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Abstract: Dissipativity is an essential concept of systems theory. The paper provides an
extension of dissipativity, named differential dissipativity, by lifting storage functions and supply
rates to the tangent bundle. Differential dissipativity is connected to incremental stability
in the same way as dissipativity is connected to stability. It leads to a natural formulation
of differential passivity when restricting to quadratic supply rates. The paper also shows
that the interconnection of differentially passive systems is differentially passive, and provides
preliminary examples of differentially passive electrical systems.
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1. INTRODUCTION

Dissipativity, Willems (1972a); Willems (1972b), plays a
central role in the analysis of open systems to reduce
the analysis of complex systems to the study of the
interconnection of simpler components. Dissipativity is a
fundamental tool in nonlinear control design Sepulchre
et al. (1997); van der Schaft (1999), widely adopted in
industrial applications. Typical examples are provided by
applications on electro-mechanical devices modeled within
the port-hamiltonian framework, Ortega et al. (2001).
Passivity-based designs conveniently connect the physical
modeling of mechanical and electrical interconnections
and the stability properties required by applications.

In a nonlinear setting, applications like regulation, ob-
server designs, and synchronization call for incremental
notions of stability, Angeli (2000); Angeli (2009). Several
results in the literature propose extensions of passivity
to guarantee connections to incremental properties. For
example, in the theory of equilibrium independent pas-
sivity, Hines et al. (2011); Jayawardhana et al. (2007),
the dissipation inequality refers to pairs of system tra-
jectories, one of which is a fixed point. The incremental
passivity of Desoer and Vidyasagar (1975) and Stan and
Sepulchre (2007) characterizes a passivity property of so-
lutions pairs, through the use of incremental storage func-
tions reminiscent of the notion of incremental Lyapunov
functions of Angeli (2000), and supply rates of the form
Q := ∆yT∆u, for ∆y := y1−y2 and ∆u := u1−u2, where
ui and yi refers to input/output signals.

Incremental passivity is equivalent to passivity for linear
systems. It has been used in nonlinear control for regu-
lation, Pavlov and Marconi (2008), and synchronization
purposes, Stan and Sepulchre (2007). Yet, it requires the
construction of a storage function in the extended space of
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paired solutions, a difficult task in general, and the a priori
formulation of the supply rate based on the difference
between signals, which does not take into account the
possible nonlinearities of the state and external spaces.
A motivation for the present paper partly comes from
the role of incremental properties in ant windup design
of induction motors Sepulchre et al. (2011) and the diffi-
culty to establish those properties in models that integrate
magnetic saturation, see Example 3 in the present paper.

A different approach to the characterization of incremen-
tal properties is provided by contraction, a differential
concept. The theory developed in Lohmiller and Slotine
(1998) recognizes that the infinitesimal approximation of
a system carries information about the behavior of its
solutions set. It provides a variational approach to incre-
mental stability, based on the linearization of the system,
without explicitly constructing the distance measuring the
convergence of solutions towards each other.

Following this basic idea, the present paper proposes a
dissipativity theory based on the infinitesimal variations
of dynamical systems along their solutions. We call it
differential dissipativity because it is classical dissipativ-
ity lifted to the tangent bundle of the system manifold.
In analogy with the classical relation between storage
functions and Lyapunov functions, the proposed notion of
differential storage function for differential dissipativity is
paired to the notion of Finsler-Lyapunov function recently
proposed in Forni and Sepulchre (2012), which plays a role
in connecting differential dissipativity and incremental
stability. The preprint van der Schaft (2013) is an insight-
ful complementary effort in that direction, connecting the
framework to the early concept of prolonged system in
nonlinear control Crouch and van der Schaft (1987).

The are many potential advantages in developing a dif-
ferential version of dissipativity theory. First of all, dif-
ferential dissipativity is equivalent to dissipativity for
linear systems. In the nonlinear setting, the fact that
the infinitesimal approximation of a nonlinear system is
a linear time-varying system opens the way to a char-
acterization of differential passivity - differential dissi-
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pativity with quadratic supply rates - that falls in the
linear setting of Willems (1972b). Moreover, differential
dissipativity provides an input-output characterization of
the dynamical system in the infinitesimal neighborhood of
each trajectory, which leads to state-dependent differential
supply rates. This is of relevance to tailor the dissipativity
property to nonlinear state and external variables spaces.

