all i ∈ {1, . . . , N}, which shows
Theorem 17-(ii) and from γij < id we conclude that Theo-
rem 17-(iii) holds. This concludes the proof. �
Remark 18. The number M ∈ N in Theorem 14 and 17
depends on the systems dynamics (4) and, of course, on the
functions Vi and γij . General small-gain theorems as e.g. Jiang
et al. (2004, 2008); Liu et al. (2012) are similar to Theorem 14,
where typically condition (7) is assumed to be satisfied for
M = 1. It is known that this approach is conservative, and
hence, might fail. The purpose of Theorem 17 is to reduce
the conservativeness of current small-gain theory. This goal is
attained, however, at the price of finding a suitable M , which
might be a difficult problem in itself. Nevertheless, since the
only constraint on M is that it is large enough, the developed
results hold the promise of delivering applicable ISS conditions,
as also demonstrated by the example provided in Section 5.

We will now consider different settings under which Assump-
tion 16 is satisfied. The proofs can be found in the appendix.
Let us start with the case where (10) in Assumption 16 does not
have to be satisfied for all s > 0.
Theorem 19. Let system (4) be GAS and assume that there
exists a global Lyapunov function W for system (4) with
α1, α2, ρ satisfying Definition 7. Then the following holds.

(i) For any compact set Y ⊂ RN with 0 6∈ Y, there exists an
M ∈ N, M ≥ 1 such that (10) holds for any ‖s‖p with s ∈ Y.
(ii) If, additionally, α1, α2, ρ are continuously differentiable
and satisfy ρ′(0) < 1 and (α1 ◦ α−12 )′(0) > 0, then for any
compact set Y ⊂ RN with 0 ∈ Y, there exists an M ∈ N,
M ≥ 1 such that (10) holds for any ‖s‖p with s ∈ Y.

Note that it is not restriction to assume α1, α2, ρ to be continu-
ously differentiable (see Malisoff and Mazenc (2005)).

Theorems 17 and 19-(i) imply, that under the assumption that
system (4) admits a global Lyapunov function W , there exists
an M ∈ N, M ≥ 1, Lyapunov–type functions Vi : Yi ⊂
Rni → R+ and γij ∈ K∞ ∪ {0} satisfying the conditions
of Theorem 17-(i)-(ii) for ξi ∈ Yi, and Theorem 17-(iii) for all
s > 0, where s ∈ {‖y‖p : y ∈ Y = Y1 × . . . × YN}. This
may be used to show that the construction (12) can at least be
used to obtain a finite–time Lyapunov function (similar to (9))
that can guarantee semi-global practical asymptotic stability of
system (4).

We now briefly explain why the assumption on the derivatives
in Theorem 19-(ii) is reasonable. Assume that system (4) admits
a global Lyapunov function W for which the bounds in Theo-
rem 19-(ii) are satisfied. If we fix η ∈ K∞ and Vi given by (12)
then for any M ∈ N large enough we have that Theorem 17-
(iii) holds for all s ∈ [0, s̄], s̄ := maxy∈Y ‖y‖p. Again, this
can now be used to obtain a finite–time Lyapunov function that
guarantees semi-global asymptotic stability of system (4).

Note that the bounds on the derivatives are satisfied if the equi-
librium point 0 is locally exponentially convergent (i.e. there
exists a local Lyapunov function with exponential bounds), see
also Theorem 20–(i).

Theorem 19 only considers the case, where (10) is satisfied on a
compact subset of R+. The next theorem states particular cases,
where (10) is globally satisfied so that Assumption 16 holds
globally.
Theorem 20. Let system (4) be GAS and assume that there ex-
ists a global Lyapunov functionW for system (4) with α1, α2, ρ
satisfying Definition 7. If one of the following conditions holds,
then Assumption 16 is globally satisfied.

(i) α1(s) = asλ, α2(s) = bsλ, α3(s) = csλ holds for some
a, b, c, λ > 0.

(ii) ρ′(0) < 1, (α1 ◦ α−12 )′(0) > 0 and ρ ∈ K\K∞.
(iii) ρ′(0) < 1, (α1 ◦ α−12 )′(0) > 0, lim infs→∞ (α1)

′
(s) ∈

(0,∞), lim infs→∞
(
α−12

)′
(s) ∈ (0,∞) and

lim sups→∞ ρ′(s) ∈ (0, 1).
Remark 21. The assumption on the functions α1, α2, α3 in
Theorem 20-(i) implies that system (4) is even globally expo-
nentially stable (GES). Combining Theorems 14, 17 and 19-
(i) we partially recover (Gielen and Lazar, 2012, Theorem 4).
Additionally, the functions γij in Theorem 17 can be chosen to
be linear.
Remark 22. The bound on the derivative in Theorem 19-(ii)
ensures that system (4) is semi-globally asymptotically stable
instead of semi-globally practically asymptotically stable. To
ensure global stability, Theorem 20-(ii)-(iii) proposes two con-
ditions.
(i) Theorem 20-(ii) indicates that there exists a compact set
U containing 0 such that the system dynamic maps any point
ξ ∈ Rn in one step into U .

