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Abstract: We show how a particular spatial structure with a buffer globally stabilizes the
chemostat dynamics with non-monotonic response function, while this is not possible with single,
serial or parallel chemostats of the same total volume and input flow. We give a characterization
of the set of such configurations that satisfy this property, as well as the configuration that
ensures the best nutrient conversion. Furthermore, we characterize the minimal buffer volume
to be added to a single chemostat for obtaining the global stability. These results are illustrated
with the Haldane kinetic function.
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1. INTRODUCTION

The mathematical model of the chemostat has been ex-
tensively studied in the literature (see e.g. [21]). However,
in many applications, the assumption of perfectly mixed
chemostats has to be relaxed. In the eighties, the gradostat
has been proposed to represent spatial gradient [10], and
has led to several mathematical studies [23, 18, 20, 4]. An
interest for series of bioreactors appeared in biochemical
industry, with tanks of possibly different volumes to be
optimized [11, 8, 7]. Relatively few studies have considered
non-serial interconnections of chemostats [19]. In natural
reservoirs such as in undergrounds or ground-waters, a
spatial structure with interconnections between several
volumes is often considered, each of them being approxi-
mated as perfectly mixed. Those interconnections can be
parallel, series or built up in more complex networks. To
our knowledge, the influence of the topology of a network
of chemostats on the overall dynamics has been sparsely
investigated in the literature. However, the simple consid-
eration of two different habitats can lead to non-intuitive
behaviors [22, 12, 16, 9] and influence significantly the
overall performances [13, 5].
It happens also that microbial growth can be inhibited by
large concentrations of nutrient [1] and lead to instability
in the chemostat [2, 21]. Several control strategies of the
input flow have been proposed in the literature to globally
stabilize such systems [3, 6, 15, 17] but the ability of a
spatial structure to passively stabilize such dynamics has
not been yet studied. This is the matter of the present
work. Because of lack of place and technicalities, the proofs
are not given but are all available in a research report [14].

⋆ This work has been achieved within the French VITELBIO (VIR-
tual TELluric BIOreactors) research program, supported by INRA
and INRIA.

2. THE BUFFERED CONNECTION

We consider the chemostat model with a single tank of
volume V and input flow Q, where S and X denote the
substrate and biomass concentration, respectively:

Ṡ = −µ(S)X +
Q

V
(Sin − S) ,

Ẋ = µ(S)X −
Q

V
X ,

(1)

Without loss of generality, we shall keep Q/V = 1. We
assume that the growth function µ(·) present an inhibition:

Assumption A1. The function µ(·) is C∞([0,+∞)) and
such that µ(0) = 0, µ(S) > 0 for any S > 0. Moreover

there exists a number Ŝ > 0 such that µ is increasing on
(0, Ŝ) and decreasing on (Ŝ,+∞).

Classically, we consider the set Λ = {S > 0 | µ(S) > 1} =
(λ−, λ+). We assume to be in the bi-stable case, that is:
there exists two stable equilibria: the (undesired) wash-out
and a (desired) positive one:

Assumption A2. λ− < λ+ < Sin.

We consider spatial configurations with the same total
volume V and input flow Q. Under Assumption A2, one
can check that having a volume V split in several smaller
volumes Vi interconnected in series or in parallel leads
necessarily to a global dynamics with bi-stability or the
wash-out as the only equilibrium in at least one of the
tanks. In the present work, we study a particular spatial
configuration of two tanks, one of them serving as a buffer
(see Figure 1) The dynamical equations of this system are
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Fig. 1. The buffered chemostat.

Ṡ1 = −µ(S1)X1 +
Q1Sin +Q2S2 −QS1

V1
,

Ẋ1 = µ(S1)X1 +
Q2X2 −QX1

V1
,

Ṡ2 = −µ(S2)X2 +
Q2Sin −Q2S2

V2
,

Ẋ2 = µ(S2)X2 −
Q2X2

V2
.

