
CONTROLLABILITY PROPERTIES IN
SAFE REGIONS ?

Fritz Colonius ∗

∗ Institut für Mathematik, Universität Augsburg, 86159 Augsburg,
Germany (e-mail: fritz.colonius@math.uni-augsburg.de).

control sets, safe regions, open control systems

Abstract: For nonlinear control systems in discrete time, the global controllability structure
within a safe region of the state space is analyzed. The main results characterize those
safe regions, where every point can be steered into a relatively invariant subset of complete
approximate controllability. Furthermore, for parameter dependent systems, loss of invariance
is analyzed.

1. INTRODUCTION

The purpose of this paper is to analyze controllability
properties of nonlinear systems under the additional re-
quirement that a prescribed safe region W in the state
space M is not left. The safe region corresponds to the
requirement that the system should satisfy certain con-
straints in order to ensure integrity of the system. Thus, if
a trajectory leaves the safe region W , then the system
stops. Another interpretatioen is that the complement
H := M \W of the world W is a hole in the state space,
through which the system may disappear. In the theory of
(uncontrolled) dynamical systems, one speaks of “open dy-
namical systems”, or systems with holes in the state space,
and there is a considerable body of literature on them,
cf. Demers and Young [2006] for a survey. In the present
paper we will analyze a class of open control systems in
discrete time. A central notion here are control sets, i.e.,
maximal subsets of complete approximate controllability.
For systems in discrete time, Albertini and Sontag were the
first to study control sets, cf. Albertini and Sontag [1993].
Control sets and their relations to flows and semiflows
have also been analyzed by San Martin and coworkers in
the context of semigroups in Lie groups. They elucidate
relations between the structure of semisimple Lie groups,
semigroup actions, and control sets; cf. e.g. Patrao and San
Martin [2007]. Parameter dependence of control sets has
been analyzed in Gayer [2004], Graf [2011], and Colonius
and Kliemann [2000].

The invariant subsets of complete controllability are called
the invariant control sets. If, under small perturbations,
invariance is lost, one may expect that the perturbed
system still shows similar, although transient behavior.
Here the invariant control sets turn into control sets which
are no more invariant and one can show that they lose
their invariance only if they change discontinuously in the
Hausdorff metric; cf. [Gayer, 2004, Corollary 24]. In the
present contribution, we show that control sets relative to
a safe region, called here W -control sets, are generated. If
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the safe region is small enough, the generated W -control
set is invariant relative to W . Thus the invariant control
sets turn into relatively invariant control sets.

The original motivation for the analysis of invariant con-
trol sets (in continuous time) is due to the fact, that they
often determine the support of invariant measures of asso-
ciated stochastic systems; cf. Arnold and Kliemann [1987].
First results which indicate that analogously relatively
invariant control sets often determine the supports of
conditionally invariant measures for associated stochastic
system are given in Colonius [2012]. This provides a major
motivation for the present paper. It is worth to mention
that the analysis and computation of safe regions in control
systems also originates from rather different application
areas. For example, Tomlin et al. [1998] discuss safe regions
motivated by aircraft traffic control problems.

The contents of this paper is as follows: In Section 2,
relative control sets and their invariance properties are
characterized. Section 3 discusses loss of invariance under
parameter changes. Furthermore, a simple example is
discussed which illustrates the results.

2. CONTROL SETS AND RELATIVE INVARIANCE

In this section, basic definitions and properties of control
systems in discrete time are collected and results on
relative invariance for deterministic control systems are
proved. Some results in the continuous time case have been
given in Colonius and Kliemann [2000], for the discrete
time case considered here we rely on Patrao and San
Martin [2007] and Colonius et al. [2010]; cf. also Wirth
[1998].

Suppose a discrete time control system on a state space
M is given which has the form

xk+1 = f(xk, uk), uk ∈ Ω, k ∈ Z, (1)

where M is a subset of Rd (or a manifold), Ω ⊂ Rd is
compact and connected with intΩ = Ω and f : M×Ω→M
is a continuous map. Throughout we also assume that
fv := f(·, v) is a diffeomorphism on a neighborhood of M
for every v ∈ Ω. Suppose that an open, relatively compact
subset W ⊂M is fixed such that f(W × Ω) ∩W 6= ∅ and
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f(W ×Ω) 6⊂W . We may think of the prescribed region W
as the world in which the system lives.

