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Abstract: This paper proposes a thermodynamics based approach for the boundary control of
distributed single phase reactive systems in one spatial dimension. More precisely, this approach
is motivated by the so-called thermodynamic availability directly derived from the concavity
of the entropy function for homogeneous mixtures. On this basis, a general connection to the
boundary control is developed for the case of tubular reactors by selecting an appropriate input-
output pair. In this control framework, we shall show that to be (strictly) passive, a necessary
and sufficient condition for the dissipation that is strongly related to the transport phenomena
and chemical reaction has to be fulfilled. Consequently, a proportional boundary feedback control
law globally stabilizes the reactor at a desired stationary profile. For a simple study without
convection, the dissipation condition holds thanks to the irreversible entropy production.
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1. INTRODUCTION

This paper deals with the extension of the passivity the-
ory (Willems (1972); Van Der Schaft (2000); Maschke
et al. (2000); Brogliato et al. (2007)) of finite dimen-
sional (FD) systems 2 to the important case of tubu-
lar chemical reactors using thermodynamic foundations
(Keenan (1951); Glansdorff and Prigogine (1964); Ydstie
and Alonso (1997); Ruszkowski et al. (2005); Hoang et
al. (2012)). This benchmark case study indeed belongs
to infinite dimensional - distributed parameter (IFD-DP)
systems described generally by Partial Differential Equa-
tions (PDE) models and so far, its nonlinear dynamics is
naturally distributed in space with the presence of trans-
port phenomena such as convection, diffusion and possibly
conduction together with chemical reaction (De Groot and
Mazur (1962)). Similarly to the lumped parameter case
described by ODEs (for instance the CSTR models (Hoang
et al. (2012))), the DP reaction systems may also exhibit
multiple (stable or unstable) stationary profiles (Gawdzik
and Berezowski (1987)). Consequently, the stabilization of
the DP reaction systems represents interesting challenging
difficulties from a control point of view.

The controller design for the DP systems has broadly
studied in literature (Ray (1978); Ruszkowski et al. (2005)
and references therein). A simple approach is to discretize

1 This paper presents research results of the Belgian Network
DYSCO (Dynamical Systems, Control and Optimization), funded
by the Interuniversity Attraction Poles Programme, initiated by the
Belgian State, Science Policy Office. The authors also gratefully
acknowledge the support of the FNRS. The scientific responsibility
rests with its authors.
2 Their dynamics are described by Ordinary Differential Equations
(ODE).

spatially the original PDEs using finite difference approxi-
mations, finite volume or Galerkin’s methods (Quarteroni
and Valli (1996)). This dimension reduction step that is
also known as early lumping (Ray (1978)) results in a
FD system. Controllers are then synthesized based on
the resulting set of ODEs by means of differential geom-
etry or Lyapunov theory (Khallil (2002)) or more general
passive techniques (Van Der Schaft (2000); Brogliato et
al. (2007)). Yet designing the controller on the original
PDE model allows us to better account for the intrinsic
distributed parameter dimension of the system. Such an
approach is often referred as late lumping (Ray (1978)).

In this work, we consider the control of the tubular reactors
using the late lumping approach on the basis of phys-
ical considerations (Keenan (1951); Glansdorff and Pri-
gogine (1964); Dammers and Tels (1974); Tarbell (1977);
Georgakis (1986); Ydstie and Alonso (1997); Hangos et
al. (1999); Favache and Dochain (2009); Ederer et al.
(2011)). In particular, the thermodynamic availability con-
cept has been extensively used in (Alonso and Ydstie
(2001); Ruszkowski et al. (2005); Antelo et al. (2007)) for
the stabilization of transport reaction systems. The men-
tioned results are of great interest, yet for instance limited
to zeroth order reaction or isothermal/adiabatic trans-
formations (Alonso and Ydstie (2001)). In (Ruszkowski
et al. (2005)), the authors combined the thermodynamic
availability with the inventory based control strategy to
stabilize isothermal tubular reactors. On the basis of our
previous works (Hoang et al. (2011, 2012)), we show in
this paper that the availability can be extended with less
restrictive conditions and can also be considered as a
storage function of the passivity theory. In this framework,
the boundary control of non isothermal tubular reactors
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around a desired stationary state will be formulated and
studied.

