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Abstract: This work considers the computation of time-varying enclosures of the reachable sets
of nonlinear control systems via the solution of an initial value problem in ordinary differential
equations (ODEs) with linear programs (LPs) embedded. To ensure the numerical tractability
of such a formulation, the properties of the ODEs with LPs embedded are discussed including
existence and uniqueness of the solutions of the initial value problem in ODEs with LPs
embedded. This formulation is then applied to the computation of rigorous componentwise
time-varying bounds on the states of a nonlinear control system. The bounding theory used in
this work exploits physical information to yield tight bounds on the states; this work develops
a new implementation of this theory. Finally, the tightness of the bounds are demonstrated for
a model of a reacting chemical system with uncertain rate parameters.
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1. INTRODUCTION

The problem of interest is the computation of time-varying
enclosures of the reachable sets of the initial value problem
(IVP)

ẏ(t,u,y0) = g(t,u(t),y(t,u,y0)) (1)

y(t0,u,y0) = y0,

where u and y0 take values in some set of permissi-
ble controls and initial conditions, respectively. Using a
bounding theory recently developed in Scott and Barton
[2013], this work demonstrates that tight component-wise
upper and lower bounds, called state bounds, can be com-
puted by solving numerically a related IVP depending on
parametric linear programs. To this end, this work also
analyzes the IVP in ordinary differential equations (ODEs)
with parametric linear programs (LPs) “embedded.” The
fundamental nature of “ODEs with LPs embedded” is
an IVP in ODEs, where the vector field depends on the
optimal objective values of parametric LPs that are in turn
parametrized in the right-hand side of their constraints
and/or objective functions by the differential states. The
LPs are then said to be “embedded”.

Reachability analysis refers to estimating the set of possi-
ble states that a dynamic system may achieve for a range
of parameter values or controls. This is an important task
in state and parameter estimation (Jaulin [2002], Räıssi
et al. [2004], Singer et al. [2006]), uncertainty propagation
(Harrison [1977]), safety verification and quality assurance
(Lin and Stadtherr [2008], Huang et al. [2002]), and as well
global dynamic optimization (Singer and Barton [2006b]).
This problem traces back as far as the work in Bertsekas
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and Rhodes [1971], however some of the more recent appli-
cable references are Althoff et al. [2008], Lin and Stadtherr
[2007], Mitchell et al. [2005], Singer and Barton [2006a].
Meanwhile, the goal of this work is to introduce a new im-
plementation of the theory developed in Scott and Barton
[2013]. This theory relies on differential inequalities, which
in essence yields an IVP derived from (1) but involving
parametric optimization problems. The implementation in
Scott and Barton [2013] uses interval analysis to estimate
the solutions of these optimization problems. This work
will construct linear programs to estimate the solutions of
the necessary optimization problems.

The rest of the article is as follows. Section 2 introduces
notation and establishes the formal problem statement
concerning the reachable set estimation. Section 3 con-
siders various aspects of ODEs with LPs embedded: Sec-
tion 3.1 states a Lipschitz continuity result concerning
parametric linear programs; Section 3.2 discusses existence
and uniqueness of solutions of ODEs with LPs embedded;
Section 3.3 considers potential methods for the numerical
solution of ODEs with LPs embedded. Section 4 returns
to the state bounding problem and demonstrates that
estimates of the reachable set can be obtained from the
solution of an IVP in ODEs with LPs embedded. Section
5 applies this formulation to calculate state bounds for a
reacting chemical system.

2. PRELIMINARIES AND PROBLEM STATEMENT

For vectors v,w ∈ Rn, the notation v ≤ w means that
the inequality holds componentwise. Thus, given v ≤ w,
let [v,w] = [v1, w1] × · · · × [vn, wn] be an interval in Rn.
A vector of ones and a vector of zeros will be denoted 1
and 0, respectively. A set-valued mapping S from the set
X to the set of subsets of Y is denoted S : X ⇒ Y . For
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a measurable interval T ⊂ R, let L1(T ) denote the set of
Lebesgue-integrable functions u : T → R. Let (L1(T ))n

denote the set of vector-valued functions u : T → Rn for
which each of the components ui ∈ L1(T ).