The content of the paper is developed in analogy with
classical results on dissipativity. The instrumental notion
of displacement dynamical system is provided in Section
2. Differential dissipativity and differential passivity are
formulated in Sections 3 and 4, Examples of differentially
passive electromechanical systems are proposed in Section
5. Conclusion follows. For reasons of space, proofs can
be found in the arXiv version of the paper, Forni and
Sepulchre (2013).

Notation. Given a manifold M, and a point x of M, TxM denotes
the tangent space of M at x. TM :=

⋃

x∈M
{x} × TxM is the

tangent bundle. Given two manifolds M1 and M2 and a mapping

F : M1 → M2. F is of class Ck, k ∈ N, if the function F̂ = ϕ2 ◦
F ◦ ϕ−1

1 : Rd1 → Rd2 is of class Ck, where ϕ1 : Ux ⊂ M1 → Rd1

and ϕ2 : UF (x) ⊂ M2 → Rd2 are smooth charts. The differential of

F at x is denoted by DF (x)[·] : TxM1 → TF (x)M2. A curve γ on
a given manifold M is a mapping γ : I ⊂ R → M. For simplicity

we sometime use γ̇(t) or
dγ(t)
dt

to denote Dγ(t)[1]. Specifically, this
notation is adopted when the variable t in γ refers to time.

In is the identity matrix of dimension n. Given a vector v, vT denotes
the transpose vector of v. Given a matrix M we say that M ≥ 0 or
M ≤ 0 if vTMv ≥ 0 or vTMv ≤ 0, for each v, respectively. Given
the vectors {v1, . . . , vn}, Span({v1, . . . , vn}) := {v | ∃λ1, . . . λn ∈

R s.t. v =
∑n

i=1
λivi}. A locally Lipschitz function α : R≥0 → R≥0

is said to belong to class K if it is strictly increasing and α(0) = 0;
it belongs to class K∞ if, moreover, limr→+∞ α(r) = +∞.

A distance (or metric) d : M × M → R≥0 on a manifold M is a
positive function that satisfies d(x, y) = 0 if and only if x = y, for
each x, y ∈ M and d(x, z) ≤ d(x, y) + d(y, z) for each x, y, z ∈ M.
If d(x, y) = 0 but x 6= y we say that d is a pseudo-metric. A set
S ⊂ M is bounded if supx,y∈S d(x, y) < ∞ for any given distance d
on M. A curve γ : I → M is bounded when its image is bounded.
Given a manifold M, a set of isolated points Ω ⊂ M satisfies: for any
distance function d on M and any given pair x1, x2 in Ω, there exists
an ε > 0 such that d(x1, x2) ≥ ε. Given a function f : Rn → Rm,
the matrix of partial derivatives is denoted as ∂xf(x) (Jacobian).
∂xxf(x) denotes the Hessian of f(x).

2. DISPLACEMENT DYNAMICAL SYSTEMS

Taking inspiration from the dissipativity paper of Willems
(1972a) and from the (state-space) behavioral framework
in Willems (1991), given smooth manifolds M and W ,
a time-invariant dynamical system Σ is represented by
algebraic-differential equations of the form

F (x, ẋ, w) = 0 , (1)

where F : TM × W → Rp, p ∈ N, x ∈ M is the state,
and w collects the external variables. The behavior of Σ is
given by the set of absolutely continuous curves (x,w)(·) :
R → M ×W that satisfy F (x(t), Dx(t)[1], w(t)) = 0 for
(almost) all t ∈ R. Given w = (u, y), u - input, y - output,
and (x, u, y)(·) ∈ Σ, we say that x(·) is a solution to (1)
from the initial condition x(0) ∈ M under the action of
the input u(·).

In what follows we assume that (x,w)(·) ∈ Σ are C2

functions. When the external variables are organized into
input and output variables, i.e. w = (u, y) , we also assume
existence, unicity, and forward completeness of solutions

for each initial condition x0 and input u(·). Note that
under mild regularity assumptions on F , if u(·) ∈ C2,
every (x, u, y)(·) ∈ Σ is a C2 curve, as clarified in Chapter
IV, Section 4, of Boothby (2003).

