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Abstract: We present an approach which allows to accurately predict both the occurrence
and type of partially synchronous regimes of delay-coupled non-linear oscillators. Unlike the
conventional approach, we build on an analysis of the stability properties of the synchronized
equilibrium in the (coupling gain, delay) parameter space. As partially synchronous regimes are
closely related to the presence of invariant manifolds, we first present necessary and sufficient
conditions for the existence of forward invariant sets. Next, from the existence of these invariant
sets and from the characterization of solutions in the unstable manifold of the synchronized
equilibrium, we predict which (gain,delay) parameters may result in fully/partially synchronous
behavior. We illustrate the approach for a network of delay coupled Hindmarsh-Rose neurons.
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1. INTRODUCTION

Synchronous behavior is observed in a wide variety of sys-
tems (see Arkady et al. [2001]). There exists different type
of synchronous behaviours, for example, if each system in
a network behaves in the same fashion, it is called full
synchronization. Instead, if the whole system is divided
into subgroups consisting of fully synchronized systems
which do not synchronize with the systems in different
groups is called partial (or cluster) synchronization. Par-
tial synchronization is pervasive in neuronal networks in
our brain (Kaneko [1994]).

Partial synchronization in a network of coupled systems
via different types of couplings in absence of time-delay
has been considered in many works (Pogromsky et al.
[2002], Pogromsky [2008], Wu and Chen [2009], Pham and
Slotine [2007] and references therein). Partial synchroniza-
tion in a network of systems coupled via diffusive delay
coupling scheme, which arises in diverse interconnected
systems (see Steur et al. [2012] and references therein),
has been considered in Steur [2011], which was a direct
generalization of the approach of Pogromsky et al. [2002]
and Pogromsky [2008] for the delay free case. In most
of these works, whether or not the coupling scheme is
affected by time-delay, sufficient conditions are obtained
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by using Lyapunov function(al)s, which may make the
obtained conditions conservative. Recently, an approach
to predict the partially synchronous regimes in a network
of non-linear systems coupled via diffusive delay coupling
scheme was presented in Ünal and Michiels [2012]. In that
work, firstly, forward invariant sets were determined to find
the possible partially synchronous regimes. Then, these
regimes were predicted by utilizing the forward invariant
sets with the stability/instability regions of the synchro-
nized equilibria and structure of the eigenvector of the
Laplacian of the network topology. Note that, although the
approach of Ünal and Michiels [2012] is based on a local
analysis, the partially synchronous regimes were correctly
predicted in many cases and different network topologies.

In this paper, we will consider the partial synchronization
in a network of diffusively delay coupled systems by using
the results of Ünal and Michiels [2012]. We will apply
the results considering a network with Hindmarsh-Rose
neurons. Due to space limitations, we omit the proofs of
some of the theorems. The complete theory, as well as
other application examples, can be found in the extended
paper Ünal and Michiels [2012].

Throughout, Cr(X,Y ) represents the space of continuous
functions from X to Y that are r ≥ 0 times continu-
ously differentiable. The function in Cr(X,Y ) is called
sufficiently smooth if sufficiently high order derivatives
exist. A non-negative definite function V : X → R≥0
defined on a subset X of Rn is called radially unbounded
if V (x) → ∞ as ‖x‖ → ∞. A directed graph of order
p is represented by G = {V, E , G}, where V is the set
of nodes, p is the number of nodes, E ⊂ V × V is the
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set of edges, G is a weighted adjacency matrix with zero
diagonal entries and non-negative entries equal to aij such
that aij > 0 if and only if (i, j) ∈ E . For wi :=

∑
(i,j)∈E aij ,

L := diag{w1, . . . , wp}−G is called the weighted Laplacian
of G.

2. PRELIMINARIES

2.1 Problem Statement

We consider the partial synchronization of a network
of p arbitrarily connected identical non-linear systems
described by

ẋi(t) = f(xi(t)) +Bui(t), yi(t) = Cxi(t), i = 1, . . . , p, (1)

where xi ∈ Rn, B,CT ∈ Rn×1, f : Rn → Rn. We assume
that (1) has an unstable equilibrium x∗. The network of
systems in (1) is assumed to be described by a strongly
connected graph G of order p, and the coupling between
the systems is a diffusive delay coupling function:

ui(t) = k
∑

(i,j)∈E

aij(yj(t− τ)− yi(t− τ)), (2)

where k > 0 is the coupling gain, τ > 0 is the transmission
delay, aij , i, j = 1, . . . , p, is the entries of the weighted
adjacency matrix.