The formal problem statement is as follows. Given
[t0, tf ] = T , compact U ⊂ Rnu and compact Y0 ⊂ Rny ,
one wishes to compute functions yL,yU : T → Rny such
that y(t,u,y0) ∈ [yL(t),yU (t)], ∀(t,u,y0) ∈ T × U × Y0,
where U = {u ∈ (L1(T ))nu : u(t) ∈ U, a.e. t ∈ T} and y
is a solution of

ẏ(t,u,y0) = g(t,u(t),y(t,u,y0)) a.e. t ∈ T, (2)

y(t0,u,y0) = y0.

Such a yL and yU are called state bounds, as in Scott
and Barton [2013]; the intervals [yL(t),yU (t)] can also be
thought of as enclosures of the reachable sets of the ODE
system (2).

3. ODES WITH EMBEDDED LPS

To introduce the initial value problem in ODEs with LPs
embedded, let Dt ⊂ R, Dx ⊂ Rnx and Dq ⊂ Rnq be
given nonempty sets. Let f : Dt × Dx × Dq → Rnx , and
for k ∈ {1, . . . , nq} let bk : Dx → Rmk , Ak ∈ Rmk×nk ,
Ik = {1, . . . , pk}, cik : Dt × Dx → Rnk , and hik : Dt ×
Dx → R for i ∈ Ik, be given.

Now, make the following definitions. For k ∈ {1, . . . , nq},
let

Pk(β) ≡ {v ∈ Rnk : Akv = β,v ≥ 0} ,
Fk ≡ {β ∈ Rmk : Pk(β) 6= ∅} ,

K ≡
nq⋂
i=1

b−1
k (Fk) ⊂ Dx.

The following assumption simplifies the analysis of the
problem and naturally occurs in the application of ODEs
with LPs embedded.

Assumption 1. For each k ∈ {1, . . . , nq} and β ∈ Fk,
Pk(β) is bounded:

sup
v∈Pk(β)

‖v‖ < +∞,∀β ∈ Fk.

Consequently it is clear that the functions q̂k : Fk×Rpknk×
Rpk → R given by

q̂k(β,γ1, . . . ,γpk
,η) = min

v∈Rnk
max
i∈Ik

{
γT
i v + ηi

}
s.t. Akv = β, (3)

v ≥ 0,

are well defined for k ∈ {1, . . . , nq}. Letting

ck : Dt ×Dx 3 (t, z) 7→ (c1
k(t, z), . . . , cpk

k (t, z)) ∈ Rpknk

and

hk : Dt ×Dx 3 (t, z) 7→ (h1
k(t, z), . . . , hpk

k (t, z)) ∈ Rpk ,

one can define q : Dt × K → Rnq by letting its kth

component be given by

qk : (t, z) 7→ q̂k(bk(z), ck(t, z),hk(t, z)).

The focus of this section is an initial value problem in
ODEs: given a t0 ∈ Dt and x0 ∈ Dx, we seek an interval

[t0, tf ] = T ⊂ Dt, and continuous function x : T → Dx

which satisfy

ẋ(t) = f(t,x(t),q(t,x(t))), a.e. t ∈ [t0, tf ], (4)

x(t0) = x0.

Such a T and x will be called a solution of (4).

3.1 Parametric Optimization

This section establishes a continuity property of the para-
metric optimization problem that is essential for proving
existence and uniqueness of the solutions of (4).

First, define the distance from a point x to a set Y in
a metric space (X, d) by d(x, Y ) ≡ infy∈Y d(x, y). The
Hausdorff distance dH between two sets Y,Z in the metric
space (X, d) is given by

dH(Y,Z) = max

{
sup
y∈Y

d(y, Z), sup
z∈Z

d(z, Y )

}
.

The following lemma concerns a Lipschitz property of
polyhedral sets with respect to perturbations of the right-
hand side of the constraints. This is a well-established
result in the literature (see Mangasarian and Shiau [1987]).
In addition, one should note that it applies equally to
polyhedra of the form P (β) = {v : Av ≤ β}.
Lemma 2. Let A ∈ Rm×n, β ∈ Rm,

P (β) = {v ∈ Rn : Av = β,v ≥ 0} , (5)

and

F = {β ∈ Rm : P (β) 6= ∅} . (6)

Then for any norm ‖ · ‖, there exists LP ≥ 0 such that

dH(P (β1), P (β2)) ≤ LP ‖β1 − β2‖
for all β1,β2 ∈ F .