Under these assumptions, the displacement dynamical
system δΣ induced by Σ is represented by

F (x, ẋ, w) = 0 (2a)

DF (x, ẋ, w)[δx, ˙δx, δw] = 0 , (2b)

and it is given by the set of C1 curves (x, δx, w, δw)(·) :
R → TM× TW that satisfy (2) for each t ∈ R.

Following the interpretation proposed in Lohmiller and
Slotine (1998), given a point (x,w) ∈ M×W , a tangent
vector (δx, δw) ∈ TxM×TwW represents an infinitesimal
variation - or displacement - on (x,w). In this sense δΣ
characterizes the infinitesimal difference between every
two neighborhood solutions, that is, the infinitesimal
variations δx(·) on the solutions x(·) to (1). A graphical
representation of a displacement is proposed in Figure
1. The intuitive notion of infinitesimal variation is made
precise in Remark 1.

xa(·)

xb(·)

x(·)
δx(t)

Fig. 1. The tangent vector δx(t) represents an infinitesimal
variation on x(t).

Remark 1. For each s ∈ [0, 1], consider a (parameterized)
curve (x,w)(·, s) : R → M × W ∈ Σ. We assume that
(x,w)(·, ·) ∈ C2. An infinitesimal variation on (x,w)(·, s)
is given by (δx, δw)(·, s) := (Dx(·, s)[0, 1], Dw(·, s)[0, 1]).
As a matter of fact, (x, δx, w, δw)(·, s) ∈ δΣ for each
s ∈ [0, 1]. In fact, by chain rule 1 ,

0 = DF (x(t, s), ẋ(t, s), w(t, s))[0, 1]

= DF (. . . )[δx(t, s), Dẋ(t, s)[0, 1], δw(t, s)]

= DF (. . . )[δx(t, s), ˙δx(t, s), δw(t, s)]

(3)

where the third identity follows from the fact that x(·, ·)
is a C2 function, by assumption (in local coordinates
∂s∂tx(t, s) = ∂t∂sx(t, s). y

When the manifold M is equipped with a Finsler met-
ric |δx|x (see, for example, Tamássy (2008); Bao et al.
(2000)), the time-evolution of |δx(t)|x(t) along the solu-
tions (x(·), δx(·)) to (2) measures the contraction of the
dynamical system Σ, that is, the tendency of solutions
to converge towards each other. The connection between
the displacement dynamical system δΣ and incremental
stability properties have been exploited in the seminal
paper of Lohmiller and Slotine (1998), and in many other
works, e.g. Lewis (1949); Aghannan and Rouchon (2003);
Pavlov et al. (2004); Wang and Slotine (2005); Fromion
and Scorletti (2005); Pham and Slotine (2007); Russo
et al. (2010). A unifying framework for contraction based
on the extension of Lyapunov theory to the tangent bundle
has been recently proposed in Forni and Sepulchre (2012).

1 The differential in the right-hand side of the first identity refers
to the mapping from R× [0, 1] to Rp. The one in the right-hand side
of the second identity refers to the mapping from TM×W to Rp.
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3. DIFFERENTIALLY DISSIPATIVE SYSTEMS

We develop the theory of differential dissipativity mim-
icking classical dissipativity, Willems (1972a); Sepulchre
et al. (1997); van der Schaft (1999). In analogy to the
intuitive interpretation of a storage function as the energy
of the system, it is convenient to view the differential
storage function S : TM → R≥0 as the infinitesimal
energy associated to the infinitesimal variation δx(·) on
a given solution x(·). This energy can be either increased
or decreased through the supply provided by external
sources, as prescribed by a differential supply rate Q.

Definition 1. Consider a manifold M and a set of isolated
points Ω ⊂ M. For each x ∈ M, consider a subdivision of
TxM into a vertical distribution Vx ⊂ TxM

Vx = Span({v1(x), . . . , vr(x)}), 0 ≤ r < d , (4)

and a horizontal distribution Hx ⊆ TxM complementary
to Vx, i.e. Vx ⊕Hx = TxM, given by

Hx = Span({h1(x), . . . , hq(x)}), 0 < q ≤ d− r (5)

where vi, i ∈ {1, . . . , r}, and hi, i ∈ {1, . . . , q}, are C1

vector fields.