2.2 Boundedness of Solutions

A prerequisite in the study of synchronization is the
boundedness of the solutions of the interconnected system.

Definition 1. (Byrnes et al. [1991]) Consider a system

ẋ(t) = g(x(t), u(t)), y(t) = h(x(t)), (3)

where x ∈ Rn, y ∈ Rm, u ∈ L∞, and g : Rn → Rn
and h : Rn → Rm are sufficiently smooth functions. The
system (3) is called strictly C1 -semipassive if there exists
a C1(Rn,R) nonnegative storage function V satisfying
V (0) = 0 and

V̇ (x(t)) ≤ y(t)Tu(t)−H(x(t)), (4)

where H ∈ C(Rn,R) satisfies H(·) > 0 outside a ball in Rn
with a radius R centered around 0, i.e.,

∃R > 0, ‖x‖ ≥ R⇒ H(x) ≥ %(‖x‖),
with some positive continuous function %(‖x‖) defined
∀ ‖x‖ ≥ R.

In what follows we make the following assumption.

Assumption 2. The systems (1) are strictly semipassive.

Theorem 3. (Theorem 3.6 in Steur [2011]) Consider a
network of p systems in (1) connected via (2) and the
network is described by a strongly connected graph. Sup-
pose that each system in (1) is strictly C1 -semipassive
with a radially unbounded storage function V (xi). Let the
functions Hi(xi) in (4) be such that there exists Ri > 0
such that ‖xi‖ > Ri implies Hi(xi) − 2kdi‖yi‖ > 0 with
di =

∑
(i,j)∈E aij . Then, the solutions of the closed-loop

system (1), (2) are ultimately bounded.

2.3 Partial synchronization and forward invariant sets

The existence of partially synchronous regimes is related
to symmetry of the network, which can be translated into
the presence of forward invariant sets. To make this clear,
partially synchronous solutions of (1) and (2) satisfy the
property

x(t) = (Φ⊗ In)x(t), ∀t ≥ t0, (5)

where x(t) := [x1(t)T · · · xp(t)T ]T , t0 is the starting time
and Φ is a p-by-p permutation matrix. For example, if
p = 4, solutions satisfying x1 ≡ x2 and x3 ≡ x4 are
characterized by a relation of the form (5) where

Φ =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (6)

Note that (5) can be written as

x(t) ∈ ker (Ipn − (Φ⊗ In)) , ∀t ≥ 0.

Therefore, a first step in investigating the occurrence of
partial synchronization lies in the detection of symmetries,
which can be translated into the presence of permutation
matrices for which ker (Ipn − (Φ⊗ In)) is a forward invari-
ant set for (1)-(2), i.e., for which the implication

(Ipn − (Φ⊗ In))φ(s) = 0⇒ (Ipn − (Φ⊗ In))x(φ)(t) = 0,

holds ∀t ≥ 0, where x(φ)(t) is the solution at time t with
initial condition x(s) = φ(s), s ∈ [−τ, 0].

Theorem 4. (Ünal and Michiels [2012]) The set
ker(Ipn − (Φ ⊗ In)) is a forward invariant set for (1) and
(2) if and only if ker(Ip − Φ) is an invariant subspace of
the graph Laplacian L.

The following corollary of Theorem 4 extends Lemma 4.6
of Steur [2011] (see also Pogromsky et al. [2002], Pogrom-
sky [2008] for the delay-free case), in the sense that the
sufficient conditions for the presence an invariant set in
terms of the solvability of a matrix equation are shown to
be necessary too.

Corollary 5. (Ünal and Michiels [2012]) The set
ker (Ipn − (Φ⊗ In)) is a forward invariant set for (1) and
(2) if and only if matrix equation

(Ip − Φ)L = X (Ip − Φ) (7)

has a solution.