We will also require the following result concerning the
local Lipschitz continuity of the functions q̂k. It can be
proved using Lemma 2 above and Lemma 1 in Klatte
and Kummer [1985], combined with the local Lipschitz
continuity of f(v,γ,η) = maxi∈I

{
γT
i v + ηi

}
.

Proposition 3. Let P and F be defined as in Eqns. (5)
and (6), respectively. Assume that P (β) is bounded for all
β ∈ F . Let I = {1, . . . , p}, and γi ∈ Rn for all i ∈ I. Let
γ = (γ1, . . . ,γp) ∈ Rpn and η = (η1, . . . , ηp) ∈ Rp. Define
q̂ : F × Rpn × Rp → R by

q̂(β,γ,η) = min
v∈Rn

max
i∈I
{γT

i v + ηi}

s.t. Av = β,

v ≥ 0.

Then q̂ is locally Lipschitz continuous.

3.2 Existence and Uniqueness

Sufficient conditions for the existence and uniqueness of
the solutions of the IVP (4) are given. First, one should
note that a solution of the IVP must satisfy {x(t) : t ∈
T} ⊂ K, since otherwise q would not be defined. Since K
may not be open, an existence result like Carathéodory’s
cannot be used; results from viability theory must be
considered. See Aubin [1991].
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An important concept from set-valued analysis that will
be used is the Bouligand tangent cone TV (z) of a set V at
z ∈ V ; the following notation is used:

v ∈ TV (z) ⇐⇒ lim inf
h→0+

d(z + hv, V )

h
= 0

The following theorem establishes general conditions un-
der which a solution of the IVP (4) exists.

Theorem 4. Let Assumption 1 hold. Assume:

(1) K is locally compact,
(2) Dt is open,
(3) x0 ∈ K,
(4) for all k ∈ {1, . . . , nq}, bk is continuous on K and ck,

hk are continuous on Dt ×K,
(5) f is continuous,
(6) there exists t1 > t0 such that q(t,K) ⊂ Dq for all

t ∈ [t0, t1], and
(7) for all t ∈ [t0, t1], for all z ∈ K, f(t, z,q(t, z)) ∈

TK(z),

then a solution of (4) exists.

Proof. The result follows almost immediately from Theo-
rem I-2 of Haddad [1981]. Since Dt is an open subset of R,
it is locally compact, and so Dt×K is locally compact. By
Proposition 3, q is continuous on Dt×K, thus f(·, ·,q(·, ·))
is continuous as well. Applying Theorem I-2 of Haddad
[1981], there exists tf ∈ (t0, t1] and continuous function
x : [t0, tf ]→ Dx which satisfies Eqn. (4).

Should a solution exist, it is fairly easy to verify its unique-
ness, as established in the following theorem. Its proof re-
lies on the construction and application of an appropriate
Gronwall-like inequality; see for instance Theorem 1.1 in
Ch. III of Hartman [2002].

Theorem 5. Let Assumption 1 hold. Assume a solution
T = [t0, tf ], x : T → Dx of IVP (4) exists. Assume for each
k ∈ {1, . . . , nq} that bk is locally Lipschitz continuous on
K, and that ck, hk are continuous on Dt × K. Assume
for any (z, r) ∈ K×Dq, there exist an open neighborhood
N(z, r) of (z, r) and a1 ∈ L1(T ) such that

‖f(t, z1, r1)− f(t, z2, r2)‖∞ ≤ a1(t)‖(z1, r1)− (z2, r2)‖∞,
for all t ∈ T , (z1, r1), (z2, r2) ∈ N(z, r)∩K×Dq. Similarly
assume for any z ∈ K, i ∈ {1, 2}, and k ∈ {1, . . . , nq},
there exist open neighborhoods N i

k(z) and measurable aik,
aik(t) ≤ c, a.e. t ∈ T for some constant c, such that

∀z1, z2 ∈ N1
k (z) ∩K,

‖ck(t, z1)− ck(t, z2)‖∞ ≤ a1
k(t)‖z1 − z2‖∞,

∀z1, z2 ∈ N2
k (z) ∩K,

‖hk(t, z1)− hk(t, z2)‖∞ ≤ a2
k(t)‖z1 − z2‖∞,

for all t ∈ T . Then x is the unique continuous function on
T satisfying Eqn. (4).