A function S : TM → R≥0 is a differential storage
function for the dynamical system Σ in (1) if there exist
c1, c2 ∈ R≥0, p ∈ R≥1, and K : TM → R≥0 such that

c1 K(x, δx)p ≤ S(x, δx) ≤ c2 K(x, δx)p (6)

for all (x, δx) ∈ TM, where S andK satisfies the following
conditions:

(i) S and K are C1 functions for each x ∈ M and
δx ∈ Hx \ {0};

(ii) S and K satisfy S(x, δx) = S(x, δxh) and K(x, δx) =
K(x, δxh) for each (x, δx) ∈ TM such that (x, δx) =
(x, δxh) + (x, δxv), δxh ∈ Hx, and δxv ∈ Vx.

(iii) K(x, δx) > 0 for each x ∈ M\Ω and δx ∈ Hx \ {0}.
(iv) K(x, λδx) = λS(x, δx) for each λ > 0, x ∈ M, and

δx ∈ Hx;
(v) K(x, δx1 + δx2) < K(x, δx1) + K(x, δx2) for each

x ∈ M \ Ω and δx1, δx2 ∈ Hx \ {0} such that
δx1 6= λδx2 and λ ∈ R (strict convexity). y

Definition 2. A functionQ : M×TW → R is a differential
supply rate for the dynamical system Σ in (1) if

∫ t

0

|Q(x(τ), w(τ), δw(τ)|dτ < ∞ (7)

for each t ≥ 0 and each (x, δx, w, δw)(·) ∈ δΣ. y

The function S provides a non-negative value S(x, δx) to
each δx ∈ TxM. When Vx = ∅, a suggestive notation for
K(x, δx) is |δx|x - a non-symmetric norm on each tangent
space TxM - which immediately connects the differential
storage to the idea of an energy of the displacement δx,
since c1|δx|px ≤ S(x, δx) ≤ c2|δx|px. From Definition 1
it is possible to identify differential storage functions S
and horizontal Finsler-Lyapunov functions V , introduced
in Section VIII of Forni and Sepulchre (2012). There-
fore the existence of a differential storage S endows M
with the structure of a pseudo-metric space, which plays
a central role in connecting differential dissipativity to
incremental stability. Restricting a differential storage to
horizontal distributions is convenient in many situations
where contraction takes place only in certain directions.
For example, let M be the state space and suppose that
the output y ∈ Y is given by y = h(x) where h : M → Y

is a differentiable function. Then, in coordinates, δyT δy
is a possible candidate storage function with horizontal
distribution Hx given by the span of the columns of the
matrix ∂xh(x)

T ∂xh(x). With this storage, the state-space
M becomes a pseudo-metric space, while the output space
Y becomes a metric space. An extended discussion and
examples are provided in Sections IV and VIII of Forni
and Sepulchre (2012). See also Remark 2 in Forni and
Sepulchre (2013).

We can finally provide the definition of differential dis-
sipativity. We emphasize that differential dissipativity is
just dissipativity lifted to the tangent bundle.

Definition 3. The dynamical system Σ in (1) is differen-
tially dissipative with respect to the differential supply
rate Q if there exists a differential storage function S such
that

S(x(t), δx(t))−S(x(0), δx(0)) ≤

∫ t

0

Q(x(τ), w(τ), δw(τ))dτ

(8)
for all t ≥ 0 and all (x, δx, w, δw)(·) ∈ δΣ in (2). When Q
is independent on x, that is, Q : TW → R, we say that Σ
is uniformly differentially dissipative. y

Exploiting the assumption S ∈ C1, (8) is equivalent to

d

dt
S(x(t), δx(t)) ≤ Q(x(t), w(t), δw(t)). (9)

We conclude the section by illustrating a first connection
between differential dissipativity and incremental stabil-
ity.

Theorem 1. Suppose that the dynamical system Σ repre-
sented by (1) is differentially dissipative with differential
storage S and differential supply rate Q. Suppose also
that for w = (u, y), u - input, y - output, it holds
that Q(x, u, y, 0, δy) = 0 for each x ∈ M, and each
(u, y, 0, δy) ∈ TW . Then, there exists a class K function
α such that

d(x1(t), x2(t)) ≤ α(d(x1(0), x2(0))) (10)

for each t ≥ 0 and each (x1, u1, y1)(·), (x2, u2, y2)(·) ∈ Σ,
such that u1(·) = u2(·), where d is the pseudo-distance

induced by S
1

p , with p degree of homogeneity of S (see
Definition 1). y

Note that if Hx = TxM, then d is a distance on M, thus
Theorem 1 guarantees that Σ is incrementally stable for
any feedforward input signal u(·).

