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Abstract: In this paper, we consider convex optimization problems with constraints. By
combining the idea of a Lie bracket approximation for extremum seeking systems and saddle
point algorithms, we propose a feedback which steers a single-integrator system to the set
of saddle points of the Lagrangian associated to the convex optimization problem. We prove
practical uniform asymptotic stability of the set of saddle points for the extremum seeking
system for strictly convex as well as linear programs. Using a numerical example we illustrate
how the approach can be used in distributed optimization problems.

1. INTRODUCTION

Extremum seeking is a control algorithm which allows
to steer a system to the extremum of a function whose
analytic expression is unknown. For many decades it has
been used in various applications (see Tan et al. [2010],
Krstić and Ariyur [2003], King et al. [2006], Guay et al.
[2004]). Extremum seeking can be interpreted as gradient-
free optimization algorithm for static maps (see Dürr
et al. [2013]). There are only a few references dealing with
extremum seeking for convex optimization problems with
constraints (see DeHaan and Guay [2005], Frihauf et al.
[2012], Poveda and Quijano [2012], Coito et al. [2005]).
One can think of many applications where the goal is to
minimize an unknown function and take constraints into
account whose analytic expression are also unknown.

Consider for example a group of autonomous agents. Each
of them shall minimize the distance between their position
and a base station but at the same time they shall not
exceed given distances among each other. This setup can
be formulated such that the optimal positions are the
solution to a convex optimization problem with constraints
(see also Brunner et al. [2012]). While on the one hand
there are many ways to measure the distance between two
agents, it is on the other hand difficult to measure the
gradient of the distance, especially when both agents are
moving at the same time. Thus, for this problem setup
one can try to find a control law where the gradient of the
distances is not explicitly needed.

Generally speaking, we consider the class of problems
where a convex function is minimized under convex con-
straints, i.e.

inf
x
f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m
(1)

where x ∈ Rn, f ∈ C2 : Rn → R, gi ∈ C2 : Rn → R,
f , gi convex. The goal is to propose a controller that
steers a dynamical system to the solution of problem (1)
without knowledge of the gradients of the functions f and
gi, i = 1, . . . ,m.

? This work was supported by the Deutsche Forschungsgemeinschaft
(Emmy-Noether-Grant, Novel Ways in Control and Computation,
EB 425/2-1, and Cluster of Excellence in Simulation Technology,
EXC 310/1)

There are many different approaches in the literature deal-
ing with algorithms for convex optimization problems (1).
In this paper we focus especially on continuous-time saddle
point algorithms (see Arrow et al. [1958], Dürr and Eben-
bauer [2011], Nazemi [2012]). These algorithms exploit the
fact that if (x∗, λ∗) is a saddle point of the Lagrangian

L(x, λ) = f(x) +

m∑
i=1

λigi(x) (2)

associated to (1), then x∗ is also a solution to the problem
(1). A saddle point is defined as L(x∗, λ) ≤ L(x∗, λ∗) ≤
L(x, λ∗) for all x ∈ Rn, λ ∈ Rm+ . The idea of a saddle point
algorithm is to minimize the Lagrangian with respect to
x and to maximize it with respect to λ while assuring
that λ stays nonnegative. A major advantage of saddle
point algorithms is that they are well suited for distributed
optimization problems (see Nedić and Ozdaglar [2009]).
However, many of the proposed algorithms assume that
the gradients of the functions f and gi, i = 1, . . . ,m
are available. Since we impose above that neither the
gradients of the objective function f nor of the constraints
gi, i = 1, . . . ,m are known, these algorithms are not
directly applicable in the scenario above. For this purpose,
the proposed algorithm in this paper is a combination
of extremum seeking (see e.g. Krstić and Ariyur [2003])
and saddle point algorithms (see e.g. Dürr and Ebenbauer
[2011]).

We propose an extremum seeking feedback for single-
integrator systems which are steered to the solutions of
strictly convex as well as linear optimization problems.
We impose, that the functions f and gi, i = 1, . . . ,m in
(1) are unknown as analytic expression. Instead, they can
only be evaluated at a certain value of x, i.e. it is not
possible to calculate the gradients as analytic expression.
We establish practical stability of the overall systems and
conclude the results with a numerical example where a
distributed optimization setup is considered.