3.3 Numerical Solution

First, it is shown that the parametric optimization prob-
lems (3) can be reformulated as LPs. For γk ∈ Rpknk , let
a partitioning of its components be γk = (γ1, . . . ,γpk

)
where each γi ∈ Rnk (i ∈ Ik). Let

Mk(γk) =


Ak 0 0 0mk×pk γT

1
...

γT
pk

 −1 1 I

 ,
a (mk + pk) by (nk + 2 + pk) matrix, where 0mk×pk

is
a mk by pk zero matrix. Then if enk+i ∈ Rnk+2+pk is the
(nk+i)th unit vector for i ∈ {1, 2}, let êk = enk+1−enk+2,
and for βk ∈ Rmk , ηk ∈ Rpk let

q̂k(βk,γ
k,ηk) = min

v∈Rnk+2+pk

êT
k v

s.t. Mk(γk)v =

[
βk
−ηk

]
= β̂k, (7)

v ≥ 0.

The so-called matrix case of parametric linear program-
ming results when reformulating the embedded optimiza-
tion problem as a LP. In general, this kind of parametric
dependence is intractable, but considering the origin of
the reformulation, one can show that in fact this specific
problem can be handled in a fairly efficient way.

First, a basis Bk ⊂ {1, . . . , nk + 2 + pk} is an index set
which describes a vertex of the feasible set of a LP. For
the LP (7), a basis will have mk + pk elements, and so
given a matrix M ∈ R(mk+pk)×(nk+2+pk), let MBk

be
the square submatrix formed by taking the columns of
M which correspond to elements of Bk, called a basis
matrix. Similarly, given a vector v, let vBk

∈ Rmk+pk be
defined by taking the components of v which correspond
to elements of Bk. Next, under Assumption 1, it follows
that the embedded optimization problems always have
solutions when they are feasible. Thus, the reformulated
problems must also have solutions, and this implies that
there exist bases which each describe a vertex which is
optimal for the reformulated problems. These bases are
called optimal bases. To determine if a basis is optimal,
the corresponding basis matrix Mk,Bk

(γk) for (7) must
satisfy the algebraic conditions

(Mk,Bk
(γk))−1β̂k ≥ 0, (8)

êT
k − êT

k,Bk
(Mk,Bk

(γk))−1Mk(γk) ≥ 0T, (9)

referred to as primal and dual feasibility, respectively.
When solving the LPs with the simplex algorithm, the
algorithm can be “warm-started” by providing a basis
which is either primal or dual feasible; the algorithm
terminates much more quickly than if it was cold-started
(if it had to go through Phase I first).

Thus, it is desirable to know, given an optimal basis Bk,
whether the left-hand side of the inequality in either of (8)
or (9) may be continuous on an open set of (βk,γ

k,ηk). If
this is the case, then in the course of numerical integration
of (4), a given optimal basis B that satisfies either (8)
and/or (9) with strict inequality will remain primal and/or
dual feasible for some finite amount of time (assuming that
the functions ck, bk, hk are continuous). Consequently, for
many steps in the integration routine one can warm-start
the simplex algorithm to solve the LPs. This will speed up
the solution time immensely. The number of steps where
a basis is unavailable to warm-start simplex may be small
relative to the overall number of steps taken.
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So to see this, one can use Cramer’s rule; see §4.4 of Strang
[2006]. For M ∈ Rn×n, d ∈ Rn, the vector v = M−1d is
given componentwise by

vj =
det(Nj)

det(M)
,

where Nj is the matrix formed by replacing the jth column
of M with d. Since the determinant of a matrix is continu-
ous with respect to the entries of the matrix, it is a simple
application of Cramer’s rule to see that the left-hand side
of the inequalities (8) and (9) are continuous on the set of
those γk such that Mk,Bk

(γk) is invertible. Further, the
set of those γk such that Mk,Bk

(γk) is invertible is an open
set noting that it is the preimage of (−∞, 0)∪ (0,+∞), an
open set, under the continuous mapping det(Mk,Bk

(·)).
Consequently, the “straightforward” method of solving the
IVP (4) numerically by using a LP solver to evaluate
the functions q in the derivative evaluator of a numerical
integration routine can be fairly efficient.