(2)

with V = V1 + V2 and Q = Q1 +Q2. We describe the set
of all such configurations by two parameters r ∈ (0, 1) and
α > 0, defined as follows:

r =
V1
V
, α =

Q2

(1− r)Q
.

Notice that r = 0 corresponds to a “by-pass” of the volume
V , a limiting case already considered in [7].

3. STUDY OF EQUILIBRIA

One can easily see that the equilibria (S⋆
1 , X

⋆
1 , S

⋆
2 , X

⋆
2 ) of

(2) are solutions of the system of equations:

1 +
1− r

r

(

1− α
Sin − S⋆

2

Sin − S⋆
1

)

= µ(S⋆
1 ) or S

⋆
1 = Sin ,

X⋆
1 = Sin − S⋆

1 ,

µ(S⋆
2 ) = α or S⋆

2 = Sin ,

X⋆
2 = Sin − S⋆

2 .

Due to the cascade structure of the model (2), the study
of the dynamics of the second reactor can be done inde-
pendently of the first one. Under Assumptions A1 and A2,
one can straightforwardly check that
- there exists an unique positive equilibrium (S⋆

2 , X
⋆
2 )

in the second tank exactly when α belongs to the set
(0, µ(Sin)]. Let us then denote S⋆

2 (α) the unique solution
of µ(S2) = α in (0, Sin).
- for any fixed α ∈ (0), µ(Sin)], a positive equilibrium
(S⋆

1 , X
⋆
1 ) has to fulfill

φα,r(S
⋆
1 ) = µ(S⋆

1 )

where the function φα,r(·) is defined as follows:

φα,r(s) = 1 +
1− r

r

(

1− α
Sin − S⋆

2(α)

Sin − s

)

that is to claim that S⋆
1 is the abscissa of an intersection

of the graph of µ(·) with the hyperbola Hα,r, graph of the
function φα,r(·). We define then the family of sets

R(α) = {r ∈ (0, 1) | ∃!s ∈ (0, Sin) s.t. φα,r(s) = µ(s)}

parametrized by α ∈ (0, µ(Sin)], so that the set C of pairs
(α, r) such that dynamics (2) admits an unique positive
equilibrium is given by

C = {(α, r) |α ∈ (0, µ(Sin)], r ∈ R(α)} . (3)

For convenience, we shall consider the set of s at which
the hyperbola Hα,r is tangent to the graph of the function
µ(·) and is locally on one side:

Sα,r={s ∈ (λ−, Sin) s.t. 0 is a local ext. of φα,r − µ at s}

and define the number

S(α) = αS⋆
2 (α) + (1− α)Sin . (4)

Let also define the subsets:
R−(α) = {r | ∃s ∈ Sα,r s.t. (s− S(α))(λ+ − S(α)) < 0} ,

R+(α) = {r | ∃s ∈ Sα,r s.t. (s− λ+)(λ+ − S(α)) ≥ 0} .

We state now our main result about the multiplicity of
equilibria of dynamics (2):

Proposition 1. Assume that A1 and A2 are fulfilled. For
any α ∈ (0, µ(Sin)] and r ∈ (0, 1) the dynamics (2) admits
a positive equilibrium with S⋆

1 such that

(S(α) − S⋆
1)(λ+ − S(α)) ≥ 0 . (5)

The set R+(α) is non empty, and the set R−(α) is not
reduced to a singleton when it is not empty. One has

R(α)=

∣

∣

∣

∣

∣

∣

∣

(0,minR+(α)) when R−(α) = ∅ ,

(0,minR+(α)) ∩ (0, 1) \ [minR−(α),maxR−(α)]
when R−(α) 6= ∅ .

Furthermore, one has the following properties

- For any r ∈ (minR+(α), 1), there exists at least two
equilibria such that (S(α)−S⋆

1 )(λ+ −S(α)) ≥ 0, and
at least four for r in a subset of (minR+(α), 1) when
R+(α) is not reduced to a singleton.