The remainder of this paper is structured as follows.
In Section 2 we recall some mathematical preliminaries.
In Section 3 we state our main result. We consider the
case of (1) being strictly convex as well as (1) being a
linear program. In Section 4 we consider a distributed
optimization problem and show a numerical example. In
Section 5 we summarize the results and state further
research directions.
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2. PRELIMINARIES

2.1 Notation

We will make use of the following notation. Q++ denotes
the set of positive rational numbers. The intervals of real
numbers are denoted by (a, b) = {x ∈ R : a < x < b},
[a, b) = {x ∈ R : a ≤ x < b} and [a, b] = {x ∈ R : a ≤
x ≤ b}. The closure of a set R ⊆ Rn is denoted by R̄.
The norm | · | denotes the Euclidian norm. The Jacobian
of a continuously differentiable function b : Rn → Rm is
denoted by

∂b(x)

∂x
:=


∂b1(x)

∂x1
. . .

∂b1(x)

∂xn
...

. . .
...

∂bm(x)

∂x1
. . .

∂bm(x)

∂xn


and the gradient of a continuously differentiable function

f : Rn → R is denoted by ∇xf(x) :=
[
∂f(x)
∂x1

, . . . , ∂J(x)
∂xn

]>
.

The Lie bracket of two continuously differentiable vector
fields b1, b2 : Rn → Rn is defined by [b1, b2](x) :=
∂b2(x)
∂x b1(x) − ∂b1(x)

∂x b2(x). We use s ∈ C for the complex
variable of the Laplace transformation.

2.2 Extremum Seeking

In this section, we review some results from Dürr et al.
[2013]. As it is shown in Dürr et al. [2013], certain
extremum seeking systems can be written as input-affine
systems

ẋ = b0(x) +

m∑
i=1

bi(x)
√
ωui(ωt) (3)

with x(t0) = x0 ∈ Rn and ω > 0.

We impose the following assumptions on bi and ui:

A1 bi ∈ C2 : Rn → Rn, i = 0, ...,m.
A2 ui ∈ C0 : R → R, i = 1, ...,m and for every

i = 1, ...,m there exist constants Mi > 0 such that
supθ∈R |ui(θ)| ≤Mi.

A3 ui(·) is T -periodic, i.e., ui(θ + T ) = ui(θ) and has

zero average, i.e.,
∫ T

0
ui(τ)dτ = 0, with T > 0 for all

θ ∈ R, i = 1, ...,m.

These assumptions make sure that the results in Dürr et al.
[2013] can be applied here. One main result of that paper is
the approximation of trajectories of (3) by the trajectories
of a so-called Lie bracket system

˙̄x = b0(x̄) +

m∑
i=1
j=i+1

[bi(x̄), bj(x̄)]νji, (4)

where

νji =
1

T

∫ T

0

uj(θ)

∫ θ

0

ui(τ)dτdθ. (5)

Let I,S ⊆ Rn, S compact and Ī ∩ S be non-empty.
The following Lemma establishes semi-global practical
asymptotic stability of (3) with respect to I assuming that
(3) is uniformly positively invariant with respect to I and
(4) is globally asymptotically stable with respect to I. The
stability definitions are recalled below.
Lemma 1. Let Assumptions A1 – A3 be satisfied and sup-
pose that a compact set S is globally uniformly asymptoti-
cally stable with respect to I for (4). Suppose furthermore

that the solutions of (3) are uniformly positively invariant
with respect to I. Then S is semi-globally practically
uniformly asymptotically stable with respect to I for (3).

When dealing with saddle point algorithms in convex
optimization, the Lagrange multipliers λi are part of the
state variables. Their vector field is designed in such a
way that the positive orthant is positively invariant for
the Lagrange multipliers. The set I will be the set which
is uniformly positively invariant for (3) and which restricts
the initial conditions. This is the main difference of Lemma
1 to Theorem 3 in Dürr et al. [2013].

