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Abstract: This paper considers the nonlinear observer normal forms and their application
in an ecological Predator-Prey system. These forms allow for the design of robust observers
for Predator-Prey models where full measurement is not available. Thus, from a measured
population of one specie (prey or predator), one can estimate the population that is not directly
measured.

1. INTRODUCTION

Observer design for nonlinear systems is not an easy task
and although research in this area has intensified in recent
years, many problems remain. In 1983, two important and
distinct contributions were made to this field. These were
based on the notion of high-gain observer design (Gauthier
et al. [1992]), and the so-called nonlinear observer normal
forms Krener and Isidori [1983]. The latter consists of
transforming a single output nonlinear dynamical system
into an observable linear part and a non-linear term involv-
ing the output. It turns out that this particular form allows
for adaption of the linear Leunberger observer approach for
this particular class of nonlinear systems.
The case of multiple output dynamical system was then
treated in Krener and Respondek [1985] and Xia and Gao
[1989]. Since then, many geometrical algorithms based on
the above body of work have been published, e.g. see (
Boutat et al. [2009], Lynch and Bortoff [2001]). Others
methods called direct transformations can be found in
Lopez et al. [1999], Glumineau et al. [1996] and references
therein. The concept of nonlinear observer normal forms
depending on the output was addressed in Respondek et al.
[2004], Krener and Respondek [1985], Zheng et al. [2007],
Wang and Lynch [2010]. The most recent concept is the
extended nonlinear observer normal forms introduced in
Jouan [2003] and developed in Noh et al. [2004], Back et al.
[2006], Boutat [2007], Boutat and Busawon [2011].
The above observer design (nonlinear observer forms)
methodology has found applications in electrical/electronic
and robotic fields, however, we are not aware of any study
considering the applicability of the approach to the field
of ecosystems modelled as a Lotka-Volterra system (see
Volterra [1931, 1928]). This model, which also is called
Predator-prey model, was developed by Volterra [1928] to
study the interaction of competing or cooperative species.
The general model called Kolmogorov’s predator-prey
model, that undergoes n populations (more precisely the
non-dimensional population density) xi for i = 1 : n in
competition or in cooperation, and can be described as
follows

ẋi = xifi(x) (1)

where x = (x1, ..., xn)
T , functions fi are the per capita

growth rate of the species. A population i is a predator
for a prey population j ̸= i if and only if the following
inequalities hold

∂fj
∂xi

> 0 and
∂fi
∂xj

< 0

In addition, if these condition are fulfilled we say that
the populations i and j are in competition. If the above
partial differential inequalities are positive, it is said that
the populations i and j are in cooperation.
To our knowledge, research that relate to the synthesis of
observers for predator prey models are all based on the
Leunberger’s observer applied to the linear part using the
Lipschitz structure of those models (López et al. [2007a],
Vaidyanathan [2010], López et al. [2007b], Varga et al.
[2010] and references therein), works using high order poly-
nomial observer Mata-Machuca et al. [2010], or interval
observer Bernard et al. [1998], Rapaport and Harmand
[2002].
In this work, we propose to develop nonlinear observer
normal forms for some prey-predator models. Our goal is
not to present a general model that responds all situations,
but rather, to show that these methods work very well and
can open a new field of applications.
Along this work we assume that we know the parameters
of the systems to be studied This paper is organized as fol-
lows: The next section recalls some well-known nonlinear
observer normal forms. Section 3 gives a background on ge-
ometrical material to compute the change of coordinates.
Section 4 deals with the transformation of the two species
model. Section 5 gives the change of coordinates for the
three species. The last section is devoted to transform a
prey-predator model into an extended nonlinear observer
normal form.

2. OBSERVERS FOR A CLASS OF
NONLINEAR DYNAMICAL SYSTEMS

There is a class of nonlinear systems for which the design
of observer is relatively straight forward. This class is
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referred to as the so-called nonlinear observer normal
forms described as follows{

żi = Ai(y, w)z1 + βi(y, w)
ẇ = η(y, w)
yi = z1,ri

(2)

where

Ai(y, w) =


0 ... ... ... 0

αi,2 0 ... ... 0
0 αi,3 0 ... ...

0 0
. . . 0 ...