- When R−(α) is non empty, for any r in the interval
(minR−(α),maxR−(α)), there exists at least three
equilibria such that (S(α) − S⋆

1)(λ+ − S(α)) < 0.

Proof. See [14] for the complete proof. One can first check
that the equality φα,r(S(α)) = 1 is fulfilled whatever is
r. Therefore, we distinguish two cases depending on the
relative position of S(α) w.r.t. λ+. The proof consists
in giving conditions for the hyperbola Hα,r to intersect
in only one point the graph of the function µ(·). The
limiting cases correspond to tangent intersections, with
abscissa less or greater than λ+ (see Figures 2 and 3 as
illustrations).

For each α ∈ (0, µ(Sin)], we define the number

r̄(α) = supR(α) .

Remark 2. According to Proposition 1, for any α and r
such that r ∈ R(α), one can define uniquely a number
S⋆
1 (α, r) ∈ (0, Sin) such that

φα,r(S
⋆
1 (α, r)) = µ(S⋆

1 (α, r)) .

The map (α, r) 7→ S⋆
1 (α, r) is clearly continuous and one

can then consider the limiting map:

S̄⋆
1 (α) = lim

r<r̄(α),r→r̄(α)
S⋆
1 (α, r) .
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Fig. 2. Family of functions φα,r(·) when S(α) < λ+.
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Fig. 3. Family of functions φα,r(·) when S(α) > λ+.

Furthermore, accordingly to Proposition 1, one has S̄⋆
1 (α) ≤

λ+ (resp. S̄⋆
1 (α) ≥ λ+) when S(α) < λ+ (resp. S(α) >

λ+). Consider, if it exists, a value of α, denoted by α, that
is such that S(α) = λ+. Although one has φα,r(λ+) =
µ(λ+) for any r, there is no reason to have

lim
α<α,α→α

S̄⋆
1 (α) = λ+ or lim

α>α,α→α
S̄⋆
1 (α) = λ+ .

Consequently, the map α 7→ r̄(α) might be discontinuous
at such point α.

Proposition 3. For any configuration (α, r) ∈ C, any tra-
jectory of the dynamics (2) with X2(0) > 0 converges
exponentially to the steady state E⋆(α, r) in forward time.

Proof. see [14].

4. PERFORMANCE OF THE BUFFERED
CHEMOSTAT

We first aim at characterizing among all the configurations
in the set C the ones that provide the best conversion of
the nutrient at steady state, that is the smallest value of
S⋆
1 (α, r). For convenience, we consider the function

ψ(s) = µ(s)(Sin − s) (6)

and define the number

ψ⋆ = max
s∈[0,s̄]

ψ(s) (7)

where s̄ is defined by

s̄ = lim
α→µ(Sin)

S⋆
2 (α) .

Note that the number s̄ is such that µ(s̄) = µ(Sin) with
s̄ < Sin. Assumptions A1 and A2 provide the uniqueness
of s⋆ realizing the maximum in (7), and one can then define
the number

α⋆ = µ(s⋆) . (8)

Proposition 4. Assume that Hypotheses A1 and A2 are
fulfilled. The best stable configuration consists in choosing
α = α⋆ (or α arbitrarily close to µ(Sin) if α⋆ = µ(Sin))
and

- having a by-pass of the volume V with a flow rate
equal to (1 − α)Q, when ψ⋆ < Sin − λ+. The output
concentration at steady state is then equal (or arbi-
trarily close) to Sin − ψ⋆.

- choosing any value of r ∈ R(α), when ψ⋆ = Sin −
λ+. The output concentration at steady state is then
equal (or arbitrarily close) to λ+.

- taking r smaller and arbitrarily close to r̄(α), when
ψ⋆ > Sin − λ+. The output at steady state is then
arbitrary close to the infimum of S⋆

1 on S (that is
necessarily less than λ+).

Proof. see [14].