As already used in Lemma 1 we introduce a notion of
stability which differs slightly from Lyapunov stability.
Systems like (3) are characterized by the fact that due
to the persistent excitations of the periodic inputs ui, the
trajectories may not converge to the set S but to a region
which can be made arbitrarily small by choosing ω suffi-
ciently large. Hereby, we speak of practical stability which
is captured by the definitions below. For this purpose, the
a-neighborhood of the set S with a ∈ (0,∞) is denoted by
USa := {x ∈ I : infy∈S |x− y| < a}
Definition 1. S ⊆ Rn is said to be practically uni-
formly stable with respect to the set I for (3)
if for every ε ∈ (0,∞) there exists a δ ∈ (0,∞) and
ω0 ∈ (0,∞) such that for all t0 ∈ R and for all
ω ∈ (ω0,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0,∞). (6)

Definition 2. The solutions of (3) are said to be practi-
cally uniformly bounded with respect to the set
I if for every δ ∈ (0,∞) there exists an ε ∈ (0,∞) and
ω0 ∈ (0,∞) such that for all t0 ∈ R and for all ω ∈ (ω0,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0,∞). (7)

Definition 3. Let δ ∈ (0,∞). S ⊆ Rn is said to be
practically uniformly attractive with respect to
the set I for (3) if for every δ, ε ∈ (0,∞) there exists
a tf ∈ [0,∞) and ω0 such that for all t0 ∈ R and all
ω ∈ (ω0,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0 + tf ,∞). (8)

Definition 4. S ⊆ Rn is said to be semi-globally practi-
cally uniformly asymptotically stable with respect
to I for (3) if it is practically uniformly stable with respect
to I, practically uniformly bounded with respect to I and
practically uniformly attractive with respect to I.

Note that Definition 1 (practical uniform stability with
respect to I) implies that the solutions of (3) are uniformly
positively invariant with respect to I. This notion is
defined as follows.

Definition 5. The solutions of (3) are said to be uni-
formly positively invariant with respect to I if for
all t0 ∈ R

x(t0) ∈ I ⇒ x(t) ∈ I, t ∈ [t0,∞). (9)

If (3) is not depending on a parameter ω as it is the case
for (4), the definitions above coincide with the usual notion
of Lyapunov-stability of a set S with restricted initial
conditions I. In this case we drop the terms “practically”
and “semi” in the definitions above.

2.3 Saddle Point Algorithms

In this section, we review some continuous-time optimiza-
tion algorithms for convex optimization problems of the
form (1). We refer to Elster [1978], Bertsekas [1995] for
further reading on convex optimization. We distinguish
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between strictly convex and linear optimization problems.
The following results were published in Dürr et al. [2011]
and Dürr et al. [2012]. We denote the set of saddle points of
a Lagrangian L, i.e. the points (x∗, λ∗) ∈ Rn × Rm+ which
satisfy L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) for all x ∈ Rn,
λ ∈ Rm+ by

SL = {(x∗, λ∗) ∈ Rn × Rm+ :

(x∗, λ∗) saddle point of L}. (10)

In the following theorem, a continuous-time saddle point
algorithm for strictly convex optimization problems is
considered and stability of SL is established. It will turn
out later, that this algorithm coincides with the associated
Lie bracket system of an extremum seeking system.

Theorem 1. Consider (1), L in (2) and

ẋ = −Γ(∇xf(x) +

m∑
i=1

λi∇xgi(x))

= −Γ∇xL(x, λ) (11a)

λ̇i = λigi(x), i = 1, . . . ,m, (11b)

where Γ is a constant, positive definite matrix. Let L be
strictly convex in x. Furthermore, let SL be non-empty and
compact. Then SL is globally uniformly asymptotically
stable with respect to Rn × Rm++.

The proof goes along the same lines as in Dürr et al. [2012]
using the Lyapunov function

V =
1

2
(x− x∗)>Γ−1(x− x∗)

+

m∑
i=1

λi − λ∗i − λ∗i log(λi) + λ∗i log(λ∗i ),
(12)

with some (x∗, λ∗) ∈ SL and the convention 0 log(0) = 0.