4. DIFFERENTIAL PASSIVITY

Following the approach of Willems (1972b), we formulate
differential passivity as the restriction of differential dissi-
pativity to quadratic supply rates. To this end, we consider
the external variable manifold W as the product of an
input vector space U and an output vector space Y such
that U = Y. A consequence of working with a vector space
W is that TwW = W for each w ∈ W . In what follows, we
will use u ∈ U to denote the input and y ∈ Y to denote
the output.

For each x ∈ M, let Wx be a (0, 2)-tensor field on W
that provides an inner product on each tangent space
TwW = W , denoted by 〈·, ·〉Wx

. For simplicity of the ex-
position, we write 〈δy, δu〉Wx

to denote 〈(δy, 0), (0, δu)〉Wx
,

or 〈δy, δy〉Wx
to denote 〈(0, δy), (0, δy)〉Wx

.
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Definition 4. For each x ∈ M, let Wx be a (0, 2)-tensor
field on W . A dynamical system Σ is differentially passive
if it is differentially dissipative with respect to a differen-
tial supply rate of the form

Q(x, u, δu, y, δy) := 〈δy, δu〉Wx
. (11)

Σ is uniformly differentially passive whenever Q is inde-
pendent on x. Finally, we say that Σ is strictly differen-
tially passive if there exists a function α of class K such
that (9) is restricted to Ṡ ≤ −α(S(x, δx)) +Q. y

As in passivity, the next theorems show that the feedback
interconnection of differentially passive systems is differ-
entially passive.

Theorem 2. Let Σ1 and Σ2 be (strictly) uniformly differ-
entially passive dynamical systems. Suppose that W1 =
W2 and that their supply rates are based on the same
(0, 2)-tensor W. Then, the dynamical system Σ arising
from the feedback interconnection

u1 = −y2 + v1 , u2 = y1 + v2, (12)

is (strictly) uniformly differentially passive from v =
(v1, v2) ∈ U1 × U2 to y = (y1, y2) ∈ Y1 × Y2. y

Theorem 3. Let Σ1 and Σ2 be (strictly) differentially
passive dynamical systems. Suppose that W1 = W2 and
that their supply rates are based on the (0, 2)-tensors
Wx1

for x1 ∈ M1 and Wx2
for x2 ∈ M2, respectively.

Then, the dynamical system Σ arising from the feedback
interconnection

u1 = −k2(x2) + v1 k2 : M2 → M1 ∈ C2

u2 = k1(x1) + v2 k1 : M1 → M2 ∈ C2 (13)

is differentially passive from v = (v1, v2) to y = (y1, y2),
provided that

〈δy1, Dk2(x2)[δx2]〉Wx1
= 〈δy2, Dk1(x1)[δx1]〉Wx2

(14)

for each x1 ∈ M1 and each x2 ∈ M2. y

The state-feedback interconnection in (13) is in contrast
with the classical passivity approach that looks at sys-
tems as input/output operators. However, differently from
classical passivity and from uniform differential passivity,
differential passivity is an input/output characterization
of the system that depends on the trajectories, geometri-
cally expressed by a different tensor Wx for each x ∈ M.
This lack of uniformity with respect to the solutions of the
system requires extra-effort at interconnection, as shown
by (14). In this sense, the key role of the state-feedback
(13) is to equalize the two tensorsWx1

andWx2
, to achieve

the desired interconnected behavior.

Example 1. Consider the dynamical system Σ of equa-
tions

{

ẋ = f(x) + g(x)u
y = h(x) x ∈ R

n, y, u ∈ R
q ; (15)

whose induced displacement dynamical system δΣ is rep-
resented by (15) and

{
˙δx = ∂xf(x)δx + [∂xg(x)u]δx+ g(x)δu
δy = ∂xh(x)δx.