Under Assumptions A1 and A2, we study now the benefit
of adding to a single chemostat of volume V a buffer of
volume V2 under a constant total input flow Q = Q1+Q2,
and characterize the minimal value of V2/V to obtain a
global stability of the positive equilibrium.

Similarly, we describe the set of configurations by two non-
negative parameters:

α =
Q2

V2
, β =

V2
V

,

but here one has V1 = V whatever is the volume V2. For
any number α ∈ (0, µ(Sin)], there exists an unique S⋆

2 (α) ∈
(0, s̄) such that µ(S⋆

2 (α)) = α, and consequently there
exists an unique positive equilibrium in the second tank.
The parameter α being fixed, one can straightforwardly
check on equations (2) that a positive equilibrium in the
first tank fulfills

ϕ(S⋆
1 ) = αβ(Sin − S⋆

2 (α)) (9)

where the function ϕ is defined as

ϕ(s) = (Sin − s)(1− µ(s)) .

Consequently, we are looking for the smallest value of β
such that there exists an unique positive solution of (9) on
the interval (0, Sin) (see Figure 4).

Sin

Sin

λ λ

ϕ

+−

m+

0

Fig. 4. Graph of the function ϕ

Proposition 5. Under Assumptions A1 and A2, there ex-
ists a buffered configuration with an additional tank of
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volume V2 that possesses a unique globally exponentially
stable positive equilibrium from any initial condition with
S2(0) > 0, exactly when V2 fulfills the condition

β =
V2
V

>

max
s∈(λ+,Sin)

ϕ(s)

ψ⋆
, (10)

where ψ⋆ is defined in (7), with any α ∈ (0, µ(Sin)] such
that

max
s∈(λ+,Sin)

ϕ(s) < αβ(Sin − S⋆
2 (α)) < Sin .

Proof. see [14].

Remark 6. Section 3 has shown the benefit of the buffered
chemostat in terms of global stability of the system, but
with a price to pay in performances when one imposes to
have the same residence time (i.e. the nutrient concentra-
tion at steady state is larger than λ−). When adding a
buffer, this is no longer true (i.e. the steady state nec-
essarily exhibits a better performance than λ−): there
always exists a solution S⋆

1 ∈ (0, λ−) of (9), that is unique
under conditions of Proposition 5, because ϕ(0) = Sin,
ϕ(λ−) = 0 and αβ(Sin − S⋆

2 ) ∈ (0, Sin).

5. ILLUSTRATION AND DISCUSSION

We illustrate the results of the former sections on an
non-monotonic uptake function given by the Haldane
expression

µ(S) =
µ̄S

K + S + S2/KI

.

One can easily check that for this function the set Λ defined
is non empty exactly when the condition

µ̄ > 1 + 2

√

K

KI

is fulfilled.

Lemma 7. Assume that µ(·) is an Haldane function and
that Assumptions A1 and A2 are fulfilled. For any α ∈
(0, µ(Sin)], the following properties are satisfied.

- the set R+(α) is a singleton,
- for any r ∈ (0, 1), the set Sr,α defined is either empty
or a singleton,

- if the set R−(α) is non empty, then one has
maxR−(α) < R+(α).

Proof. In the case of the Haldane function, the equality
φα,r(s) = µ(s) can be rewritten as

(Sin − s− α(1− r)(Sin − S⋆
2 (α))(K + S + S2/KI)

= rµ̄s(Sin − s) .

So S⋆
1 is the root of a polynomial P of degree three, and

there exists at most three solutions of φα,r(s) = µ(s). We
then deduce from Proposition 1 that R+(α) is a singleton.

Requiring to have φα,r(s) = µ(s) and φ′α,r(s) = µ′(s)
simultaneously implies that s is solution of P = 0 and
P ′(s) = 0 i.e. that s is a double root of P . P being of
degree three, there is a most one such solution. So the

set Sr,α possesses at most one element, and this implies
R−(α) ∩R+(α) = ∅.