In the next theorem, we extend this result to linear
programs which are a special case of (1).

Theorem 2. Consider (1) and let f(x) = c>x, gi(x) =
a>i x − bi with c, ai ∈ Rn, bi ∈ R, i = 1, . . . ,m. Moreover
consider L in (2) and

ẋ = −Γ(c+

m∑
i=1

λiai +

m∑
i=1

λiai(a
>
i x− bi)) (13a)

λ̇i = λi(a
>
i x− bi), i = 1, . . . ,m, (13b)

with a constant, positive definite matrix Γ. Furthermore,
let SL be a singleton. Then SL is globally uniformly
asymptotically stable with respect to Rn × Rm++.

The proof goes along the same lines as in Dürr et al. [2011]
using the Lyapunov function

Ṽ = V −
m∑
i=1

λi(a
>
i x
∗ − bi) (14)

with (x∗, λ∗) ∈ SL and V in (12).

It will turn out in the following, that the differentiability
properties on f and gi, i = 1, . . . ,m are crucial. These
functions will appear later in the vector field of the ex-
tremum seeking systems. As mentioned above, we consider
extremum seeking systems which can be written in the
form of (3). In order to be able to apply Lemma 1 the
vector fields must satisfy Assumption A1, i.e. they must
be twice continuously differentiable. The dynamics of the
λi’s play an important role at this point. One could also
imagine to use a similar approach as in Arrow et al. [1958]

and Feijer and Paganini [2010], i.e. λ̇i = P(λi, gi(x)),
with P(λi, gi(x)) := 0 if λi = 0 and gi(x) < 0, and
P(λi, gi(x)) := gi(x) otherwise, i = 1, . . . ,m. However,
this renders the vector field non-smooth and does therefore
not satisfy Assumption A1.

3. MAIN RESULTS

In the following we utilize the framework introduced in
Dürr et al. [2013] in order to develop a saddle point
seeking systems for convex optimization problems. We
propose an extremum seeking scheme, whose Lie bracket
approximation system coincides with the saddle points
algorithms from the foregoing subsection.

3.1 Main Idea

By considering an optimization problem in one variable,
i.e., consider (1) and suppose that x ∈ R, we illustrate
the main idea. We extend the extremum seeking feedback
which can be found e.g. in Zhang et al. [2007], Dürr et al.
[2013] by using L as a nonlinear map and additionally
introducing λ in (2) as a separate state. This is illustrated
in Fig. 1.

L(x, λ)1
s

ẋ x

c

α
√
ω sin(ωt)

√
ω cos(ωt)

λ̇i = λigi(x)

λi

Fig. 1. Saddle Point Seeking for a Convex Optimization
Problem in a Single Variable

The extremum seeking system is given by

ẋ = cL(x, λ)
√
ω cos(ωt) + α

√
ω sin(ωt) (15a)

λ̇i = λigi(x), i = 1, . . . ,m. (15b)

Since the objective function f and the constraints gi are
by assumption physically measurable quantities, they may
be part of the vector field of the extremum seeking system.
They appear in (15a) in the Lagrangian and in (15b).
Note also that due to the multiplication of λi in (15b) we
immediately see that the solutions of (15) are uniformly
positively invariant with respect to the set R × Rm++. We
write (15) in input-affine form

ẋ
λ̇1
...
λ̇m

=


0

λ1g1(x)
...

λmgm(x)

+


cL(x, λ)

0
...
0

√ωu1+


α
0
...
0

√ωu2 (16)

with u1 = cos(ωt) and u2 = sin(ωt). The Lie bracket
system associated with (16) is given by

˙̄x = −αc
2
∇x̄L(x̄, λ̄) (17a)

˙̄λi = λgi(x̄), i = 1, . . . ,m. (17b)

We can see two properties of (17). First, the solutions of
(17) are uniformly positively invariant with respect to the
set R×Rm++. This property is inherited from (16). Second,
(17) coincides with (11) for Γ = αc

2 .