The paper is organized as follows. Section 2 is dedicated to
thermodynamic foundations required for the present work,
including the definition of the availability function and its
properties. The thermodynamically consistent modeling of
reaction systems is also introduced in this section. Section
3 concentrates on the study of the tubular reactors. The
boundary control problem is then derived and treated in
the framework of passivity theory.

Notations: The following notations are considered through-
out this paper :

• V and Ω are the volume and surrounding surface of
the real physical system embedded in a Cartesian
coordinate system Rl, l = 1, 2, 3.
• < e,v >Ω is the inner product of two vector valued

functions e and v defined on Ω :

< e,v >Ω=

∫
Ω

< e,v > dΩ

where < e,v >= eTv and ‖e‖2 =< e, e >.

2. TOWARDS NON EQUILIBRIUM
THERMODYNAMICS OF OPEN SYSTEMS

In this work, the non-equilibrium thermodynamics is cen-
tral for deriving a candidate storage function usable for the
control purpose of open systems within the framework of
the passivity theory. In this section, we first recall some
thermodynamic concepts. On this basis, the definition
of the thermodynamic availability is represented and its
properties are given. Due to the natural positivity, this
function is considered as a candidate Lyapunov function
for the boundary control problem of distributed parameter
homogeneous reaction systems.

The following hypotheses are used throughout the paper :

(Hp1) The reaction mixture is incompressible.
(Hp2) The chemical transformation taking place in the
system is under isobaric conditions.

2.1 Thermodynamic foundations

In chemical engineering, equilibrium thermodynamics
plays a key role and provides useful guidelines for studying
the behaviour of the system dynamics when any spon-
taneous transformation occurs (Glansdorff and Prigogine
(1964); Callen (1985)). The variables considered in equilib-
rium thermodynamics are split into the extensive variables
(such as the internal energy U , the volume V and the
mass mk of each species) and intensive ones (such as the
temperature T , the pressure p and the chemical potential
µk) (Callen (1985)). Note that the extensive variables
depend on the ”size” of the overall system whereas the
intensive variables are defined at every location within
the system. The fundamental relation of thermodynamics
expresses the entropy S of a given phase as a function
of the extensive variables via the Gibbs equation (Callen
(1985)). The compact form of the Gibbs equation under
hypothesis (Hp2) is written as follows :

dS = wTdZ (1)

with :

w = (
1

T
,
−µk
T

)T, Z = (H,mk)T (2)

where H = U + pV is the enthalpy. Since the entropy S is
also an extensive variable, it is an homogeneous function
of degree 1 with respect to Z. From Euler’s theorem we
get (Callen (1985)) :

S(Z) = wTZ (3)

With the help of (1), the variation of the entropy defined
in (3) leads to the following equation :

dwT Z = 0 (4)

which is also a well known form of the so-called Gibbs-
Duhem relation.

(1)(3)(4) hold when the states of the system presented by
Z and w in (2) are well-defined (e.g. in thermodynamic
equilibrium). It is worth noting that the states of the open
system are generally non-equilibrium states due to the
changes with the surrounding medium, and in particular
only its steady states can be equilibrium ones when the
appropriate boundary conditions which are really imposed
on the system are justified (De Groot and Mazur (1962)).

Thanks to the Hypothesis of Local Equilibrium (HLE),
it is therefore possible to describe open systems on the
basis of the equilibrium thermodynamics. HLE states that
the local equilibrium state is assumed to be well-defined
in the infinitesimal element dV and the present state can
be characterized by the same variables as at equilibrium
and is independent of the rate of evolution (De Groot
and Mazur (1962)). In this case, all macroscopic extensive
variables are represented throughout their (mass) density
quantities and defined as follows :

S =

∫
V

ρsdV (5)

and

Z =

∫
V

ρzdV (6)

with,
z = (h, ωk)T (7)

In (5)(6), ρ is the total mass density; ωk denotes for
the mass fraction; s and h are the entropy and enthalpy
densities, respectively. As a consequence of the HLE,
(1)(3)(4) can also be applied for open systems and in this
case, they are rewritten using the density quantities as
follows :

ds = wTdz (8)

s(z) = wTz (9)

and,
dwT z = 0 (10)

In particular, in thermodynamics the intensive variables
w can be viewed as the gradient of the entropy s(z) (9).
From the mathematical point of view, we have :

w(z) =
∂s(z)