When R−(α) is non empty, we know from Proposition
1 that for r ∈ (minR−(α),maxR−(α)), φα,r(s) = µ(s)
has at least three solutions on an interval I, and for
r ∈ (minR+(α), 1) at least two on another interval J ,
where I and J are disjoint. Consequently, one should have
maxR−(α) < minR+(α), otherwise there would exists at
least 5 solutions of φα,r(s) = µ(s) on (0, Sin). q.e.d.

Lemma 7 implies that for any α ∈ (0, µ(Sin)], the number
r̄(α) is the single element of R+(α). It can then be
determined numerically as the unique minimizer of the
function

Fα(r, s) = (µ(s)− φα,r(s))
2
+
(

µ′(s)− φ′α,r(s)
)2

on (0, 1) × {s ∈ (λ−, Sin) s.t. (s − λ+)(λ+ − S(α)) ≥ 0}.
One can also easily check that for the Haldane growth,
the function ψ defined in (6) is increasing up to ψ⋆

and decreasing. Its maximum on the interval (0, Sin) is
achieved for the value

s̄⋆ =

√

K2 +KSin(1 + Sin/KI)−K

1 + Sin/KI

.

Consequently, one has

s⋆ = min(s̄⋆, s̄) ,

that allows to determine the optimal value α⋆ = µ(s⋆).

The parameters given in Table 1 have been chosen for the
numerical simulations. On Figure 5, the domain C defined

µ̄ K KI λ
−

λ+

12 1 0.8 ≃ 0.103 ≃ 0.777

Table 1.

in (3) is drawn for different values of Sin. According

r

Sinµ(    )α

r

α

inS   =1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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1.00

Sin

α
µ(    )

r

r

α

inS   =1.4
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r

inS   =1.8

r

α
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.45

0.50

0.55

0.60

0.65

0.70

Fig. 5. Domains C of stable configurations.

to Remark 2, one can see that the map α 7→ r̄(α) is
discontinuous at α = α, where α is such that s(α) =
λ+ (when it exists). On Figure 6 one can see that the
two limiting hyperbolas Hα,r̄(α) about α are different
for such a case. Our study has revealed the role of the
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Fig. 6. The limiting hyperbolas Hα,r̄(α) about α = α.

input concentration Sin on the shape of the domain C.
So we have computed numerically the best configurations
(α⋆, r⋆) given by Proposition 4 as functions of Sin, as
well as the corresponding output concentration S⋆

1 (see
Figure 7). The map Sin 7→ α⋆ given by (7) and (8) being

λ+
Sin

1

α∗

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8
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Sin
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1 r*

by−pass
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0.0
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0.2

0.3

0.4
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0.7

0.8
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λ+

λ+
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Sin

1S*
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0.0
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0.8

1.0

1.2

Fig. 7. α⋆, r⋆ and S⋆
1 as functions of Sin.

continuous, the discontinuity of the map α 7→ r̄(α) leads
to a discontinuity of the map Sin 7→ S⋆

1 . Consequently,
there exists a threshold of Sin such that

- below the threshold, the optimal buffered chemostat
provides global stability, with performance close to
the single chemostat i.e. S⋆

1 is close to λ−;

- above the threshold, the optimal stable configuration
consists in a by-pass of the single chemostat without
any buffer. The performance is significantly modified
as S⋆

1 is larger than λ+.

According to Propositions 1 and 4, this threshold corre-
sponds to a value of Sin such that S⋆(α⋆) = λ+, where S is
defined in (4). For values of Sin smaller than this threshold,
the output concentration at steady state S⋆

1 of the best
configuration is thus bounded by the one computed for the
limiting case when Sin get arbitrary close to the threshold
The values of Sin and S⋆

1 obtained at the threshold are
given in Table 2. One can see on this example that the

Sin α⋆ r⋆ S⋆

1

≃ 1.641 ≃ 0.543 ≃ 0.561 ≃ 0.167

Table 2.

buffered chemostat allows a global stability for any value
of Sin in the interval [0.777, 1.641] with an output at steady
state less than 0.167, to be compared with the value 0.103

of the locally stable equilibrium of the single chemostat
(see also Figure 7).