The property that ker (Ipn − (Φ⊗ In)) is a forward invari-
ant set by itself does not imply that the corresponding
partially synchronized solutions are observed. The latter
occurs if the forward invariant set is stable in the sense
that it attracts neighboring solutions. At the end of the
next section we explain how valuable information can be
deduced from the analysis of the synchronized equilibrium.

3. ANALYSIS OF SYNCHRONIZED EQUILIBRIA

In this section, we will explain how the occurrence of
partial synchronization can be predicted. For this, firstly,
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let us define ej := xj − x1, j = 2, . . . , p as in Michiels and
Nijmeijer [2009]. Then, (1)-(2) can be written as

ẋ1(t) = f(x1(t)) + kBC
∑

(1,j)∈E

a1jej(t− τ), (8)

ė(t) :=

 ė2(t)
...

ėp(t)

=

 f(x1(t) + e2(t))− f(x1(t))
...

f(x1(t) + ep(t))− f(x1(t))


−k(L̃⊗BC)

 e2(t− τ)
...

ep(t− τ)

 , (9)

where L̃ = [−1p−1 Ip−1]L[0T Ip−1]T , 1p−1 and 0 are
appropriate dimensional vector and matrix with entries 1
and zero, respectively. In (8), x1 describes the dynamics
on the (full) synchronization manifold, while e in (9)
describes the synchronization of error dynamics. Since all
solutions of (8) and (9) are bounded by Assumption 2, full
synchronization between agents is achieved locally, if the
zero solution of

ė(t) =

(
∂

∂x
f(x1(t))

)
⊗ e(t)− k(L̃⊗BC)e(t− τ), (10)

is uniformly asymptotically stable.

The systems in (1) are assumed to be identical and
have an equilibrium x∗, hence, (x∗, . . . , x∗), called the
synchronized equilibrium, is an equilibrium of the coupled
system. If we linerize the coupled system (1)-(2) around
the synchronized equilibrium, we obtain

ξ̇(t) = (I ⊗A)ξ(t)− k(L⊗BC)ξ(t− τ), (11)

where A = ∂f(x)
∂x |x=x∗

, and ξ(t) = [ξ1(t)T · · · ξp(t)T ]T .

Then, the characteristic function of (11) can be written as

f(λ; k, τ) = det(F (λ; k, τ))

=: det(Ip ⊗ (λIn −A) + kL⊗BCe−λτ ).(12)

By using similarity transformation as L = TΛT−1, where
Λ is upper-triangular matrix with main diagonal entries
λi(L), which corresponds to ith eigenvalue of L, (12) can
be written as

f(λ; k, τ) = det
(
I ⊗ (λI −A) + Λ⊗ kBCe−λτ

)
=

p∏
i=1

fi(λ; k, τ),

where

fi(λ; k, τ) = det(λIn −A+ kλi(L)BCe−λτ ) (13)

=: det(Fi(λ; k, τ)), i = 1, . . . , p. (14)

Note that, fi(λ; k, τ) can have complex valued coefficients
for complex eigenvalue(s) of L, if any.

Since the graph of the network topology is assumed to be
strongly connected, the eigenvalues of L are non-negative
and L has a simple zero eigenvalue with correspond-
ing eigenvector [1 . . . 1]T (see Olfati-Saber and Murray
[2004]). Therefore, if the eigenvalues of L are ordered as

0 = λ1(L) < |λ2(L)| ≤ . . . ≤ |λp(L)|,

then, f1(λ; k, τ) corresponds to the characteristic equa-
tion of the linearization of (8) describing the dynam-
ics on the synchronization manifold, while the functions
f2(λ; k, τ), . . . , fp(λ; k, τ) correspond to the linearization
of (10).

Now, let us consider the solutions of (11). Let fl(λ; k, τ)

have a zero at λ = λ̂ for some k > 0, τ > 0, l ∈
{1, . . . , p}, and assume that λl(L) is simple and El is
the corresponding eigenvector. Then, by (14), since there

exists V ∈ Cn such that Fl(λ̂; k, τ)V = 0 and

F (λ̂; k, τ)(El ⊗ V ) = El ⊗
(
λ̂I −A+ kλl(L)BCe−λ̂l

)
V,

the exponential solution of (11) due to the zero λ̂ can be
written as  ξ1(t)

...
ξp(t)

 = c(El ⊗ V )eλ̂t, (15)

where c ∈ C depends on the initial conditions. Similar

results can be obtained if λ̂ is a multiple eigenvalue of Fl
and/or λl is a multiple eigenvalue of L.