0 ... 0 αi,ri 0

 (3)

is a matrix ri× ri where the vector state z = (zT1 , ..., z
T
m)T

is such that for i = 1 : m zi = (zi,1, ..., zi,ri)
T , y =

(y1, ..., ym)T is the measured output or a diffeomorphism
of the measured output, αi are non-vanishing functions
of the output and w are auxiliary variables or auxiliary
output (the last example of this paper illustrates how this
auxiliary variables is introduced).
Indeed, for dynamical systems where Ai are constant
namely αi = 1 for all i = 2 : m, we use Leunberger’s
observer.

In those situations where at least one of the αi is not
constant, we could use the high gain observer strategy
(Gauthier et al. [1992])

˙̂zi =Aiẑ + βi(w, y)− Γ−1(y)R−1
i,ρC

T
i (Ciẑ − yi) (4)

0 = ρRi,ρ +GT
i Ri,ρ −Ri,ρGi + CT

i Ci (5)

where Gi, Γiand Ri,ρ are the parameters defined, respec-
tively by the ri × ri matrices

Gi =


0 · · · 0 0
1 · · · 0 0
...
. . .

...
...

0 · · · 1 0


with

Γi(y) = diag[
n

Π
j=2

αi,j(y),
n

Π
j=3

αi,j(y), · · · , αi,2(y), 1]

and

Ri,ρ(n+ 1− i, n+ 1− j) =
(−1)i+jCj−1

i+j−2

ρi+j−1

for 1 ≤ i, j ≤ n.
Observation error is given by:

ėi = (Ai(y)− Γ−1
i (w, y)R−1

i,ρC
T
i C)ei

It well-known that if the state of this normal form is
bounded or its outputs (y, w) are bounded, then the
observation error is exponentially stable assuming that ρ
is properly chosen Gauthier et al. [1992].

Remark 1. When αi,ri(y) (see the expression of the
matrix (3)) depends only on the output y, then it can
be assumed that αi,ri = 1. Indeed, it just takes as new

output zi,ri = yri =
∫ y

0
ds

αi,ri
(s) . Thus, żi,ri = zi,ri−1. This

allows us to reduce the number of αi,j that needs to be
computed.

3. GEOMETRICAL BACKGROUND TO
COMPUTE THE COORDINATE CHANGE

This section presents an algorithm for computing a change
of coordinate which would transform a dynamical system
into the nonlinear observer normal form described by (2).
Let ωi for i = 1 : n be differential 1-form which form a co-
frame ω = (ω1, ..., ωn), and let τ = (τ1, ..., τn) for i = 1 : n
be vector fields which form a dual frame of ω. Thus, we
have:

ωi(τ j) = δij for 1 ≤ i, j ≤ n (6)

δij = 0 for i = j and 0 otherwise

Lemma 1. The following assertions are equivalent:

(1) 1-forms ωi are closed i.e. dωi = 0
(2) vector fields τ i commute with respect to the Lie

brackets i.e. [τ i, τ j ] = 0. Note [, ] denotes the Lie
bracket.

Proof 1. In fact, the evaluation of a differential of 1-form
ωi on two vector fields τ j and τk is given by:

dωi(τ j , τk) = Lτjωi(τk)− Lτk
ωi(τ j)− ωi[τ j , τk];

as ω(τ) = In×n, then we have:

dωi(τ j , τk) = −ωi[τ j , τk].

As τ is a basis, then form the above equation we obtain
[τ j , τk] = 0 for all 1 ≤ j, k ≤ n if and only if dωi = 0 for
any given 1 ≤ i ≤ n. Thus, the two assertions in Lemma
1 are equivalent.

Dynamical systems that fulfill the so-called observability
rank condition have naturally such frame τ and co-frame
ω. In fact, consider the following dynamical system{

ẋ = F (x)
y = h(x)

(7)

where x is the state and y is the output.
Here, we consider a particular situation that corresponds
to the dynamical systems studied in this article. The
output y = h(x) ∈ R is single or double h(x) =
(h1(x), h2(x))

T ∈ R2. We assume the observability rank
condition. Thus there is r1 ≥ r2 ≥ 0 such that

(1) the observability indices are such that r2 ≤ r1, r1 +
r2 = n and r1 − r2 ≤ 1

(2) θ1,i = dLi−1
F h1 for i = 1 : r1 and θ2,i =

dLi−1
F h2 for i = 1 : r2 are linearly independent,

where d is the differential and Lk
Fhi is the kth Lie

derivative of hi in the direction of vector field F .