(16)

Let W (x) a symmetric matrix for each x ∈ M. Σ is differ-
entially passive with differential supply rate δyTW (x)δu if
there exist a matrixM(x) = ∂xxm(x), where m : Rn → R,
and an invertible matrix Π such that

M(x)T ∂x[M(x)f(x)] ≤ 0
M(x)g(x) = Π ,

∂xh(x)
TW (x) = M(x)TΠ

(17)

In fact, define S(x, δx) := 1
2δx

TM(x)TM(x)δx. Then,

Ṡ = δxTM(x)∂x(M(x)f(x))δx +
+ δxTM(x)T ∂x(M(x)g(x)u)δx +
+ δxTM(x)TM(x)g(x)δu

≤ δxTM(x)T ∂x(Πu)δx + δxTM(x)TΠδu
= δxTh(x)TW (x)δu
= δyTW (x)δu .

(18)

y

Remark 2. Consider two systems Σ1 and Σ2 satisfying
(17) respectively with matricesM1(x1)=∂xxm1(x),W1(x1)
and M2(x2) = ∂xxm2(x),W2(x2), and constant matrices
Π1 and Π2. The closed-loop system given by the feedback
interconnection (13) is differentially passive provided that

{

∂x2
k2(x2) = ΠT

2 M2(x2)
∂x1

k1(x1) = ΠT
1 M1(x1)

(19)

This is an immediate consequence of Theorem 3, since
δyT1 W1(x1)∂x2

k2(x2)δx2 = δyT1 W1(x1)Π
T
2 M2(x2)δx2 =

δyT1 W1(x1)W2(x2)δy2 = δxT
1 M1(x1)

TΠ1W2(x2)δy2 =
δxT

1 [∂x1
k1(x1)]

TW2(x2)δy2 as required by (14). y

We conclude the section by extending Theorem 1: a differ-
entially passive dynamical system with “excess” of output
differential passivity behaves like a filter: its steady-state
output is driven by the input signal only.

Theorem 4. Let Σ be a differentially passive dynamical
system with

• differential storage S such that Vx = ∅ for each x;
• differential supply rate Q := 〈δy, δu〉Wx

− 〈δy, δy〉Wx

such that 〈δy, δy〉Wx
> 0 for each δy ∈ Y \ {0} and

each x ∈ M (excess of output passivity).

Let u(·) : R≥0 → U be a C2 input signal and suppose that
every curve ξ(·) := (x, u, y)(·) ∈ Σ remains bounded.

Then, for any pair (x1, u, y1)(·), (x2, u, y2)(·) ∈ Σ,

lim
t→∞

|y1(t)− y2(t)| = 0 . (20)
y

The hypothesis of the theorem guarantees incremental
stability of Σ - a consequence of Theorem 1. If Σ is strictly
differentially passive, then Theorem 4 can be strengthened
towards incremental asymptotic stability. Finally, the case
of Vx 6= ∅ is not taken into account here but it presents
similarities with the analysis of Section 2.3.2 in Sepulchre
et al. (1997), about passivity with semidefinite storage
functions and stability.

5. EXAMPLES OF DIFFERENTIALLY PASSIVE
ELECTRICAL CIRCUITS

In the first example below we show the differential passiv-
ity of a simple nonlinear RC circuit. Differential passivity
is also used in the second example below to develop an
feed-forward control strategy for an induction motor with
flux saturations.

Example 2. [Nonlinear RC circuit]
Consider the simple circuit reproduced in Figure 2. The
nonlinearity of the circuit is due to the nonlinear relation
vc = µ(qc) between the charge qc and the voltage vc of
the capacitor. We suppose that µ(qc) is differentiable and
strictly increasing.

The algebraic-differential description of the circuit is given
by the constitutive relations of each component and by
Kirchhoff laws,
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ic irI

vr
vc

V

Fig. 2. V ,I - external voltage and current. vc,ic - capac-
itor voltage and current. vr,ir - resistor voltage and
current.

{
q̇c = ic
vc = µ(qc)
vr = Rir, R > 0

;

{
I = ic + ir
V = vc
vc = vr

. (21)

Following (2), the displacement dynamical systems is thus
represented by (21) and by the set of equations







δ̇qc = δic
δvc = ∂qcµ(qc)δqc
δvr = Rδir

;

{
δI = δic + δir
δV = δvc
δvc = δvr

. (22)

The circuit is differentially passive from V to I with
differential storage S(qc, δqc) := 1

2δq
2
c . In fact, define

W (qc) := [∂qcµ(qc)]
−1, then

Ṡ = δqc∂qcµ(qc)δqc
= W (qc)δvcδic
= W (qc)δV (δI − δir)
= W (qc)δV δI −W (qc)δvrδir
≤ W (qc)δV δI,