∂z
(11)

The dynamical behaviour of open systems is given by con-
sidering only the energy and material balance equations
of the variable z defined in (7). Additionally, the balance
equation for the entropy s (9) can be deduced from the
balance equations of the variable z using the (local) Gibbs
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equation given in (8). The use of the entropy balance gives
knowledge on the evolution of the system. Indeed, this
balance is not conservative: there exists a source term
Σs which is always positive (due to the second law of
thermodynamics) so that (De Groot and Mazur (1962)) :{

∂ρs

∂t
= −∂Js,tot

∂x
+ Σs

Σs ≥ 0
(12)

where Js,tot is the total entropy exchange flux. The posi-
tive definiteness of the irreversible entropy production Σs
defined in (12) holds for any evolution. We refer the reader
to Appendix A for a further investigation on this issue.

The open thermodynamic system defined by (8)-(10) to-
gether with (12) on the basis of the balance equations of z
is called the thermodynamically consistent model (Glans-
dorff and Prigogine (1964); Hoang and Dochain (2013)).

2.2 Thermodynamic availability

For homogeneous single phase thermodynamical systems,
the entropy function S(Z) (3) is necessarily concave along
the equilibrium evolutions (Callen (1985)). This property
(independent of chemical reaction and variation rate) is an
extension of the second law of thermodynamics. From the
concavity of the entropy function S(Z), it can be shown
(Ruszkowski et al. (2005); Hoang et al. (2011)) that the
function named the thermodynamic availability A defined
as follows :

A(Z,Z?) = S(Z?) +w?T(Z −Z?)− S(Z) ≥ 0 (13)

where Z? is some fixed reference point (for example the
desired set point for control), is non negative. Furthermore,
it may be noted that the thermodynamic availability
defined on the basis of the entropy function as seen in
(13) is thus an extensive variable. The availability concept
can be traced back at least to (Keenan (1951); Ydstie
and Alonso (1997); Alonso and Ydstie (2001)) and more
recently in (Hoang et al. (2012)).

In our previous works (Hoang et al. (2011, 2012)), we
have shown that the availability A defined in (13) can
be used as a candidate Lyapunov function to stabilize
continuous stirred tank reactors (CSTRs) at the desired
state Z? for a large range of operating conditions. In this
paper, we extend this concept and show how it can be
used to control tubular reactors. Taking into account the
distributed parameter nature of tubular reactors, the non
negative availability density of the global quantity defined
in (13) is given by :

a(z, z?) = s(z?) +w?T(z − z?)− s(z) ≥ 0 (14)

where w? = w(z?) is defined by using (11) and z? is the
desired stationary profile for the control design.

Together with (Hp1) and (Hp2), we use an additional
hypothesis :

(Hp3) The reaction system is under isochore conditions.

Finally, the bulk thermodynamic availability of distributed
parameter systems is defined throughout its density given
in (14) as follows :

A =

∫
V

ρadV (15)

It can be shown from (14) that the bulk thermodynamic
availability A defined in (15) is non-negative. Conse-
quently, the bulk thermodynamic availability (15) can be
used as a storage function candidate for the stabilization
of distributed parameter reaction systems at the desired
stationary profile z? if and only if its time derivative is
negative :

dA
dt

< 0 (16)

In what follows, a tubular reactor involving one chemical
reaction is considered as an illustrative example to show
the application of the developments. The control design is
mainly based on the global stabilizing condition (16).

3. CASE STUDY: A TUBULAR REACTOR

3.1 Mathematical model

Let us consider the one dimensional model of a tubular
reactor as sketched in Figure 1 in which an irreversible
chemical reaction involving two species X1 and X2 takes
place. The reaction stoichiometry is expressed as follows :

ν1X1 + ν2X2 = 0 (17)

where νk is the signed stoichiometric coefficient (Hoang et
al. (2011)).

Fig. 1. A plug flow reactor in the axial direction x

Some additional assumptions are made to derive the
mathematical model of the tubular reactor :

(Hp4) The reaction mixture is (locally) ideal.
(Hp5) The total mass density ρ and the barycentric
velocity 3 υb are assumed to be constant.