Therefore, one can build the frame τ as follows:
To begin with we determine two vector fields τ1,1 and τ2,1
from the following algebraic equations

θ1,i(τ1,1) = 0 for 1 ≤ i ≤ r1 − 1 and θ1,r1(τ1,1) = 1

θ2,j(τ1,1) = 0 for 1 ≤ j ≤ r2

θ2,j(τ2,1) = 0 for 1 ≤ j ≤ r2 − 1 and θ1,r2(τ2,1) = 1

θ1,i(τ2,1) = 0 for 1 ≤ i ≤ r2

and then, we construct the others vector fields by induction
as follows
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τ1,k = [τ1,k−1, F ] for 2 ≤ k ≤ r1

τ2,k = [τ2,k−1, F ] for 2 ≤ k ≤ r2

Where [, ] denotes the Lie bracket. By the observability
rank condition, τ = (τ1,k, τ1,j) is a frame. Now, to
construct the co-frame we set Λ = θ(τ), the evaluation
of the 1-forms θ on the vector fields τ . Then, we have
ω = Λ−1θ. It is easy to check that ω and τ fulfill the dual
equation (6).
Let us now describe the algorithm that will be used in this
work to transform the considered predator-prey models.

3.1 Algorithm

(1) Nonlinear observer normal form: Krener and Isidori
[1983], Krener and Respondek [1985], Xia and Gao
[1989]
If τ fulfils the Lemma 1, then there exists a change of
coordinates that will transform the dynamical system
(7) into the nonlinear observer normal form (2) where
Ai is constant and z1,r1 = y1 and z2,r2 = y2 + ν(y1).

(2) Nonlinear observer normal form with a change on the
output: Respondek et al. [2004], Boutat [2007], Boutat
et al. [2009]
If τ doesn’t fulfil the Lemma 1, then we build a new
frame by setting for i = 1 : 2, σi,1 = li(y)τ i,1, and
σi,k = [F, σi,k−1] for 2 ≤ k ≤ ri. If this new frame
σ fulfils the Lemma 1, then there exists a change of
coordinates that will transform the dynamical system
(7) into the nonlinear observer normal form (2) where
Ai constant and z1,r1 = ν1(y) and z2,r2 = ν2(y) such
that ν = (ν1, ν2)

T is a diffeomorphism on the output.

(3) Depending output nonlinear observer normal form:
Respondek et al. [2004], Zheng et al. [2007], Wang
and Lynch [2010]
If τ doesn’t fulfil the Lemma 1, then we build a new
frame by setting for i = 1 : 2, τ i,1 = πi(y)τ i,1
and τ i,k = 1

αi,j
[F, τ i,k−1] for 2 ≤ k ≤ ri, where

πi = αi,1...αi,ri and αi,j are function of the output
y as in (2). If this new frame τ fulfils the Lemma
1, then there exists a change of coordinates that
will transform the dynamical system (7) into the
nonlinear observer normal form (2) where Ai(y)s are
function of the output.

(4) Extended nonlinear observer normal form: Noh et al.
[2004], Back et al. [2006], Boutat [2007], Boutat and
Busawon [2011], Yang and Back [2011]
If the frame τ doesn’t fulfil the Lemma 1, then we
add an auxiliary dynamics ẇ = η(y, w) to the orig-

inal dynamical system (7). We set

(
ẋ
ẇ

)
= F1 =(

F
η(y, w)

)
, and for i = 1 : 2, we set σi,1 = li(w)τ i,1

and σi,k = [F1, σi,k−1] for 2 ≤ k ≤ ri.
If this new frame σ fulfils the Lemma 1, then there
exists a change of coordinates that will transform the
dynamical system (7) into the nonlinear observer nor-
mal form (2) where Ai(y, w) depends on the output
y and auxiliary variable w.

4. OBSERVER FOR TWO SPECIES MODEL

In this section, we consider the following Lotka-Volterra
model by assuming per capita growth rates fi in (1) are
linear {

ẋ1 = x1(a− bx2)
ẋ2 = x2(−c+ ex1)
y = x1

(8)

Here, the state xi are the state variable that are assumed
to be > 0, and y is the output and parameters a, b,
c, d > 0 are defined as:

• Parameter a is the growth rate of the prey in the
absence of interaction with predator, and b measures
the impact of predation.