Sometimes, the following notation will be useful: Let
fW := f|W×Ω : W × Ω → M , and consider, with a slight
abuse of notation, the following “open” control system

xk+1 = fW (xk, uk), uk ∈ Ω, (2)

Note that (2) only makes sense, if xk ∈ W . Thus this
system may enter M \W , but it cannot leave M \W .

For x ∈ M and a control function u : N ∪ {0} → Ω we
abbreviate f0(x, u) := x and

fn(x, u) := fun ◦ fun−1 ◦ ... ◦ fu0(x), n ∈ N.
Analogously, the restricted maps fnW (x, u) are defined.
Control system (1) is forward accessible in W if for every
x ∈ W and every n ∈ N the reachable sets or positive
orbits relative to W

O+,n
W (x) = {fnW (x, u) | u : N ∪ {0} → Ω}

have nonvoid interiors. Obviously, this holds iff all reach-
able sets O+,1

W (x),x ∈ W , at time n = 1 have nonvoid
interiors. Furthermore, forward accessibility implies that
for every x ∈W there is a control u with fn(x, u) ∈W for
all n ∈ N. We also define the negative orbits relative to W

O−,nW (x) := {y ∈W | x = fnW (y, u), u : N ∪ {0} → Ω}
Throughout the rest of the paper, we restrict attention
to forward accessible control systems of the form (2) with
the additional property that the negative relative orbits
O−,1W (x), x ∈W , are either empty or have nonvoid interior.
For brevity, we just call these systems accessible.in the
open, relatively compact world W in a state space M . We
also write

O+
W (x) :=

⋃
n∈N
O+,n
W (x) and O−W (x) :=

⋃
n∈N
O−,nW (x).

Restricting attention to the world W , we obtain the
following notions.

A subset DW ⊂ W with nonvoid interior is called a W -
control set (or relative control set with respect to W ) if

for all x, y ∈ DW one has y ∈ O+
W (x) and DW is maximal

with this property i.e., if D′W ⊃ DW is a set such that

y ∈ O+
W (x) for all x, y ∈ D′W , then DW = D′W . A W -

control set is called relatively invariant, if x ∈ DW and
fk(x, u) 6∈ DW for some control u and some k ∈ N, implies
fk(x, u) 6∈W .

For the sake of brevity, we call relatively invariant W -
control sets just relatively invariant control sets, if it is
clear from the context, which world W is considered. If
W = M , we omit the index W and just speak of control
sets and invariant control sets. By accessibility, a subset
D ⊂ M is an invariant control set iff O+(x) = D for
all x ∈ D. Furthermore, a control set (with W = M) as
defined above is also a control set in the sense of [Patrao
and San Martin, 2007, Section 4.2] (where a much more
general situation is considered) and hence all properties
derived in that paper hold for control sets as defined above.
In particular,

D = O+(x) ∩ intO−(x)

for every x in the core (or transitivity set as it is called
in [Patrao and San Martin, 2007, Section 4.2]) defined by
coreD := {y ∈ D | there is z ∈ D with z ∈ intO+(y)

and y ∈ intO+(z)}; the set coreD is open and it is dense
in D. Since Ω is connected, a control set is invariant
iff it is closed; see [Colonius et al., 2010, Lemma 3].
Relative control sets are, in general, properly contained in
control sets, since they need not be maximal with respect
to the whole state space. Nevertheless, they enjoy many
properties which are analogous to those of control sets.

We define the core of a relatively invariant control set
DW by coreDW := {y ∈ DW | there is z ∈ DW with
z ∈ intO+

W (y) and y ∈ intO+
W (z)}.

Theorem 1. (i) Relative control sets are pairwise disjoint.
(ii) For every relative control set DW the core coreDW is
an open set and it is dense in DW . (iii) A relative control
set DW is relatively invariant iff it is closed relative to W .
(iv) Let DW be a relatively invariant control set. Then
DW is an invariant control set iff ∂DW ∩ ∂W = ∅.

Proof. Assertions (i) to (iii) follow by minor modifica-
tions of the proofs in [Patrao and San Martin, 2007, Sec-
tion 4.2] and [Colonius and Kliemann, 2000, Section 3.3]. If
the condition ∂DW ∩ ∂W = ∅ in (iv) holds, assertion (iii)
implies that DW is a closed control set in M and hence an
invariant control set for system (1). The converse follows,
since an invariant control set in M is closed.