Copyright © 2013 IFAC 29



(ii) Theorem 20-(iii) considers the case where for large s >
0, α1 and α2 are bounded from below and above by affine
functions, and ρ is bounded from above by an affine function
with slope less than one.

5. ILLUSTRATIVE EXAMPLE

Consider the nonlinear system

x1(k + 1) = x1(k)− 0.3x2(k)

x2(k + 1) = x1(k) + 0.3
x22(k)

1 + x22(k)
.

(14)

We want to show that this system is GAS. Since in practice
finding a suitable global Lyapunov function is quite hard,
we are trying to find a suitable global finite–time Lyapunov
function. Therefore, we want to split the system into two
subsystems. Note that the first subsystem decoupled from the
second subsystem is globally stable, but not GAS. So we cannot
find a Lyapunov function for this subsystem. At this point
standard small-gain theorems would fail, as they consider the
subsystems to be at least GAS when decoupled from the other
subsystems.

If we assume that Assumption 16 is satisfied, then we note
from the proof of Theorem 17 that we can take any K∞-
function η and define Vi(ξi) := η(|ξi|). Then we can find, in
a straightforward manner, an M ∈ N, M ≥ 1 and functions
γij ∈ K∞ ∪ {0} such that Theorem 17–(i)-(iii) is satisfied.
By implication, this leads to a global finite–time Lyapunov
function for the overall system, which implies GAS.

So let us start with Vi(ξi) := |ξi|, i = 1, 2. Then we compute
for all ξ ∈ R2

V1(x1(1, ξ))= |ξ1 − 0.3ξ2| ≤ max {2V1(ξ1), 0.6V2(ξ2)} ,

V2(x2(1, ξ))= |ξ1+0.3
ξ22

1+ξ22
| ≤ max

{
2V1(ξ1), 0.6

V 2
2 (ξ2)

1+V 2
2 (ξ2)

}
.

Since γ11(s) = 2s, the small-gain condition is violated and
we cannot conclude stability. This is also clear from the above
observation that the first subsystem decoupled from the second
subsystem is not GAS. Computing solutions x(k, ξ) we see that
for k = 3 we obtain (15).

Note that for all x ∈ R, we have x2

1+x2 ≤ |x|2 . Then

V1(x1(3, ξ)) ≤ 0.4|ξ1|+ 0.21|ξ2|+ 0.09
2 |ξ2|+

0.09
2

(
|ξ1|+ 0.3

2 |ξ2|
)

= max{0.89V1(ξ1), 0.5235V2(ξ2)},
V2(x2(3, ξ)) ≤ 0.7|ξ1|+ 0.3|ξ2|+ 0.09

2 |ξ2|+
0.3
2

(
|ξ1|+ 0.3|ξ2|+ 0.3

2 (|ξ1|+ 0.3
2 |ξ2|)

)
= max{1.745V1(ξ1), 0.78675V2(ξ2)}.

From that we derive the linear functions
γ11(s) = 0.89s, γ21(s) = 1.745s,

γ12(s) = 0.5235s, γ22(s) = 0.78675s.

Since γ11 < id, γ22 < id and γ12 ◦γ21 < id, we conclude from
the cycle condition (Dashkovskiy et al., 2007, Sec. 4.3) that the
small-gain condition (2) is satisfied. From Theorem 14 we can
now conclude GAS of the overall system (14).
Remark 23. Theorem 14 proves the GAS property for the in-
terconnected system (4) by constructing a finite–time global
Lyapunov function. Note that this procedure is straightforward

as it can be seen by means of this example. To do this we use the
method proposed in Geiselhart and Wirth (2012) to compute an
Ω-path σ(r) := (0.5r, 0.9r) that satisfies

Γ⊕(σ(r)) =

(
0.47115r
0.8725r

)
<

(
0.5r
0.9r

)
= σ(r)

for all r > 0. From the proof of Theorem 14 we can now con-
clude that W (ξ) := maxi σ

−1
i (Vi(ξi)) = max{2|ξ1|, 109 |ξ2|}

is a global finite–time Lyapunov function for the overall sys-
tem (14).