The prediction of partially synchronous regimes, which will
be illustrated in Section 4, is based on analyzing the solu-
tion of (11) in the unstable manifold of the synchronized
equilibrium for the given (gain, delay) parameters. In order
to explain the main idea in brief, let us assume once more
that we have p = 4 agents and that all unstable character-
istic roots are due to the zeros of f1 and fk, k ∈ {2, 3, 4}.
In addition, let Ek = [1 1 − 1 − 1]T for k ∈ {2, 3, 4} and
the set M =

{
x ∈ C4n : x1 = x2; x3 = x4

}
be a forward

invariant for the systems (1)-(2), i.e., Theorem 4 is satisfied
with Φ given by (6). By (15), we conclude that close to
the synchronized equilibrium the solutions are repelled but
in such a way that the synchronization between agents 1
and 2, and the synchronization between agents 3 and 4
are maintained. From this property and the fact that M
is a forward invariant set, we predict the corresponding
partially synchronized motion. Although the prediction is
based on the local behavior of solutions it turns out that
in many cases the same type of partially synchronized
solutions is observed in the coupled system, as is illustrated
in Section 4 as well as in Ünal and Michiels [2012].

Now, we need to determine the stability/instability regions
in the (gain,delay)-parameter space of the synchronized
equilibria to find for which (k, τ) values fl(λ; k, τ), l =
1, . . . , p, has zeros in the right-half plane (rhp). Since
points on the stability crossing curves correspond to the
presence of characteristic roots on the imaginary axis,
these curves give the stability/instability regions where
the number of rhp zeros of the characteristic function
is constant. The stability/instability regions of (11) in
delay parameter space for a given k can be determined
by Theorem 4 in Ünal and Michiels [2012], which is
a slight adaptation of Propositions 3.4-3.5 of Michiels
and Nijmeijer [2009] (see also Michiels and Niculescu
[2007]). The curves separating the (gain,delay)-parameter
space into regions where the number of characteristic
roots in the rhp are constant can be determined by
repeating Algorithm 1 in Ünal and Michiels [2012] for
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Fig. 1. Network Topology (each connection has weight 1)

a set of k values chosen on a grid. A numerically more
efficient way consists of computing these curves as Hopf
bifurcation curves of the coupled system using numerical
continuation techniques (see, e.g., Seydel [2010]), which
need the starting points, however, they can be generated
by that algorithm.

For the numerical computations presented in Section 4,
we used the package DDE-BIFTOOL (Engelborghs et al.
[2001]) to determine the stability crossing curves. Thereby
the amount of computations was significantly reduced by
using the following lemmas.

Lemma 6. For i ∈ {2, . . . , p} the property fi(jω0; k, τ) =
0 for ω0 > 0, k ∈ R and τ ≥ 0 implies that

fi

(
jω0; k, τ + 2πl

ω0

)
= 0, where l = 1, 2, . . ..

Lemma 7. If Laplacian L has at least two non-zero real
eigenvalues λi(L) and λm(L) for some i,m ∈ {2, . . . , p}
and ω > 0, fi(jω; k, τ) = fm(jω; k̂, τ), where k̂ = k λi(L)

λm(L) .

In particular, Lemma 6 implies that one computed curve
defines a family of curves characterized by a frequency
dependent delay shift. By Lemma 7, if L has at least two
non-zero real eigenvalues, it is only necessary to compute
the stability crossing curves for one real eigenvalue of L,
since for the other real eigenvalues, the curves can be
simply obtained by re-scaling the k-axis.