The main result on existence of relatively invariant control
sets is the following.

Theorem 2. Consider a control system of the form (2)
which is accessible in an open, relatively compact world W
in a state space M . Consider x ∈W and assume that there
exists a closed set Q ⊂ W such that for all y ∈ O+

W (x)

one has O+
W (y) ∩ Q 6= ∅. Then there exists a relatively

invariant W -control set DW ⊂ O+
W (x). Furthermore, the

following assertions are equivalent: (i) There is a closed set

Q ⊂ W such that O+
W (x) ∩ Q 6= ∅ for all x ∈ W . (ii) For

every x ∈ W there is a relatively invariant control set D

with D ⊂ O+
W (x). If (i) holds, there are only finitely many

relatively invariant control sets.

Proof. For y ∈ O+
W (x) let Q(y) := O+

W (y) ∩Q. Consider
the family F of nonvoid and compact subsets in W given
by F = {Q(y), y ∈ Q(x)}. Then F is ordered via

Q(y) ≺ Q(z) if z ∈ O+
W (y).

Every linearly ordered set {Q(yi), i ∈ I} has an upper
bound

Q(y) =
⋂
i∈I

Q(yi) for some y ∈
⋂
i∈I

Q(yi),

because the intersection of decreasing compact subsets of
the compact setQ is nonempty. Thus Zorn’s lemma implies
that the family F has a maximal element Q(y). Now we
claim that the set

DW := O+
W (y)

W

is a W -invariant control set; here the closure is taken
relative to W . In fact: Note first that y ∈ Q ⊂ W, hence
y ∈ DW and by accessibility

∅ 6= intO+
W,≤t(y) ⊂ DW .

Thus intDW 6= ∅. Furthermore, every z ∈ DW is approxi-

mately reachable from y within W , i.e., DW ⊂ O+
W (y)

W
.
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Conversely, y ∈ O+
W (z)

W
, because otherwise y /∈ Q(z) =

O+
W (z)

W
∩ Q(x), hence this is a proper subset of Q(y)

contradicting the maximality of Q(y). Thus approximate
controllability in DW holds. In order to show that DW is
a W -control set, we have to verify that DW is maximal
with this property: Otherwise there is a W -control set

D′W ⊃ DW containing a point z /∈ DW = O+
W (y)

W
.

Because approximate controllability holds in D′W it follows

that z ∈ O+
W (y)

W
contradicting the choice of z. Hence DW

is a W -control set. Now consider ϕ(t, z, u) ∈ W with t >

0, u ∈ U , and z ∈ DW . Then ϕ(t, z, u) ∈ O+
W (y)

W
= DW .

Hence DW is W -invariant. Finally, note that for every y

in a W -invariant control set DW ⊂ O+
W (x)

W
one has

∅ 6= O+
W (y)

W
∩Q ⊂W.

HenceW -invariance implies DW
W∩Q 6= ∅. The arguments

above also show that assertion (i) implies assertion (ii).
Next we will show that the number of relatively invariant
W -control sets is finite, if (i) holds. Assume that there
are infinitely many W -invariant control sets DW,n, n ∈
N. Then DW,n ∩ Q 6= ∅ for all n. By compactness of

Q it follows that there is a sequence xn ∈ DW,n ∩ Q
converging to some x ∈ Q ⊂ W . Then one finds a
relatively invariant W -control set DW with DW ⊂ O+(x).
Because the core of DW is nonvoid and Dn = coreDn,
we obtain a contradiction to relative invariance of DW,n

for n large enough. Hence there are only finitely many
relatively invariant W -control sets. It remains to show that
assertion (ii) implies assertion (i). Choose for each of the
finitely many relatively invariant W -control set DW,i a
point xi ∈ coreDW,i, and let Q be this finite set. Then
Q is a compact subset of W and satisfies the condition in
(i).