In order to prove practical uniform asymptotic stability
of the set of saddle points SL of L we must show that
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L(x, λ)
...

1
s

1
s

...
...

c1

cn
s

s+hn

s
s+h1

αn
√
ωn sin(ωnt)

α1
√
ω1 sin(ω1t)

√
ω1 cos(ω1t)

√
ωn cos(ωnt)

λ̇i = λigi(x)

λi

x

Fig. 2. Saddle Point Seeking for Convex Optimization
Problems

SL is globally uniformly asymptotically stable for (17).
Suppose that L is strictly convex and that the set of
saddle points SL is non-empty and compact. We make two
observations. First, one can verify that Assumptions A1 –
A3 are satisfied for the vector field in (15). Second, since
the assumptions of Theorem 1 are satisfied, we can directly
conclude that the set of saddle points of L is globally
uniformly asymptotically stable for (17) with respect to
R× Rm++.

Thus, all assumptions of Lemma 1 are satisfied and we
conclude that the set of saddle points of L is semi-globally
practically uniformly asymptotically stable for (15) with
respect to R× Rm++.

3.2 Saddle Point Seeking for Convex Optimization Problems

The previous idea is now extended to strictly convex
optimization problems in multiple variables. Consider
the extremum seeking feedback in Fig. 2. We see that
for every component xi of x = [x1, . . . , xn]> an ex-
tremum seeking feedback is introduced while the si-
nusoidal perturbations have different frequencies ωi for
each component. Furthermore, in each extremum seek-
ing feedback we see a washout filter with parameter hi.
This filter is common in the extremum seeking liter-
ature and it provides a better transient behavior (see
e.g. Zhang et al. [2007], Krstić and Ariyur [2003]). It
does not influence the stability as we show below in
Theorem 3.

The extremum seeking system is given by
ėk =− hkek + L(x, λ) (18a)

ẋk =ck(−hkek + L(x, λ))
√
ωk cos(ωkt) (18b)

+ αk
√
ωk sin(ωkt), k = 1, . . . , n

λ̇i =λigi(x), i = 1, . . . ,m. (18c)

We impose the following assumption on the parameters:

D1 ωk = akω and ak 6= al, k 6= l, ai ∈ Q++, ω ∈ (0,∞),
hk, αk, ck ∈ (0,∞), k, l = 1, . . . , n.

Next, we define the set

ESL
=

{
e∗ ∈ Rn : e∗ = L(x∗, λ∗)

[
1

h1
, . . . ,

1

hn

]>
,

(x∗, λ∗) ∈ SL
}
,

(19)

which will be used in the following as the set which is
practically attractive for the states e = [e1, . . . , en]>.
Theorem 3. Consider (1), L in (2) and (18). Let L be
strictly convex in x. Furthermore, let SL be non-empty

and compact and Assumption D1 be satisfied, then the set
ESL
×SL is semi-globally practically uniformly asymptot-

ically stable with respect to Rn × Rn × Rm++.

Proof. The proof consists of three steps and goes along
the procedure introduced in Dürr et al. [2013].

First, we calculate the corresponding Lie bracket system
for (18). Similar as in the proof of Theorem 4 in Dürr et al.
[2013] we make use of Assumption D1. We obtain the Lie
bracket system

˙̄ek = −hkēk + L(x̄, λ̄), k = 1, . . . , n (20a)

˙̄x = −Γ∇x̄L(x̄, λ̄) (20b)

˙̄λi = λ̄igi(x̄), i = 1, . . . ,m (20c)

with Γ = diag(α1c1
2 , . . . , αncn

2 ) which is positive definite
due to Assumption D1.