In this case, the thermodynamic variables (7) are com-
pletely given as follows :

z =
(
h, ω1, ω2

)T

and w =
( 1

T
,−µ1

T
,−µ2

T

)T

(18)

Besides the dynamical behaviour of the reaction system
can be derived by using the energy and material balance
equations. The dynamical model of the tubular reactor is
then given by the following partial differential equations
(De Groot and Mazur (1962)) :

∂ρz

∂t
= −∂f

∂x
+ σ (19)

with
f = fd + fc, σ = ( 0, ν1rv, ν2rv )

T (20)

where rv is the reaction rate. fd and fc are the diffusive
and convective fluxes, respectively :

fd =
(
Jq, J

d
1 , J

d
2

)T
, fc = υbρ ( h, ω1, ω2 )

T
(21)

3 It is also referred as fluid velocity.
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(20)(21) represent the constitutive equations of the dy-
namics (19). Note that the following relation holds for all
diffusion fluxes within the mixture due to the difference of
the proper velocity of the species k and the fluid velocity
(De Groot and Mazur (1962)) :

Jd1 + Jd2 = 0 (22)

The system (19) is then completed by the boundary and
initial conditions as follows :

Danckwerts’ boundary conditions

(υbρh)

∣∣∣∣
x=0−

=

(
Jq + υbρh

)∣∣∣∣
x=0+

(υbρω1)

∣∣∣∣
x=0−

=

(
Jd1 + υbρω1

)∣∣∣∣
x=0+

(υbρω2)

∣∣∣∣
x=0−

=

(
Jd2 + υbρω2

)∣∣∣∣
x=0+(

Jq

)∣∣∣∣
x=L

=

(
Jd1

)∣∣∣∣
x=L

=

(
Jd2

)∣∣∣∣
x=L

= 0

(23)

Initial conditions  ρh(x, 0) = ρh0(x)
ρω1(x, 0) = ρω0

1(x)
ρω2(x, 0) = ρω0

2(x)
(24)

In the remaining of the paper, we let the notation (̃•) be
the deviation form with respect to some desired reference
value :

(̃•) = (•)− (•)? (25)

3.2 Dynamics of the availability

The bulk thermodynamic availability defined in (15) asso-
ciated with the tubular reactor (Figure 1) can be rewritten
as follows :

A =

∫ L

0

ρaASdx ≥ 0 (26)

where AS is the (constant) cross section.

Proposition 1 allows us to calculate the time derivative of
the bulk thermodynamic availability defined in (26). We
shall see that its variation rate depends not only on bound-
ary exchanges but also on the internal transformations due
to the transport phenomena and chemical reaction.

Proposition 1. The time variation of the bulk thermody-
namic availability (26) of the reaction system defined by
(19)-(21) is given by :

dA
dt

=

([
w̃Tf̃

]
Ω
−
(
< f̃ , X̃ >Ω + < σ̃, w̃ >Ω

))
AS

(27)
where Ω = [0 L] and the thermodynamic driving force
indicated with X appeared in (27) is defined as follows :

X =
∂w

∂x
(28)

Proof. By using (9), the expression of the availability
density (14) can be rewritten in the following form :

a = −s(z) +w?Tz (29)

Thanks to the HLE and the (local) Gibbs equation (8), one
can apply the material derivative denoted by D

Dt = ∂
∂t +

υb
∂
∂x (De Groot and Mazur (1962))) for both sides of (29)

due to the axial motion resulting from the fluid velocity
υb. By multiplying the resulting equation by the total mass
density ρ, one obtains :

ρ
Da

Dt
= −(w −w?)Tρ

Dz

Dt
+
∂w?

∂x

T

υbρz (30)

From this, by adding the stationary dynamics ∂ρz?

∂t ≡ 0
into (30), one gets after some simple calculations :

∂ρa

∂t
+υb

∂ρa

∂x
= −w̃T ∂ρz̃

∂t
−w̃Tυb

∂ρz

∂x
+
∂w?

∂x

T

υbρz (31)

where ρDa
Dt = ∂ρa

∂t + υb
∂ρa
∂x has been used.

Note that :
∂ρa

∂x
= −∂w̃

∂x

T

ρz − w̃T ∂ρz

∂x

−w̃Tυb
∂ρz

∂x
+
∂w?