• Parameter c is the natural death of predator in the
absence of food, and e denotes the efficiency of the
predator in interaction with prey.

The observability 1-forms of the model (8) are given by
θ1 = dy = dx1 and θ2 = (a− bx2) dx1 − bx1dx2.
It is clear that these 1-forms are independent. Therefore,
the dynamical system (8) fulfils the rank observability
condition. A straightforward calculation gives the frame
τ as follows
τ1 = −1

bx1

∂
∂x2

and τ2 = ∂
∂x1

+(a− bx2 +−c+ ex1) τ1. Now,
we have
[τ1, τ2] =

1
x1
τ1 ̸= 0.

Thus the first step in the algorithm is not fulfilled in which
case we will use the second step of the algorithm. Let us
consider l(x1) a function of the output, and set
σ1 = lτ1 and we obtain σ2 = lτ2 − l′ (x1(a− bx2)) τ1.
A simple calculation gives

[σ1, σ2] =
(

l2

x1
− ll′

)
τ1 = 0 if and only if l = x1 = y.

Now, we are ready to compute the change of coordinates.
First compute

Λ = θ(σ) =

(
θ1(σ1) θ1(σ2)
θ2(σ1) θ2(σ2)

)
, which gives

Λ =

(
0 x1

x1 l (a− bx2 − c+ ex1)

)
,

thus the differential of the change of coordinates is as
follows

dz = Λ−1θ =

(
d(c lnx1 − ex1 − bx2)

1

x1
dx1

)
.

This implies the following change of coordinates

z1 = c lnx1 − ex1 − bx2

z2 = lnx1

Finally, the nonlinear observer normal for the dynamical
system (8) is given by{

ż = Az + β(y)
y = ln y = z2

where A =

(
0 0
1 0

)
and β(y) =

(
c− ae exp(y)

a+ e exp(y)− cy

)
Remark 2. If the output y = x2 was measured instead
of x1, then the same method would result in the following
change of coordinates

Copyright © 2013 IFAC 684



z1 =−a lnx2 + ex1 + bx2

z2 = lnx2

which gives the nonlinear observer normal form as follows{
ż1 = ac− ac exp y
ż2 = z1 − c− e exp y + ay
y = ln y = z2

5. OBSERVER FOR TWO PREY AND ONE
PREDATOR

This section deals with the nonlinear observer normal
form for an environment with two prey and one predator
(Mamat et al. [2011]). We assume that prey is measured
and like to estimate the predator. The model is as follows


ẋ1 = x1 (a1 − b1x1 − c1x2 + d1x3)
ẋ2 = x2 (−a2 + b2x1 + c2x3)
ẋ3 = x3 (a3 − b3x2 − c3x3 + d2x3)
y1 = x1

y2 = x3

(9)

where x1 > 0 and x3 > 0 are two prey in cooperation and
x2 > 0 is the predator and ai, bi, ci > 0 for all i = 1 : 3
and d1, d2 > 0.

The observability 1-forms of dynamical system (9) are
given by
θ1,1 = dx1, θ1,2 = −c1x1dx2 + (a1 − 2b1x1 − c1x2 +
d1x3)dx1 + d1x1dx3 and θ2,1 = dx3.
It is clear that they are independent. Thus the dynamical
system (9) fulfills the rank observability condition with
observability indices r1 = 2 and r2 = 1. A straightforward
calculation gives the associated frame

τ1,1 =− 1

x1c1

∂

∂x2

τ1,2 = (−a2 + (b2 − b1)x1 + (c2 + d1)x3 + a1 − c1x2) τ1,1

+
∂

∂x1
+

b3x3

x1c1

∂

∂x3
.

Further calculation shows [τ1,1, τ1,2] = 2
y1
τ1,1. Now, we

use the second step of algorithm to obtain
σ1,1 = − 1

c1
∂

∂x2
, and σ1,2 = x1

∂
∂x1

+(−a2 + b2x1 + c2x3)σ1,1+
b3x3

c1
∂

∂x3
.

A straightforward calculation gives σ2,1 = x3
∂

∂x3
+

c1c2
b3

x3σ1,1 which commutes with σ1,1 and σ1,2

Now, let us compute the change of coordinates

Λ = θσ =


0 x1 0

x1 x1m

(
d1 +

c1c2
b3

)
x3x1

0
b3x3

c1
x3


where m = (a1 − 2b1x1 − c1x2 + d1x3 − a2 + b2x1 + c2x3 +
d1b3x3

c1
).