4. APPLICATION TO NEURONAL NETWORKS

We consider a network given in Fig. 1 with 8 Hindmarsh-
Rose neurons described by

żi,1(t) = 1− 5y2i (t)− zi,1(t) (16)

żi,2(t) = 0.02yi(t) + 0.0324− 0.005zi,2(t) (17)

ẏi(t) =−yi(t)3 + 3yi(t)
2 + zi,1(t)− zi,2(t) + 3.25

+ui(t), (18)

where zi,1(·) and zi,2(·) are internal variables, yi(·) and
ui(·) are respectively the membrane potential and the
external current of the ith neuron (Hindmarsh and Rose
[1984]). It is shown in Steur [2011], since the conditions in
Theorem 3 hold for Hindmarsh-Rose neurons, all solutions
of (16)-(18) coupled via (2) are bounded. In addition, by
linearizing the dynamics in (16)-(18) around its unique
equilibrium point x∗, A, B, and C matrices in (11) can be
obtained as

A =

−1 0 −10ys
0 −0.005 0.02
1 −1 −3y2s + 6ys

 , CT = B =

[
0
0
1

]
, (19)

where ys = −0.722075. The weighted Laplacian L of the
network topology in Fig. 1 is

L =



2 0 −1 0 0 −1 0 0
0 1 0 0 0 0 0 −1

−1 −1 3 0 0 0 −1 0
−1 −1 −1 4 0 0 −1 0
−1 0 0 −1 2 0 0 0

0 0 0 0 0 1 −1 0
−1 −1 −1 −1 0 0 4 0

0 0 0 0 −1 0 0 1


,

where λ1(L) = 0, λ2(L) = λ3(L) = 1.1226 + j0.7449,
λ4(L) = λ5(L) = 2, λ6(L) = 2.7549, λ7(L) = 4, λ8(L) =
5, and the corresponding eigenvectors are given in (20),
where E5 is a generalized eigenvector corresponding to the
double non-semisimple eigenvalue 2. Now, let us consider
the following permutation matrices,

Φ1 =



0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


,Φ2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


,

Φ3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,Φ4 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


,

where Φ1, for instance, is introduced to investigate the
synchronization between neurons 1, 5, 6 and the syn-
chronization between neurons 3, 4, 7. Since ker(I −
Φ1) = span{E1, E2, E3}, ker(I −Φ2) = span{E1, . . . , E6},
ker(I − Φ3) = span{E1, . . . , E6, E8}, and ker(I − Φ4) =
span{E1, . . . , E7} are invariant subspaces of L, we con-
clude from Theorem 4 that the sets M1 := {x ∈ C24 : x1 =
x5 = x6; x3 = x4 = x7}, M2 := {x ∈ C24 : x3 = x4 = x7},
M3 := {x ∈ C24 : x3 = x4} and M4 := {x ∈ C24 : x4 =
x7} are forward invariant sets for the coupled neuronal
system. Now, we will predict the (gain,delay) parameters
for which the corresponding partially synchronized regimes
occur by utilizing the stability crossing curves separating
the (k, τ) parameter space of the synchronized equilibrium
as shown in Fig. 2.

The Hopf curves labelled as Hλi
in Fig. 2 are determined

by the factor fi(λ; k, τ) in (13) for λi(L) and the curves
labelled as Hi

λi
are determined by Lemma 6 (Hλ4,λ5

corresponds both Hλ4
and Hλ5

, since λ4(L) = λ5(L)). The
Hopf curves Hλ2,λ3

and Hs
λ2,λ3

in Fig. 2 are determined by

using (12) considering the complex conjugate eigenvalue
pair of L. The number of rhp zeros of the corresponding
characteristic function is shown by bold numbers in Fig. 2.
Since λ1(L) = 0 and A matrix in (19) has two unstable
eigenvalues, by (13), the characteristic function has at least
2 rhp zeros for all (k, τ) pairs. Thus, since fi(λ; k, τ) has
not any rhp zero for (k, τ) parameters lying below the
corresponding Hopf curve, the characteristic function has
2 rhp zeros for (k, τ) parameters lying below all the curves,
indicated as region FS in Fig. 2. Therefore, by (15), the
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[E1 E2 · · · E8] =