4. APPLICATION TO STATE BOUNDING

An application of the IVP (4) is to the computation of
state bounds for the control system (2). Sufficient condi-
tions for two absolutely continuous functions to constitute
state bounds of (2) are established in Scott and Barton
[2013]. That paper also addresses how one can leverage an
invariant set to reduce the state bound overestimation.
An invariant set G ⊂ Rny is a rough enclosure of the
solutions of (2): y(t,u,y0) ∈ G, ∀(t,u,y0) ∈ T × U × Y0.
Depending on the dynamics, this may come from physical
arguments, such as conservation of mass. When the ODEs
(2) are the dynamics of a chemical kinetics model, one can
often determine a convex polyhedral G (Scott and Barton
[2010]).

For the rest of this section assume there is a convex
polyhedral set G that is an invariant set for the solutions of
(2), and that U is a compact convex polyhedron. Let KRny

P
denote the set of nonempty compact convex polyhedra in
Rny . Let PL

i , P
U
i : KRny

P → KRny

P be given by

PL
i (P̂ ) =

{
z ∈ P̂ : zi = min{ζi : ζ ∈ P̂}

}
,

PU
i (P̂ ) =

{
z ∈ P̂ : zi = max{ζi : ζ ∈ P̂}

}
.

Consider the system of ODEs

ẏLi (t) = min
(p,z)

gcvi (t,p, z,yL(t),yU (t))

s.t. p ∈ U,
z ∈ PL

i

(
[yL(t),yU (t)] ∩G

)
, (10)

ẏUi (t) = max
(p,z)

gcci (t,p, z,yL(t),yU (t))

s.t. p ∈ U,
z ∈ PU

i

(
[yL(t),yU (t)] ∩G

)
,

for i ∈ {1, . . . , ny}, with initial condition that satisfies
Y0 ⊂ [yL(t0),yU (t0)], where gcvi (t, ·, ·,v,w) is a con-
vex piecewise affine underestimator of gi(t, ·, ·) on U ×
PL
i ([v,w] ∩G) and gcci (t, ·, ·,v,w) is a concave piecewise

affine overestimator of gi(t, ·, ·) on U × PU
i ([v,w] ∩G). It

will now be shown that the solutions (if any) of (10) are
state bounds for the system (2).

The result we wish to apply is Theorem 2 of Scott and
Barton [2013]. To do so, one needs DΩ ⊂ Rny × Rny and
for i ∈ {1, . . . , ny}, ΩL

i ,Ω
U
i : DΩ → KRny which satisfy

certain conditions. For every i ∈ {1, . . . , ny}, assume

(1) For any (v,w) ∈ Rny×Rny , if there exists (t,u,y0) ∈
T × U × Y0 satisfying y(t,u,y0) ∈ [v,w] and
yi(t,u,y0) = vi (respectively yi(t,u,y0) = wi), then
(v,w) ∈ DΩ and y(t,u,y0) ∈ ΩL

i (v,w) (respectively
y(t,u,y0) ∈ ΩU

i (v,w)).
(2) For any (v,w) ∈ DΩ, there exists an open neighbor-

hood N(v,w) of (v,w) and L > 0 such that

dH(ΩL
i (v̂, ŵ),ΩL

i (ṽ, w̃)) ≤ L(‖v̂− ṽ‖∞+‖ŵ− w̃‖∞)

for all (v̂, ŵ), (ṽ, w̃) ∈ N(v,w) ∩ DΩ, and a similar
statement for ΩU

i also holds.

If one lets

DΩ = {(v,w) ∈ Rny × Rny : [v,w] ∩G 6= ∅},
ΩL

i (v,w) = PL
i ([v,w] ∩G) ,

ΩU
i (v,w) = PU

i ([v,w] ∩G) ,

then these conditions hold.

To see this, choose any (v,w) ∈ DΩ and let

zmi (v,w) = min{ζi : ζ ∈ [v,w] ∩G)},
zMi (v,w) = max{ζi : ζ ∈ [v,w] ∩G)}

(note that vi ≤ zmi (v,w) ≤ zMi (v,w) ≤ wi). If there exists
(t,u,y0) ∈ T × U × Y0 such that y(t,u,y0) ∈ [v,w], then
y(t,u,y0) ∈ [v,w]∩G by definition of G, so (v,w) ∈ DΩ.
Further, if y(t,u,y0) ∈ [v,w] ∩ G and yi(t,u,y0) = vi,
then zmi (v,w) ≤ yi(t,u,y0) = vi ≤ zmi (v,w), so it is clear
that y(t,u,y0) ∈ PL

i ([v,w] ∩G). An analogous argument
gives the condition for PU

i .