(23)

where the last identity follows from the fact that W (qc) is
greater than 0 for each value of qc, and δvrδir = Rδi2r ≥ 0.

y

Example 3. [Induction motor with flux saturation]
We revisit the model proposed in Sullivan et al. (1996).
The model is developed in a rotating frame at speed
ωs. The rotor speed is denoted by ωr. Rotor and stator
magnetic flux vectors are denoted respectively by ϕr and
ϕs. Rotor and stator currents are given by ir and is.
The analysis below takes into account only the electrical
part of the motor. The mechanical equations are thus
not detailed. Indeed, for ϕr, ϕs, ir, is ∈ C, the differential
relations are given by

ω̇r = h(ωr, ϕr, ϕs, τload) (24a)

ϕ̇r =−jωgϕr −Rrir (24b)

ϕ̇s =−jωsϕs −Rsis + us (24c)

where ωg = ωs − ωr, and Rr and Rs are rotor and
stator resistances. τload is the (disturbance) load, and us

is a control input. The motor model is completed by the
algebraic relations between currents and fluxes, given by







ir = Fr(ϕr) + (
1

Lr

+
1

Ll

)ϕr −
1

Ll

ϕs

is = Fs(ϕs) + (
1

Ls

+
1

Ll

)ϕs −
1

Ll

ϕr .
(25)

Lr, Ls, and Ll are the usual inductances adopted in
classical linear flux-current models, while the nonlinear
C2 functions Fr and Fs characterize the flux saturation.
For instance, Fr satisfies a relation of the form Fr(ϕr) =
f(|ϕr|)ϕr where f is a monotonically increasing sector
function, that is, f(s) ≥ 0 and f(s)′ ≥ 0, for each s ≥ 0.
These assumptions guarantee that

∂ϕr
F (ϕr) = f ′(|ϕr |)

ϕrϕ
T
r

|ϕr|
+ f(|ϕr|)I ≥ 0. (26)

Indeed, the current ir may grow faster than the flux ϕr

(for Fr 6= 0), which characterizes a limited increase of
the flux despite large increments of the currents. Similar
assumptions hold for Fs. Note that the alignment of
current and flux vectors is preserved.

In what follows we will use Σ to denote the dynamical
system represented by (24) and (25). Using ϕ := (ϕr , ϕs)
and i := (ir, is), Σ is given by the set of C2 curves
ξ(·) := (ϕ, i, ωr, ωs, us)(·) that satisfy (24) and (25) for
each t ≥ 0.

The analysis proposed below is based on the introduction
of a new dynamical system, the virtual dynamical system
(see, for example, Wang and Slotine (2005)), represented
by (24b), (24c) and (25), where the relation between the
rotor speed ωr and the flux ϕ is disregarded. To distinguish
between the induction motor and the associated virtual
system, we use over-lined variables: ϕ := (ϕr, ϕs) and
i := (ir, is). Indeed, for each ξ(·) = (ϕ, i, ωr, ωs, us)(·) ∈ Σ,
Σξ(·) is the virtual dynamical system given by the set of

curves (ϕ, i, ωr, ωs, us)(·) that satisfy (24b), (24c) and (25)
(expressed in the over-lined variables).

The crucial relation between Σ and the virtual system
Σξ(·) is that if ξ(·) ∈ Σ, then ξ(·) ∈ Σξ(·). Exploiting this
relation, it is possible to infer properties of Σ from the
properties of the virtual dynamical system Σξ(·).

For the virtual system Σξ(·), ωr(·) and ωs(·) are exogenous
signal acting uniformly on each solution ϕ(·). Therefore for
both ωs(·) and ωg(·) one can consider δωg = δωs = 0 (see
Remark 1). The virtual displacement dynamical system
is thus given by (24b), (24c) and (25) (expressed in the
over-lined variables) and by

{
˙δϕr = −jωgδϕr −Rrδir
˙δϕs = −jωsδϕs −Rsδis + δus

(27)







δir = ∂Fr(ϕr)δϕr + (
1

Lr

+
1

Ll

)δϕr −
1

Ll

δϕs

δis = ∂Fs(ϕs)δϕs + (
1

Ls

+
1

Ll

)δϕs −
1

Ll

δϕr.
(28)

(27) and (28) characterize respectively a differentially pas-
sive dynamical system and a differentially passive static
nonlinearity. For (27), consider the differential storage

V =
δϕ2

r

2Rr
+

δϕ2

s

2Rs
. Then,

V̇ = −δϕrδir − δϕsδis +
1

Rs

δϕsδus (29)

which gives uniform differential passivity from (−δi, δus)
to (δϕ, δϕs) of the dynamical system represented by (24b),
(24c) (expressed in the over-lined variables).