In industrial applications, the attraction of the wash-out
equilibrium is undesired because it presents a risk that
may ruin the culture in case of disturbance, temporarily
pump breakdown or presence of toxic material that could
drive the state in the attracting basin of the wash-out
equilibrium. It imposes also to ensure that initial condition
belongs to the attracting basin of the desired equilibrium.
A common technique to overcome theses difficulties and al-
low an initial stage with a small concentration of biomass,
is to control the input flow rate Q with a stabilizing
feedback [3, 17] (it consists in finding a feedback law that
reduces the flow rate when the state belongs to the attract-
ing basin of the wash-out equilibrium). But this solution
requires an upstream storage and an actuator. The design
of a buffered chemostat is thus an alternative that does
not require any upstream storage nor feedback control. In
real world applications, it may happen that the growth
function µ(·) is not perfectly known or uncertain. Then
choosing a buffered configuration not too close from the
boundary of the domain C provides a robustness margin
for the global stability.

When the characteristics of the input flow cannot be
changed, a simple solution consists in increasing the vol-
ume of the vessel, so that the dilution rate is small enough
to ensure a unique globally asymptotically stable equilib-
rium of the dynamics (1). The relative increment ∆V/V
has then to satisfy the condition

Sin /∈

{

S > 0 | µ(S) >
1

1 + ∆V
V

}

(11)

that is equivalent to have

∆V

V
>

1

µ(Sin)
− 1 . (12)

Note that under Assumptions A1 and A2, this last number
is positive. This solution increases significantly the resi-
dence time in the tank and induces additional financial
costs. Instead of choosing a larger volume V , we show that
adding a buffer can be an interested alternative to improve
the stability of a given bioprocess. For the parameters
given in Table 1, we have compared numerically

- the smallest relative increment of the volume of the
single chemostat to be globally stable, given in (12),

- the smallest relative size of the buffer to be added for
the buffered chemostat to be globally stable, given by
Proposition 5 (that imposes to choose α = α⋆),

as functions of the input concentration Sin (for values
larger than λ+ for which the bi-stability occurs with a
dilution rate equal to one, cf Proposition 1). One can
clearly see on Figure 8 the advantage of the buffered
chemostat that requires less volume augmentation. The
output concentrations are also drawn for both configu-
rations with the minimal volume augmentation. Accord-
ing to Remark 6, these concentrations are always smaller
than λ−. This example demonstrates the flexibility of the
buffered chemostat in the choice of possible configurations,
with two parameters than can be tuned, while the single
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Fig. 8. Comparison of minimal increase of volume, and
output nutrient concentration.

chemostat is penalized with only one parameter, requir-
ing larger increments of volume and providing (too) low
output concentrations.

Finally note that due to the robustness property that is
obtained for the stability in the first tank when using a
buffered chemostat, the presence of biomass at initial time
is necessarily only in the buffer tank (see Proposition 3).
This property possesses some advantages for the practi-
tioners in industrial frameworks for the seeding phase.

6. CONCLUSION

The present work considers non-monotonic response func-
tions with a particular interconnection of two chemostats
of different volumes, one being a buffer tank. To our
knowledge, this spatial structure, that is neither serial nor
parallel, has not yet been considered in the literature. The
idea is to decouple the residence time of microorganisms in
two vessels such that the wash-out equilibrium is repulsive
in both tanks. We prove that this is possible with such
a configuration, while any serial, parallel or single tank
structures with the same total volume exhibits bi-stability.
This result brings new insights in microbial ecology for the
understanding of the role of spatial patterns in the stability
of bio-conversion processes in natural environments, where
natural buffers can occur, such as in soil ecosystems. It has
also potential impact on the design of robust industrial
bio-processes.
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