To see that the second condition holds consider the nature
of the sets PL

i ([v,w] ∩ G). Since G is convex polyhedral
it can be expressed as G = {z ∈ Rny : AGz ≤ bG}
for some AG ∈ Rmg×ny and bG ∈ Rmg . Thus [v,w] ∩
G = {z : Ãz ≤ b̃(v,w)} where

Ã =

[
AG

−I
I

]
, b̃(v,w) =

[
bG

−v
w

]
.

By Theorem 2.4 of Mangasarian and Shiau [1987], zmi
is a Lipschitz continuous function on DΩ with Lipschitz
constant L1. Finally, noting that

ΩL
i (v,w) = PL

i ([v,w] ∩G) =

{z : Ãz ≤ b̃(v,w), zi ≤ zmi (v,w), zi ≥ zmi (v,w)},
by Lemma 2 there exists L2 > 0 such that

dH
(
ΩL

i (v̂, ŵ),ΩL
i (ṽ, w̃)

)
≤ L2

(
‖b̃(v̂, ŵ)− b̃(ṽ, w̃)‖∞ + |zmi (v̂, ŵ)− zmi (ṽ, w̃)|

)
≤ L2

(
‖v̂ − ṽ‖∞ + ‖ŵ − w̃‖∞+

L1(‖v̂ − ṽ‖∞ + ‖ŵ − w̃‖∞)
)

≤ L2(1 + L1)(‖v̂ − ṽ‖∞ + ‖ŵ − w̃‖∞)

for all (v̂, ŵ), (ṽ, w̃) ∈ DΩ. Similar reasoning shows that
the required Lipschitz condition holds for each ΩU

i as
well, thus by Theorem 2 in Scott and Barton [2013], any
solutions of (10) are state bounds.
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Next, note that the system (10) has the form of ODEs
with LPs embedded, in the same way as the IVP (4). As
noted above,

PL
i ([yL(t),yU (t)] ∩G) = {z : AL

i z ≤ bL
i (yL(t),yU (t))}

PU
i ([yL(t),yU (t)] ∩G) = {z : AU

i z ≤ bU
i (yL(t),yU (t))}

for some AL
i , AU

i , bL
i , and bU

i . While the functions bL
i ,

bU
i are defined by optimization problems themselves, this

does not complicate things. First, as was used above, bL
i

and bU
i are Lipschitz functions on DΩ. Then, since

PL
i ([v,w] ∩G) 6= ∅ ⇐⇒ [v,w] ∩G 6= ∅

for all i ∈ {1, . . . , ny} (and similarly for PU
i ([v,w] ∩ G)),

DΩ must equal the set K within which the solution points
{(yL(t),yU (t)) : t ∈ T} must remain. Also note that DΩ

is locally compact because it is the preimage of the closed

set {d : ∃z : Ãz ≤ d} under the continuous mapping b̃.
Second, the numerical solution method is easily adapted
to solve for zmi (w,w) and zMi (v,w), the values of which
are used to evaluate bL

i (v,w) and bU
i (v,w), respectively.

Finally, we wish to apply the existence and uniqueness
results developed in §3.2 to the problem (10). For k ∈
{1, . . . , 2ny}, let Ik = {1, . . . , pk} and

gcvk (t,p, z,v,w) =

max
i∈Ik
{(cik(t,v,w))T(p, z) + hik(t,v,w)},

k ∈ {1, . . . , ny},
gcc(k−ny)(t,p, z,v,w) =

min
i∈Ik
{(cik(t,v,w))T(p, z) + hik(t,v,w)},

k ∈ {ny + 1, . . . , 2ny}.
A local Lipschitz continuity condition must hold for the
cik and hik, as required by Thm. 5. For many functions g
(in Eqn. (2)), this can be established by constructing the
cik and hik from subgradients of a convex underestimator
of gk, for k ∈ {1, . . . , ny}, by a modification of the
subgradient propagation rules established in Mitsos et al.
[2009]. Similarly, cik and hik can be constructed from
subgradients of a concave overestimator of g(k−ny), for
k ∈ {ny + 1, . . . , 2ny}. However, the specifics of this
construction are out of the scope of this article. It is easy to
see that the rest of the hypotheses in Thm. 5 hold, letting
Dt = R, Dx = R2ny , Dq = R2ny ,

qi(t,v,w) = min
(p,z)

gcvi (t,p, z,v,w)

s.t. p ∈ U,
z ∈ PL

i ([v,w] ∩G) ,

q(i+ny)(t,v,w) = min
(p,z)
−gcci (t,p, z,v,w)

s.t. p ∈ U,
z ∈ PU

i ([v,w] ∩G) ,

and f : (t,v,w,q(t,v,w)) 7→ (q1(t,v,w),−q2(t,v,w)),
where q1 = (q1, . . . , qny ) and q2 = (qny+1, . . . , q2ny )