Second, we show that (20) is globally uniformly asymptot-
ically stable with respect to I. Note that the subsystem
(x̄, λ̄) in (20) is independent of ē = [ē1, . . . , ēn]>. Further-
more, the subsystem satisfies all assumptions of Theorem
1. Thus, we conclude that SL is globally uniformly asymp-
totically stable with respect to I for the subsystem (x̄, λ̄).
Due to Assumption D1 which yields that hk ∈ (0,∞),
the subsystems ˙̄ek = −hkēk + L(x̄, λ̄), k = 1, . . . , n with
u = L(x̄, λ̄) are linear, ordinary differential equations
with exponentially stable origin. Thus, L(x̄, λ̄) is bounded
and therefore ēk is bounded with gain 1

hk
, k = 1, . . . , n.

We conclude that the set ESL
× SL is globally uniformly

asymptotically stable with respect to I.

Third, the extremum seeking system in (18) is uniformly
positively invariant with respect to I. Thus, all assump-
tions of Lemma 1 are satisfied which results in the claim
of the theorem. �

In the proof of the previous theorem, it is crucial that the
vector field of the subsystem consisting of (x̄, λ̄) in the Lie
bracket system (20) coincides with the vector field of (11).
In the following, we exploit this observation and extend
the result to linear programs. The idea is to construct
an extremum seeking system whose respective Lie bracket
system coincides with (13).

Consider L in (2). One can verify, that the vector field
(13a) is the gradient of

L̃(x, λ) = L(x, λ) +
1

2

m∑
i=1

λi(a
>
i x− bi)2, (21)

i.e. (13a) can be written as ẋ = −∇xL̃(x, λ) with L̃ as
defined in (21). Thus, by replacing L(x, λ) in the extremum

seeking feedback in Fig. 2 with L̃(x, λ) we obtain

ėk =− hkek + L̃(x, λ) (22a)

ẋk =ck(−hkek + L̃(x, λ))
√
ωk cos(ωkt) (22b)

+ αk
√
ωk sin(ωkt), k = 1, . . . , n

λ̇i =λi(a
>
i x− bi), i = 1, . . . ,m. (22c)

Theorem 4. Consider (1) and let f(x) = c>x, gi(x) =
a>i x − bi with c, ai ∈ Rn, bi ∈ R, i = 1, . . . ,m. More-
over consider L in (2) and (22). Furthermore, let SL be
a singleton and let Assumption D1 be satisfied. Then
the set ESL

× SL is semi-globally practically uniformly
asymptotically stable with respect to Rn × Rn × Rm++.
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Fig. 3. Distributed Saddle Point Seeking

One can verify that the corresponding Lie bracket system
of (22) yields

˙̄ek = −hkēk + L̃(x̄, λ̄), k = 1, . . . , n (23a)

˙̄x = −Γ∇zL̃(x̄, λ̄) (23b)

˙̄λi = λ̄igi(x̄), i = 1, . . . ,m (23c)

with Γ = diag(α1c1
2 , . . . , αncn

2 ) which is positive definite
due to Assumption D1. Thus, the subsystem consisting of
(x̄, λ̄) in the Lie bracket system (23) coincides with the
vector field of (13) and with Theorem 2 we conclude that
the saddle point SL is uniformly asymptotically stable for
(x̄, λ̄) with respect to Rn×Rm++. The rest of the proof goes
along the same lines as the proof of Theorem 3.

4. DISTRIBUTED OPTIMIZATION EXAMPLE

In this section, we use the example in the introduction to
illustrate an application of the established results above for
distributed optimization. Similar as in Dürr et al. [2013]
we exploit the fact that the problem can be formulated as
a separable optimization problem.

Consider three agents 1, 2, 3 with positions X1 = [x1, y1]>,
X2 = [x2, y2]>, X3 = [x3, y3]>. We impose distance
constraints between agents 1 and 2 as well as between
agents 2 and 3 while every agent has its own base station
A,B,C. The positions of the base stations are denoted
by XA = [xA, yA]>, XB = [xB , yB ]>, XC = [xC , yC ]>.
We formulate this problem as a quadratic program with
quadratic constraints

min |X1 −XA|2 + |X2 −XB |2 + |X3 −XC |2
s.t. |X1 −X2|2 ≤ d1,

|X3 −X2|2 ≤ d2.