6. CONCLUSIONS

The existence of global finite–time Lyapunov functions, which
decrease after a finite time, as a relaxation of common global
Lyapunov functions, were shown to be equivalent to the sys-
tem being GAS. This fact was then used to provide a non–
conservative general small-gain theorem that generalizes re-
cent small-gain theorems. A converse theorem, that states
the existence of suitable Lyapunov–type and gain functions,
is stated and the used assumption is discussed and shown
to hold for a rather general class of systems. An example
demonstrated the straightforward application and emphasized
the non–conservativeness of the proposed approach.
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Appendix A. PROOF OF THEOREM 19

(i) Since ρ < id, there exists for any t, τ > 0 a minimalM ∈ N
such that ρM (t) < τ . Define η := α1 ◦ 1

N1/p id ◦α−12 and for
any s ∈ Y

M(s) := min{M ∈ N : ρM (‖s‖p) < η(‖s‖p)}.
Let M̄ := sup {M(s) : s ∈ Y} . We have to show that M̄ <
∞. So assume to the contrary that M̄ = ∞. Then there exists
a sequence {sl}l∈N ⊂ Y such that {M(sl)}l∈N → ∞ for
l → ∞. Since Y ⊂ Rn is compact, we can without loss
of generality assume that the sequence {sl}l∈N is convergent
to a point S ∈ Y, else take a convergent subsequence. But
this means that in any open neighborhood U around S there
exist infinitely many si ∈ U with M(si) pairwise distinct. On
the other hand M(S) is well defined, and, by continuity, there
exists an open neighborhood Ũ around S with M(s̃) ≤ M(S)

for all s̃ ∈ Ũ . But this contradicts the unboundedness of the
sequence {M(si)}, where s̃i ∈ U ⊂ Ũ . So M̄ <∞.
(ii) From the proof of part (i) of the theorem, it remains to
show that there exists an ε > 0 and an M ∈ N such that for
all s ∈ Y with ‖s‖p ∈ [0, ε) it holds ρM (‖s‖p) < η(‖s‖p).
Since ρ′(0) < 1 there exists a c1 < 1 such that ρ(t) < ct
for all t ∈ [0, ε) and ε > 0 sufficiently small, and since
(α1 ◦ α−12 )′(0) > 0 there exists a c2 > 0 such that α1 ◦

1
N1/p id ◦α−12 (t) > c2t for all t ∈ [0, ε). Pick any M ∈ N
such that cM1 < c2 then

ρM (t) < cM1 t < c2t < α1 ◦ 1
N1/p id ◦α−12 (t)

for all t ∈ [0, ε), which concludes the proof. �

Appendix B. PROOF OF THEOREM 20

(i) From Remark 8-(ii) we obtain ρ := (1 − c
b ) ∈ [0, 1). Then

(10) is equivalent to ρM < a
N1/pb

, and there always exists an
M ∈ N such that this condition holds.

(ii) From ρ ∈ K\K∞ we conclude that there exists a C > 0
such that ρ(s) ≤ C for all s ∈ R+. Take v := α−11 (C) ∈ R+.
From Theorem 19–(ii) there exists an M ∈ N such that (10)
holds for all s ∈ [0, α2(N1/pv)]. Then for all s > α2(N1/pv),

ρM (s) < ρ(s) ≤ C = α1

(
1

N1/p id ◦α−12 ◦ α2 ◦N1/p id
)

(v)

< α1 ◦ 1
N1/p id ◦α−12 (s).

This shows that (10) holds for all s ∈ R+.

(iii) Define c1 := lim infs→∞ (α1)
′
(s) > 0, c2 :=

lim infs→∞
(
α−12

)′
(s) > 0 and c3 := lim sups→∞ ρ′(s) ∈

(0, 1). By assumption there exists a ŝ1 > 0 suitably large and
constants K1,K2,K3 ∈ R such that for all s ≥ ŝ we have

α1(s) > c1s+K1 (B.1)

α−12 (s) > c2s+K2 (B.2)
ρ(s) < c3s+K3. (B.3)

From equations (B.1) and (B.2) we conclude for s ≥ ŝ1, and ŝ1
suitably large

α1 ◦
1

N1/p
id ◦α−12 (s) >

c1c2
N1/p

s+

(
c1K2

N1/p
+K1

)
. (B.4)

From ρ < id and (B.3) we conclude for s ≥ ŝ1 and ŝ1 suitably
large that

ρk(s) < ck3s+K3

k−1∑
j=0

cj3 < ck3s+K3

∞∑
j=0

cj3 < ck3s+
K3

1− c3
(B.5)

by evaluating the geometric series. Take M1 ∈ N such that
cM1
3 < c1c2

N1/p and define ŝ2 := K3/(1−c3)−K2c1/N
1/p−K1

c1c2/N1/p−cM1
3

. Then

this implies for all s > ŝ2

cM1
3 s+

K3

1− c3
<

c1c2
N1/p

s+

(
c1K2

N1/p
+K1

)
. (B.6)

Altogether we conclude for all s > ŝ := max{ŝ1, ŝ2}

ρM1(s)
(B.5)
< cM1

3 s+
K3

1− c3
(B.6)
<

c1c2
N1/p

s+
c1
N1/p

K2 +K1

(B.4)
< α1 ◦

1

N1/p
id ◦α−12 (s). (B.7)

From Theorem 19–(ii) we conclude that there exists an M2 ∈
N such that (10) holds for all s ∈ [0, ŝ]. Take M :=
max{M1,M2}, then (10) holds on [0, ŝ], since ρM ≤ ρM2 .
And (10) holds for all s ≥ ŝ since ρM ≤ ρM1 and (B.7). �
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