On the other hand, for (28) we get 0 ≤ δi
T
δϕ =

= δϕT








[
∂Fr(ϕr)+

1

Lr
0

0 ∂Fr(ϕs)+
1

Ls

]

︸ ︷︷ ︸

>0

+

[
1

Ll
− 1

Ll

− 1

Ll

1

Ll

]

︸ ︷︷ ︸

≥0








δϕ.

(30)
From (29) and (30), the combination of (27) and (28)
guarantees that Σξ(·) is strictly uniformly differentially
passive from us to ϕs, for each ξ(·) ∈ Σ. In fact,
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V̇ ≤ −δϕ
T
M(ϕ)
︸ ︷︷ ︸

>0

δϕ+
1

Rs

δϕsδus, (31)

where M(ϕ) is the quantity between brackets in (30).
Because M(ϕ) > 0, for δus = 0 (feedforward signal),
Theorem 4 guarantees that

lim
t→∞

|ϕ1(t)− ϕ2(t)| = 0 (32)

for all (ϕ1, i1, ωr, ωs, us)(·), (ϕ2, i2, ωr, ωs, us)(·) in Σξ(·)

Note that the boundedness of these curves is guaranteed
for bounded signals us(·) by the combination of the effect
of the dissipative terms in (27) and the alignment between
currents and fluxes in (28).

The incremental property (32) of the virtual system Σξ(·)

can be used to provide an feedforward control design for Σ.
For illustration purposes, in what follows we consider the
goal of asymptotically regulate ϕr towards a prescribed
flux configuration ϕ∗

r .

From (32), achieving the goal for the virtual system
Σξ(·) is straightforward: if ((ϕ∗

r , ϕ
∗
s), i

∗, ωr, ωs, us)(·) ∈

Σξ(·) then each curve (ϕ, i, ωr, ωs, us)(·) ∈ Σξ(·) satisfies
limt→∞ |ϕ(t)− (ϕ∗

r , ϕ
∗
s)(t)| = 0. Indeed, from (24b), (24c),

and (25), the feedforward input us(·) given by

ϕ∗
s := −

Ll

Rr

ϕ̇∗
r − Ll[jωg + (

1

Lr

+
1

Ll

)]ϕ∗
r − Fr(ϕ

∗
r)

us := [jωs +Rs(
1

Ls

+
1

Ll

)]ϕ∗
s +RsFs(ϕ

∗
s)−

1

Ll

r + ϕ̇∗
s

(33)
guarantees that ((ϕ∗

r , ϕ
∗
s), i

∗, ωr, ωs, us)(·) ∈ Σξ(·).

The reader will notice that for any given selection of
ξ(·) := (ϕ, i, ωr, ωs, us)(·) ∈ Σ, with us(·) given in (33), the
curve ((ϕ∗

r , ϕ
∗
s), i

∗, ωr, ωs, us)(·) belongs to Σξ(·). This is a
consequence of the fact that us(·) is formulated by taking
into account explicitly ωs(·) and ωg(·). Thus, exploiting
the fact that if ξ(·) ∈ Σ, then ξ(·) ∈ Σξ(·), we can conclude
that

lim
t→∞

|ϕ(t) − (ϕ∗
r , ϕ

∗
s)(t)| = 0 (34)

for all (ϕ, i, ωr, ωs, us)(·) ∈ Σ with us(·) in (33). y

6. CONCLUSIONS

The concept of differential dissipativity is introduced
as a natural extension of differential stability for open
systems. The differential storage S(x, δx) is inspired from
the Finsler-Lyapunov function of Forni and Sepulchre
(2012) and has the interpretation of (infinitesimal) energy
of a displacement δx along a solution curve through x.
Extending the role of dissipativity theory for analysis and
design of interconnections in the tangent bundle offers a
novel way to study incremental stability (or contraction)
properties of nonlinear systems.
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