As a final observation in this section, note that every
control system of the form (1) generates a discrete-time
dynamical system (a skew product system) in the following
way: Denote the space of control functions u : Z → Ω by
ΩZ, define ϑ : ΩZ → ΩZ as the shift

ϑ(..., u−1, u0, u1, ...) := (..., u0, u1, u2, ...),

and let

F : (x, u) 7→ (f(x, u0), ϑu) : M × ΩZ →M × ΩZ. (3)

Then F is invertible and its iterations define a continuous
dynamical system in discrete time, if we endow ΩZ with
the metric

d(u, v) :=
∑
i∈Z

2−|i| ‖ui − vi‖ for u, v ∈ ΩZ.

For the restriction FW : W × ΩZ →M × ΩZ the iteration
(FW ◦ FW ) (x, u) is only defined, if FW (x, u) ∈ W × ΩZ,
i.e., f(x, u0) ∈ W . This construction shows that open
control systems may be viewed as a special case of open
dynamical systems as defined in the literature. Note also
that an analogous construction with ΩN yields a semi-
dynamical system.

3. PARAMETER DEPENDENCE

In this section, we discuss the fate of invariant control
sets, when, under a parameter variation, they lose their

invariance. It will turn out, that for an appropriately
defined small world W , relatively invariant W -control sets
are generated.

Suppose that f depends on a real parameter α ∈ I, where
I is an open interval in R, and consider a family of control
systems of the form

xn+1 = fα(xn, un), un ∈ Ω, α ∈ I. (4)

We assume that for every α the assumptions for system (1)
are satisfied and we denote the corresponding objects for
the α-system by Dα,Oα,+(x), etc. Then [Colonius et al.,
2010, Proposition 3 and Theorem 2] shows the following
continuity properties of control sets.

Theorem 3. Suppose that system (4) with α = α0 is acces-
sible in M , that f is continuous with respect to (x, u, α),
and that the map v 7→ fα(x, v) is a diffeomorphism for
all x, α. Let Dα0 be a compact invariant control set for
fα0

. (i) There are ε0 > 0 and a family of control sets
Dα for |α− α0| < ε0 with the following property: For
all compact subsets K ⊂ coreDα0 there is εK ∈ (0, ε0)
such that K ⊂ coreDα for all α with |α− α0| < εK . The
map α 7→ Dα is lower semicontinuous in the Hausdorff
metric. (ii) Suppose that the map α 7→ Dα is continuous
at α = α0. Then there is ε2 > 0 such that for all α with
|α− α0| < ε2 the Dα are invariant control sets.

This theorem shows that under small perturbations, one
finds near an invariant control set Dα0 a control set for
the perturbed system. While there may be other control
sets near Dα0 for the perturbed system, the condition
in (i) picks a “big” control set. Since we are interested
in situations, where an invariant control set loses its
invariance, assertion (ii) shows that for us only the case
is relevant, where Dα changes discontinuously at α = α0.
The following theorem gives more information on this
situation. It shows that, in addition to the control sets
Dα, relative control sets are generated. While the Dα are
not invariant control sets, these relative control sets are
relatively invariant, if the world W is chosen small enough.

Theorem 4. Consider the family (4) of control systems and
suppose that the assumptions of Theorem 3 are satisfied.
(i) For every open neighborhood W of Dα0 there are ε1 =
ε1(W ) > 0 and a family of relative control sets Dα

W for
|α− α0| < ε0 with the following property: For all compact
subsets K ⊂ coreDα0 there is εK ∈ (0, ε1) such that
K ⊂ coreDα

W for all α with |α− α0| < εK . In particular,

Dα0

W = Dα0 and the map α 7→ Dα
W is lower semicontinuous

in the Hausdorff metric. (ii) There are a neighborhood W
of Dα0 , a constant ε1 > 0 and x0 ∈ coreDα0 such that for
all α with |α− α0| < ε1 one has W ⊂ Oα,−W (x0), i.e., for
every x ∈ W there are k ∈ N and a control u such that

fα,kW (x, u) = x0. (iii) Suppose that W is as in (ii). Then for
|α− α0| small enough, the relative control sets Dα

W from
assertion (i) are relatively invariant.

Proof. (i) Let K ⊂ coreDα0 be a compact set with
nonvoid interior and let x0 ∈ intK. By Theorem 3, the
control set Dα ⊂ M satisfies K ⊂ coreDα for α near α0.
Furthermore, for any two points x, y ∈ K there are n ∈ N
and a control u such that

y = fα0,n
W (x, u).