(24)

Note that in this problem, the objective function is com-
posed of the distances between the agents and their re-
spective base station and the constraints are the dis-
tances among certain agents. Thus, these quantities can
be measured through sensors, but not their gradients. The
Lagrangian of this problem is given by

L(X,λ) = |X1 −XA|2 +|X2 −XB |2 + |X3 −XC |2
+ λ1(|X1 −X2|2 − d1) + λ2(|X3 −X2|2 − d2).

(25)

Note that the Lagrangian above depends on the position
of all agents, i.e. every agent must know the position of
every other agent if we considered agents as in Fig. 2.
In order to solve the problem in a distributed way,
we propose the extremum seeking feedbacks given in
Fig. 3a where each agent implements an individual Li
which depends only on its position and the position of
neighboring agents.

Since we have ∇XiLi = ∇XiL with

L1(X,λ) = |X1 −XA|2 + λ1(|X1 −X2|2 − d1)

L2(X,λ) = |X2 −XB |2 + λ1(|X1 −X2|2 − d1)

+ λ2(|X3 −X2|2 − d2)

L3(X,λ) = |X3 −XC |2 + λ2(|X3 −X2|2 − d2),

(26)

it suffices that every agent uses the individual Lagrangian
Li. One can verify that the Lie bracket system corre-
sponding to the overall system is the saddle point system
(11) with Lagrangian (25). We see furthermore in (26)
that the Lagrange multipliers λ1 and λ2 in (25) must be
known only to neighboring agents. For the parameters,
we choose XA = [1,−1]>, XB = [1, 1]>, XC = [−1, 1]>,
d1 = d2 = 1, αi = ci = 0.2, hi = 1, i = 1, . . . , 3,
ω1x = 80, ω1y = 81, ω2x = 82, . . . , ω3y = 85. A simulation
with these values is shown in Fig. 3b and one can see that
the agents converge to the saddle point of L in (25) (the
exact solutions are denoted as dashed lines).

5. SUMMARY AND OUTLOOK

We proposed an extremum seeking feedback for saddle
points problems arising in convex optimization. Using a
Lie bracket approximation, we show that the extremum
seeking system can be approximated with a saddle point
algorithm. Since the set of saddle points of the Lagrangian
associated to the optimization problem is asymptotically
stable for the saddle point algorithm, it is practically
uniformly asymptotically stable for the extremum seeking
system. We also showed that the proposed feedback can
be applied to distributed optimization problems with
constraints.

It is of future research to generalize the ideas in this paper
to more complex dynamics like unicycle models. Another
interesting aspect is to consider the case where only the
value of the Lagrangian is available. In this case, one can
introduce extremum seeking loops for the λi’s.

Appendix A. PROOF OF LEMMA 1

Note that Assumptions A1 – A3 imply the satisfaction of
Assumptions A1 – A4 in Dürr et al. [2013]. Thus we can
use Theorem 1 in Dürr et al. [2013]. The rest of the proof
follows the same lines as the proof of Theorem 1 in Moreau
and Aeyels [2000] except that we now introduce the set I
which is assumed to be uniformly positively invariant and
restricts the set of initial conditions.

Practical uniform stability We now show that S is
practically uniformly stable for (3), see Definition 1. Take
an arbitrary ε ∈ (0,∞) and let C1 ∈ (0, ε). First observe
that, since S is uniformly stable with respect to I for (4),
there exists a δ ∈ (0,∞) such that for all t0 ∈ R

x̄(t0) ∈ USδ ⇒ x̄(t) ∈ USC1
, t ∈ [t0,∞). (A.1)

Second observe that, since the set S is semi-globally
uniformly attractive with respect to I for (4) and we have
that for every C2 ∈ (0, δ) there exists a time tf ∈ (0,∞)
such that for all t0 ∈ R

x̄(t0) ∈ USδ ⇒ x̄(t) ∈ USC2
, t ∈ [t0 + tf ,∞). (A.2)