Meanwhile, for the IVP (10), the sufficient conditions for
the existence of a solution given in Thm. 4 are trivially
satisfied with the exception of Hypothesis 7. The following
two assumptions, if they hold, imply Hypothesis 7.

Assumption 6. There exists t1 > t0 such that for each
t ∈ [t0, t1] there exists z ∈ [v,w] ∩ G and p ∈ U such
that g(t,p, z) ∈ TG(z).

Assumption 7. If for some (p, z) ∈ U × [v,w]∩G one has
g(t,p, z) ∈ TG(z), then f(t,v,w,q(t,v,w)) ∈ TDΩ(v,w).

Whether these assumptions hold for a specific class of
problems (i.e. for specific instances of g, U , Y0, G) is a
subject of future research.

5. EXAMPLE

The enzyme reaction network considered in Example 2 of
Scott and Barton [2013] is used here to demonstrate the
effectiveness of the system (10) in producing tight state
bounds for an uncertain dynamic system. The reaction
network is

A + F 
 F : A→ F + A′,

A′ + R 
 R : A′ → R + A.

The dynamic equations governing the evolution of the
species concentrations y(t) in a closed system are

ẏF = −k1yFyA + k2yF:A + k3yF:A,

ẏA = −k1yFyA + k2yF:A + k6yR:A′ ,

ẏF:A = k1yFyA − k2yF:A − k3yF:A, (11)

ẏA′ = k3yF:A − k4yA′yR + k5yR:A′ ,

ẏR = −k4yA′yR + k5yR:A′ + k6yR:A′ ,

ẏR:A′ = k4yA′yR − k5yR:A′ − k6yR:A′ .

We wish to estimate the reachable set on T = [0, 0.04]
(s), with Y0 = {y0 = (24, 30, 0, 0, 16, 0)} (M) and rate
parameters

k = (k1, . . . , k6) ∈ U , with

U = [k̂, 10k̂],

k̂ = (0.1, 0.033, 16, 5, 0.5, 0.3).

A polyhedral invariant G can be determined from consid-
ering the stoichiometry of the system and other physical
arguments such as mass balance; see Scott and Barton
[2010] for more details. For this system, one has

G = {z ∈ R6 : 0 ≤ z ≤ ȳ,Mz = My0}, with

M =

[
0 −1 −1 0 0 0
0 0 0 0 −1 −1
1 −1 0 1 −1 0

]
,

ȳ = (20, 34, 20, 34, 16, 16).

To get an idea of how the piecewise affine under- and
overestimators of the dynamics (11) are constructed, con-
sider the convex envelope of the bilinear term xy on some
interval. The convex envelope consists of the maximum
of two affine “branches”. However, everywhere on the
interval, either branch is a valid affine underestimator of
the bilinear term, and furthermore the normal vector of the
affine subspace defining a branch is Lipschitz continuous
with respect to the upper and lower bounds defining the
interval (Mitsos et al. [2009]).

The state bounds resulting from the solution of (10) and
the interval arithmetic-based implementation used in Scott
and Barton [2013] are similar; the bounds resulting from
the solution of (10) are at least as tight as those in Scott
and Barton [2013]. See Fig. 1. However, there are certain
states which the previous implementation tended to over-
estimate. For those states, the system (10) is tighter, but
still appears to overestimate the actual reachable set. A
comparison of the two implementations for one of these
pathological states is in Fig. 2.
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Fig. 1. State bounds for yR:A′ computed from the system
of ODE with LPs embedded (10) (blue) and from
the implementation in Scott and Barton [2013] (black
dashed). Solutions of (11) for constant k ∈ U are in
red.
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Fig. 2. State bounds for yA′ computed from the system
of ODE with LPs embedded (10) (blue) and from
the implementation in Scott and Barton [2013] (black
dashed). Solutions of (11) for constant k ∈ U are in
red.
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