By compactness of K and accessibility, we may assume
that there is N ∈ N with n ≤ N for all x, y ∈ K. As

Copyright © 2013 IFAC 532



stated in Theorem 3, y ∈ Oα,+(x) for all α near α0.
Inspection of the proof of this result in Colonius et al.
[Colonius et al., 2010, Theorem 2] (which is based on the
implicit function theorem) shows that for α near α0 the
trajectories from x to y are uniformly close to those for α0,
hence y ∈ Oα,+W (x) for α near α0. Thus there is a relative
control set Da

W containing K. Now consider a sequence
of compact subsets Kn with nonvoid interior satisfying
Kn ⊂ Kn+1 ⊂ coreDα0 with

⋃
n∈NKn = coreDα0 . Note

that for every compact subset of coreDα0 there is n with
K ⊂ Kn. Then the argument above yields the desired
family of relative control sets Dα

W . (ii) For y0 ∈ Dα0 there
is a control value v ∈ Ω with fα0(y0, v) ∈ Dα0 . Using that
fα0(·, v) is a diffeomorphism and that coreDα0 is dense in
Dα0 one may assume that there is a compact subset K ⊂
coreDα0 with fα0(y0, v) ∈ intK. By continuity, one has for
all y in a neighborhood of y0 that fα(y, v) ∈ coreDα0 . By
compactness of Dα0 , finitely many of these neighborhoods
cover Dα0 and their union defines a neighborhood W of
Dα0 . Then K ⊂ coreDα

W for the control sets according
to (i) and one finds by controllability in coreDα

W a point

x0 ∈ K with W ⊂ Oα,−W (x0). (iii) Suppose, contrary
to the assertion, that there are x ∈ Dα

W and k ∈ N
such that for some control u one has fk(x, u) ∈ W \ D
and f j(x, u) ∈ W for j = 1, ..., k − 1. The assumption

on W implies that fk(x, u) ∈ W ⊂ Oα,−W (x0) for some
x0 ∈ coreDα0 . By maximality of relative control sets it
follows that fk(x, u) ∈ Dα

W , a contradiction. Hence Dα
W is

relatively invariant.

We observe that for α = α0 every neighborhood of Dα0

and hence every world W as in Theorem 4(ii) may have
nonvoid intersection with control sets different from Dα0 .
This would occur if the control set Dα0 intersects the
closure of another control set D̂α0 .

We briefly discuss a simple example illustrating the results
above. Here a control system on the circle M = R/Z is
considered.

Let f : R/Z× [−1, 1]→ R/Z be given by

fα(x, u) = x+
σ

2π
cos(2πx) +Au+ α mod 1, (5)

where 0 < σ < 1. The control u takes values in Ω :=
[−1, 1]. Consider a small positive value of the control
amplitude A. For α0 = − σ

2π − A the extremal graph
fα0

(·, 1) is tangent to the diagonal at a point b. Here
fα0

admits an invariant control set Dα0 = [b, c] with
b < c. For α below α0 there is an invariant control set
Dα which is an interval that varies continuously with α.
For α > α0 the system is completely controllable on R/Z.
Take the safe region W as an open set containing Dα0

with W ⊂ Oα,−W (x0) for some x0 ∈ coreDα0 , e.g., let
W := (0.1, 0.6). Then for α > α0 the only control set
is the (invariant) control set Dα = R/Z. There is a unique
relatively invariant W -control set Dα

W , which has the form
Dα
W = [b(α), 0.6), where b(α) is given by the intersection

of the lower sinusoidal curve (depending on α) with the
diagonal; hence b(α0) = b is the left boundary point of
Dα0 . Thus this interval is closed relative to W = (0.1, 0.6).

One can easily modify this example, so that to the left of
Dα
W there is a second relative control set in W which then

is open and not relatively invariant.

4. CONCLUSIONS

This paper has introduced relatively invariant control sets
as a generalization of the notion of invariant control sets.
While they share many properties with invariant control
sets, this notion sheds new light on the perturbation theory
of invariant control sets: If the the safe region or world
W around an invariant control set is small enough, then
an invariant control set Dα0 always generates a family
of relatively invariant control sets Dα

W in W . This is of
interest when the perturbed control sets Dα in M have
lost invariance.
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