Let D = min{ε − C1, δ − C2}, B = K = USδ and tf
determined above. Due to Theorem 1 in Dürr et al. [2013],
there exists an ω0 ∈ (0,∞) such that for all ω ∈ (ω0,∞)
and all x(t0) ∈ K = USδ , |x(t)− x̄(t)| < D, t ∈ [t0, t0 + tf ].
This together with (A.1), (A.2) and the uniform positive
invariance of x(t) with respect to I yield for all ω ∈
(ω0,∞)
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x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0, t0 + tf ]

and x(t0 + tf ) ∈ USδ .
(A.3)

Since x(t0 + tf ) ∈ USδ and a repeated application of the
procedure with another solution x̄(t) of (4) through x(t0 +
tf ) with the same choice of D, K and tf as above yields
for all t0 ∈ R, for all ω ∈ (ω0,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0,∞). (A.4)

Practical uniform boundedness Take an arbitrary δ ∈
(0,∞) and let C1 ∈ (0, δ). Since S is uniformly bounded
with respect to I and uniformly attractive with respect to
I for (4) there exist C2 ∈ (0,∞) and tf ∈ (0,∞) such that
for all t0 ∈ R

x̄(t0) ∈ USδ ⇒ x̄(t) ∈ USC2
, t ∈ [t0,∞)

and x̄(t) ∈ USC1
, t ∈ [t0 + tf ,∞).

(A.5)

Let ε ∈ (C2,∞), D = min{δ − C1, ε − C2}, B = K = USδ
and tf determined above. Due to Theorem 1 in Dürr
et al. [2013], there exists an ω0 ∈ (0,∞) such that for
all ω ∈ (ω0,∞) and all x(t0) ∈ K = USδ , |x(t)− x̄(t)| < D,
t ∈ [t0, t0 + tf ]. This together with (A.5) and the uniform
positive invariance of x(t) with respect to I yield for all
ω ∈ (ω0,1,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0, t0 + tf ]

and x(t0 + tf ) ∈ USδ .
(A.6)

Since x(t0 + tf ) ∈ USδ and a repeated application of the
procedure with another solution x̄(t) of (4) through x(t+
tf ) and the same choice of D, K and tf as above yields for
all t0 ∈ R, for all ω ∈ (ω0,∞)

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0,∞). (A.7)

Practical uniform attractivity Choose some δ, ε ∈
(0,∞). By practical uniform stability proven above, there
exist C1 ∈ (0,∞) and ω0,1 ∈ (0,∞) such that for all t0 ∈ R
and for all ω ∈ (ω0,1,∞)

x(t0) ∈ USC1
⇒ x(t) ∈ USε , t ∈ [t0,∞). (A.8)

Let ε1 ∈ (0, C1). Since the set S is uniformly attractive for
(4), there exists a tf ∈ (0,∞) such that for all t0 ∈ R

x̄(t0) ∈ USδ ⇒ x̄(t) ∈ USε1 , t ∈ [t0 + tf ,∞). (A.9)

Note that by uniform boundedness there exists an A ∈
(0,∞) such that for every t0 ∈ R we have that x̄(t0) ∈
USδ ⇒ x̄(t) ∈ USA , t ∈ [t0,∞). Due to Theorem 1 in Dürr
et al. [2013] with B = K = USδ , D = C1−ε1 and tf defined
above there exists an ω0,2 ∈ (0,∞) such that for all t0 ∈ R
and for all ω ∈ (ω0,2,∞) and all x(t0) ∈ K = USδ we have
that |x(t) − x̄(t)| < D, t ∈ [t0, t0 + tf ]. This estimate
together with (A.9) and the uniform positive invariance
of x(t) with respect to I yield for all t0 ∈ R and for all
ω ∈ (ω0,2,∞)

x(t0) ∈ USδ ⇒ x(t0 + tf ) ∈ USC1
. (A.10)

With (A.8), this leads for all t0 ∈ R and for all ω ∈ (ω0,∞)
with ω0 = max{ω0,1, ω0,2} to

x(t0) ∈ USδ ⇒ x(t) ∈ USε , t ∈ [t0 + tf ,∞). (A.11)

This is the last property we had to prove.
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H. B. Dürr, S. S. Zeng, and C. Ebenbauer. Ein nicht-
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