∂x

T

υbρz +
∂w̃

∂x

T

υbρz + w̃Tυb
∂ρz

∂x
= 0

(32)
since a = −w̃Tz (9)(29) and the (local) Gibbs-Duhem

equation (10) implies that the equality ∂w
∂x

T
υbρz ≡ 0

holds (Curtiss and Bird (1999)). Consequently, from (31)
we have :

∂ρa

∂t
= −w̃T ∂ρz̃

∂t
(33)

By taking the balance equations (19) into account and if

we note that ∂wTf
∂x = ∂wT

∂x f +wT ∂f
∂x , (33) becomes :

∂ρa

∂t
=
∂w̃Tf̃

∂x
−
(
f̃TX̃ + σ̃Tw̃

)
(34)

which yields the desired result as seen in (27) by integra-
tion over the overall volume. �

Remark 1. Due to the presence of the cross section AS , the
diffusive flux fd and the convective flux fc, the proposed
result (27) completes the formulation presented in (Alonso
and Ydstie (2001); Ruszkowski et al. (2005)).

As previously shown, the bulk availability A (26) is non-
negative. It is worth noting that if the right side of (27)
can be shaped to be negative then the tubular reactor is
globally stabilized at its desired reference profile z?.

3.3 Stabilization via boundary control

Let us state the following proposition. Its development is
general.

Proposition 2. The reaction system defined by (19)-(21)
is (strictly) passive with respect to its input-output pair
selected as,

u =

(
−f̃(0, t)

f̃(L, t)

)
, y =

(
w̃(0, t)
w̃(L, t)

)
(35)

and a storage function W (t) defined as,

W (t) =
A(t)

AS
(36)

if and only if the dissipative term d given by

d =< f̃ , X̃ >Ω + < σ̃, w̃ >Ω (37)

fulfills the following condition,

d ≥ 0 (38)
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Consequently, the following proportional feedback control
law :

u = −Ky (39)
with the gain matrix K = KT > 0, stabilizes the reactor
at the desired state z?.

Proof. We can easily check that the time variation of the
bulk thermodynamic availability presented in (27) reduces
to the following simple form by using (35)(36) :

dW (t)

dt
= uTy −

(
< f̃ , X̃ >Ω + < σ̃, w̃ >Ω

)
(40)

From (37) and the dissipation condition given in (38), (40)
is bounded from above as follows :

dW (t)

dt
≤ uTy (41)

Hence the system is (strictly) passive (Van Der Schaft
(2000); Brogliato et al. (2007)). From this, the propor-
tional feedback law (39) renders the system dissipative

since yT
[
−K

]
y < 0. The latter completes the proof. �

Remark 2. The dissipation condition (38) is indeed strongly
related to transport phenomena and reaction kinetics.

For the sake of illustration, let us check the dissipative
condition (38) for a simple case without convection since
convective fluxes never create the entropy (De Groot and
Mazur (1962)). In this case, (40) takes the simple form :

dW (t)

dt
= uTy − d (42)

and the dissipation term d defined in (37) becomes :

d =< f̃d, X̃ >Ω + < σ̃, w̃ >Ω (43)

where f̃ = f̃d has been used since υb = 0 ⇒ f̃c = 0. We
may note at this point that the sign of the dissipation term
(43) depends on the explicit form of constitutive relations
of the diffusive vector fd and the production rate vector σ
defined in (20). Thanks to phenomenological laws directly
obtained from the positivity of Σs (12), their explicit forms
are expressed with respect to the thermodynamic variables
(see (B.1)(B.2) in Appendix B) as follows :

fd = LdX, and σ = Krw (44)

As a consequence, we have :

f̃d = LdX̃, and σ̃ = Krw̃ (45)

Note that results in (45) are obtained only if the linear
domain is considered for (44). This is particularly the case
when the system states are near the desired stationary
equilibrium z? so that the matrices Ld and Kr are con-
stant ones. Furthermore, the matrices Ld and Kr meet the
following properties (see (A.10)(B.3) in Appendices A and
B) :

Ld = LT
d ≥ 0, and Kr = KT

r ≥ 0 (46)

On the basis of the relations given in (45)(46), the dissi-
pation term (43) takes the simple form as follows :

d =

∫ L

0

X̃TLdX̃ dx+

∫ L

0

w̃TKrw̃ dx ≥ 0 (47)

Consequently, (38) holds.