The change of coordinates is given by dz = Λ−1θ as follows

z1,1 =−c1x2 − b2x1 + a2 lnx1 −
c1c2
b3

x3

z1,2 = lnx1

z2,1 =−b3
c1

lnx1 + lnx3

Therefore the nonlinear observer normal form of the dy-
namical system (9) is as follows

ż1 = A1z1 + β1(y)
ż2 = A2z2 + β1(y)
y1 = z1,2

y2 = −b3
c1

ln y1 + ln y2 = −b3
c1

z1,2 + z2,1

where z1 = (z1,1, z1,2)
T and z2 = (z2,1), A1 =

(
0 0
1 0

)
,

and A2 = 0 and

β1,1 = a1a2 + b1b2y
2
1 − (a1b2 + a2b1) y1

−
(
b2d1 +

1

b3
c1c2d2

)
y1y2 +

(
a2d1 −

a3
b3

c1c2

)
y2

+
1

b3
c1c2c3y

2
2

β1,2 = a1 + (b2 − b1) y1 − a2 ln y1 +

(
c1c2
b3

+ d1

)
y2

β2,1 = a3 − a1
b3
c1

+

(
b1
b3
c1

+ d2

)
y1 −

(
c3 +

b3
c1

d1

)
y2

Remark 3. Thanks to the symmetry of writing (9), it is
possible to exchange the roles of the outputs y1 and y2
by considering output y2 that has an observability index
of r2 = 2. So we will associate to model (9) another
equivalent nonlinear observer normal form.

6. AN EXTENDED NONLINEAR OBSERVER
NORMAL FORM

This section deals with the following prey-predator model
ẋ1 = x1 (a1 − b1x2)
ẋ2 = x2 (−a2 + b2x1 − c2x3)
ẋ3 = x3 (−a3 + b3x2)
y = x2

(10)

where species x2 > 0 feeds on species x1 > 0, and
species x3 > 0 preys on species x2. We assume that we
measure species y = x2. Now, to simplify the calculation,
and inspired by the study of previous models, we can
immediately introduce the following diffeomorphism on
the output by setting ξ = lnx2 then the dynamical system
is rewritten as follows

ẋ1 = x1

(
a1 − b1e

ξ
)

ξ̇ = −a2 + b2x1 − c2x3

ẋ3 = x3

(
−a3 + b3e

ξ
)

y = ξ

(11)

The observability 1-forms of the above dynamical system
(11) are given by

θ1 = dξ, θ2 = b2dx1 − c2dx3

θ3 = b2
(
a1 − b1e

ξ
)
dx1 − c2

(
−a3 + b3e

ξ
)
dx3−

(b1b2x1 + c2b3x3) e
ξdξ

It is clear that this dynamical system has one observability
singularity at y = a3+a1

b3+b1
. Here after, we assume that
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y ̸= a3+a1

b3+b1
. Then a simple calculation gives

τ1 =
1

b2 (a1 + a3 − (b3 + b1) eξ)

(
∂

∂x1
+

b2
c2

∂

∂x3

)
.

Expressions of vector fields τ2 and τ3, which we omit here,
shows that the first step of the algorithm does not work.
Now, using Remark 1, the reader can easily check form the
step (3) of algorithm that α2 = b2

(
a1 + a3 − (b3 + b1) e

ξ
)

and α3 = thus π = α2 × α3 = α2.
Therefore we can build τ1 = πτ1 = ∂

∂x1
+ b2

c2
∂

∂x3
.