4. CONCLUSION

In this paper, we have shown by means of the passivity
based approach how to stabilize distributed parameter

reaction systems using the thermodynamic foundations. In
particular, the boundary control problem of the tubular
reactors can be formulated by assigning the boundary
fluxes and the boundary intensive variables as the control
input and the controlled output, respectively. The system
is then (strictly) passive with respect to a storage function
strongly related to the availability if and only if the dissipa-
tion condition holds. Hence a simple proportional feedback
law renders the system dissipative and consequently, the
reactor is globally stabilized at the desired stationary
profile. It has been verified, in our first studies without
convection, that this dissipation condition is guaranteed
thanks to the linear phenomenological relations directly
derived from the entropy production. It remains now to ex-
tend the proposed developments to the multiple chemical
reaction system and the more general case where nonlinear
phenomenological relations (in particular, nonlinear reac-
tion kinetics) and convection are present. Our first studies
show that such a situation may destroy the dissipation
condition (38).

Appendix A. PHENOMENOLOGICAL EQUATIONS

From the (local) Gibbs equation (8) and by using (19)-
(22), the entropy balance (12) is explicitly described with :

Js,tot =
1

T

(
Jq −

2∑
k=1

µkJ
d
k

)
+ ρυbs (A.1)

Σs = −Jd1
∂ µ1−µ2

T

∂x
+ Jq

∂ 1
T

∂x
− 1

T

2∑
k=1

rvνkµk ≥ 0 (A.2)

Moreover, the affinity of the reaction (17) that represents
an extended thermodynamic force is defined as follows :

Am = (ν1µ1 + ν2µ2) (A.3)

From definition (A.3), (A.2) therefore becomes :

Σs = −Jd1
∂ µ1−µ2

T

∂x
+ Jq

∂ 1
T

∂x
− rv

Am

T
≥ 0 (A.4)

Let us note that Σs (A.2) (or (A.4)) remains valid for any
evolution. Taking into account the cross-effects between
heat conduction and diffusion 4 and the positivity of the
irreversible entropy production (A.4), we obtain for phe-
nomenological equations (De Groot and Mazur (1962)) :

Jq = Lqq
∂ 1
T

∂x
− Lq1

∂ µ1−µ2

T

∂x

Jd1 = L1q

∂ 1
T

∂x
− L11

∂ µ1−µ2

T

∂x

rv = −Lr
Am

T

(A.5)

where Lqq, Lq1, L1q, L11 and Lr are called the phenomeno-
logical coefficients. In general, they depend on the thermo-
dynamic variables (temperature and concentrations etc.).

With the help of (22)(A.3) and by introducing the phe-
nomenological equations (A.5) into (A.2), Σs (A.2) is then
given by the following quadratic form :

Σs = XT
s

(
Ld 0
0 Lr

)
Xs ≥ 0 (A.6)

4 This phenomena is described by the Curie principle (De Groot and
Mazur (1962)).
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where the generalized thermodynamic force vector Xs is
defined as follows :

Xs =

(
XT Am

T

)T

(A.7)

In (A.6)(A.7), we use :

X ≡ ∂w

∂x
=

(
∂ 1
T

∂x

∂−µ1

T

∂x

∂−µ2

T

∂x

)T

(A.8)

and

Ld =

(
Lqq Lq1 −Lq1
L1q L11 −L11

−L1q −L11 L11

)
(A.9)

A sufficient condition that guarantees the positivity of the
irreversible entropy production shown in (A.6) is :{

Ld = LT
d ≥ 0

Lr = LT
r ≥ 0

(A.10)

The requirement (A.10) meets the so-called Onsager re-
ciprocal relations (De Groot and Mazur (1962)).

Appendix B. CONSTITUTIVE RELATIONS

The diffusive flux vector can be written by using (21)(A.5) :

fd =
(
Jq, J

d
1 , J

d
2

)T
= LdX (B.1)

where the thermodynamic force X and the matrix Ld are
given in (A.8)(A.9), respectively.

Finally thanks to (A.3)(A.5), the production rate vector
σ (20) is expressed as follows :

σ = Krw (B.2)

with

Kr =

(
0
ν1

ν2

)
Lr ( 0 ν1 ν2 ) (B.3)

Consequently, Kr = KT
r ≥ 0 since Lr ≥ 0 from (A.10).
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