However, one can show that the vector fields of the new
frame don’t commute.
As a result, the fourth step of the algorithm is employed.
For this we add an auxiliary dynamics ẇ = η(w, y). Then,
by considering a function l(w) and computing
σ1 = l(w)τ1, σ2 = 1

l [σ1, F1] and σ3 = [σ2, F1] then we
obtain (see Boutat [2007], Boutat and Busawon [2011])

l(w) = e
−
∫ w

0

ds
χ(s)

ẇ = −χ(w) (a1 − b1x2) ,
(12)

where χ(w) is to be chosen to render w bounded. There-
fore, we have

σ1 = e
−
∫ w

0

ds
χ(s)

(
∂

∂x1
+

b2
c2

∂

∂x3

)

σ2 = − 1

l(w)α2
[σ1, F ] = − 1

c2

∂

∂x3

σ3 =
∂

∂ξ
+

1

c2

(
−b3e

ξ + a3
) ∂

∂x3

As in (Boutat [2007], Boutat and Busawon [2011]) we
seek a fourth vector field σ4 which is independent from
σi i = 1, 2, 3 and which commute with them. It easy
to check that the following vector field has the desired
properties

σ4 =
∂

∂w
− 1

χ(w)
x1

(
∂

∂x1
+

b2
c2

∂

∂x3

)
.

Now, we are ready to compute

Λ = θ(σ) =

 0 0 1 0
0 1 a 0
lα2 a b+ a2 c
0 0 0 1


where a =

(
−a3 + b3e

ξ
)
, b = − (b1b2x1 + c2b3x3) e

ξ and

c = − 1
χ(w)x1α2. Now, we compute the differential of

change of coordinates ω = ϕ∗ as follows

ω = Λ−1θ =


− b

lα2
θ1 −

a

lα2
θ2 +

1

lα2
θ3 −

c

lα2
dw

−aθ1 + θ2
θ1
dw


which gives the following change of coordinates

z1 = e

∫ w

0

ds
χ(s)x1,

z2 =−c2x3 − b3x2 + a3 lnx2 + b2x1,

z3 = lnx2

that transforms the nonlinear dynamical system (11) into
the following extended nonlinear observer normal form


ż1 = 0
ż2 = α2z1 + β2
ż3 = z2 + β3(y)
ẇ = −χ(w) (a1 − b1y)

(13)

where α2(y, w) = b2 (a1 + a3 − (b1 + b3)y) e
−
∫ w

0

ds
χ(s) ,

β2(y) = −a2a3 + a2b3y and β3(y) = b3y − a3 ln y − a2
Remark 4. Instead of the expression of extended dynam-
ics given in (12), one can work with

ẇ = −χ(w)
(
−a3 + b3e

ξ
)
.

to obtain a another equivalent extended nonlinear observer
normal form.

Simulation 1. Hereafter, we give a simulation of the
model (10). We will apply the observer (4) to the nonlinear
observer normal form (13) with the following parameter
matrices

Rρ =


6

ρ5
− 3

ρ4
1

ρ3

− 3

ρ4
2

ρ3
− 1

ρ2
1

ρ3
− 1

ρ2
1

ρ

 and Γ3×3 = diag[α2, 1, 1].
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Fig. 1. Evolution of x1 and its estimation x̂1
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Fig. 2. Evolution of x2 and its estimation x̂2

The simulation results as illustrated in the above figures,
clearly demonstrate that the nonlinear observer designed
based on the proposed algorithm in this paper, is fully
capable of providing an accurate estimate of the non-
measurable states.
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Fig. 3. Evolution of x3 and its estimation x̂3

7. CONCLUSIONS

This paper considered the problem of observer design for
prey-predator ecological systems governed by nonlinear
dynamics. The underlying approach to observer design
consisted of proposing a change of coordinates for trans-
forming the nonlinear system into the observer nonlinear
normal form in systems of interaction between popula-
tions. A number of examples illustrated the applicability
of the approach. The results presented opens the door to
another application area for nonlinear observers in food
web (or food chain).
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Ricardo Aguilar-López. Monitoring in a predator–
prey systems via a class of high order observer design.
BioSystems, 100(1):65–69, 2010.

D. Noh, N.H. Jo, and J.H. Seo. Nonlinear observer
design by dynamic observer error linearization. IEEE
Transactions on Automatic Control,, 49(10):1746–1753,
2004.

A Rapaport and J Harmand. Robust regulation of a class
of partially observed nonlinear continuous bioreactors.
Journal of Process Control, 12(2):291–302, 2002.

W. Respondek, A. Pogromsky, and H. Nijmeijer. Time
scaling for observer design with linearizable error dy-
namics. Automatica,, 40 (2):277–285, 2004.

S. Vaidyanathan. Nonlinear observer design for lotka-
volterra systems. In Computational Intelligence and
Computing Research (ICCIC), 2010 IEEE International
Conference on, pages 1–5. IEEE, 2010.
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