1 0.3066 − 0.1037i 0.3066 + 0.1037i 1 −1 0.2810 −207 41
1 −0.5680 −0.5680 −1 2 0.0912 21 1
1 −0.1148 − 0.2157i −0.1148 + 0.2157i −1 2 −0.4930 357 −89
1 −0.1148 − 0.2157i −0.1148 + 0.2157i −1 2 −0.4930 −171 −89
1 0.3066 − 0.1037i 0.3066 + 0.1037i −1 0 0.2810 189 16
1 0.3066 − 0.1037i 0.3066 + 0.1037i 1 −3 0.2810 57 −34
1 −0.1148 − 0.2157i −0.1148 + 0.2157i −1 2 −0.4930 −171 136
1 0.0696 + 0.4231i 0.0696 − 0.4231i 1 −1 −0.1601 −63 −4


(20)
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Fig. 3. Full synchronization for k = 1.4 τ = 0.3

corresponding exponential solution of (11) can be written
as

E1 ⊗ V1(t),

where V1(t) ∈ Rn. Because the intersection of all forward
invariant sets describes full synchronization and, by (20),
all entries of E1 are non-zero and equal to each other, we
may predict fully synchronous behavior in region FS. As
seen in Fig. 3, all the neurons synchronize for a chosen
(k, τ) pair in FS. Now, let us consider the region PS1,
which lies under the intersection of Hλ8 , Hλ7 , Hλ6 and
Hλ4,λ5 but outside Hλ2,λ3 . In this region, the characteristic
function has rhp zeros due to λ1(L), λ2(L) and λ3(L).
Then, by (15) and the structure of E2 and E3 given in
(20), the exponential solution of (11) can be written as
follows:

E1 ⊗ Z1(t) + E2 ⊗ Z2(t), (21)

where Zi(t) ∈ Rn, i = 1, 2. Note that, if the rhp zeros
in this region are real and distinct (or with a multiplicity
strictly greater than 1), by E2, the structure of (21) is kept.
From (21), solutions which are close to the synchronized
equilibrium are repelled, however, the synchronization
between neurons 1, 5, 6 and the synchronization between
neurons 3, 4, and 7 are preserved. By this observation
and the fact that M1 is a forward invariant set, we may
predict such a partial synchronization in region PS1. As
shown in Fig. 4, a chosen (k, τ) pair inside the region
PS1 yields the partially synchronous regime as discussed
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Fig. 4. Partial synchronization for k = 1.0 τ = 0.5
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Fig. 5. Partial synchronization for k = 0.5 τ = 0.5

above. Similarly, let us consider the region PS2, which is
outside Hλ4,λ5 and Hλ2,λ3 , but inside the intersection of
Hλ8 , Hλ7 , and Hλ6 . Then, the characteristic function has
rhp zeros due to λ1(L), . . . , λ5(L) such that the introduced
rhp zeros due to λ4(L) and λ5(L) have multiplicity two,
since λ4(L) = λ5(L). Then, the corresponding unstable
solutions of (11) take the form

5∑
i=1

Ei ⊗ Ui(t), (22)

where Ui(t) ∈ Rn, i = 1, . . . , 5. A common property of
all terms in (22) is that the third, fourth and seventh
components are equal to each other. Hence, from (22) and
the fact that M2 is a forward invariant set, we may expect
partial synchronization of neurons 3, 4, and 7 for a chosen
(k, τ) pair inside PS2 (see Fig. 5). In addition, if we pick a
(k, τ) inside the region indicated as PS21 in Fig. 2, because
of the structure of E6, synchronization of neurons 3, 4,
and 7 can also be expected. Now, let us consider the region
indicated as PS3 in Fig. 2. In this region, since rhp zeros
of the characteristic function are due to λ1(L) and λ8(L),
the corresponding exponential solution takes the form

E1 ⊗ V̂1(t) + E8 ⊗ V̂2(t), (23)

with V̂i(t) ∈ Rn, i = 1, 2. Note that the third and fourth
components in (23) are equal to each other. Thus, close to
the synchronized equilibrium solutions are repelled but the
synchrony between neurons 3 and 4 is preserved. Since M3

is a forward invariant set, we may predict such a partial
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synchronization of neurons 3 and 4 for a chosen (k, τ) pairs
in PS3 (see Fig. 6). Note that, by the presented approach,
if we pick a (k, τ) pair inside the region indicated as
PS4, we should observe the synchronization of neurons 4
and 7, however, we observed it for (k, τ) pairs close to
the boundary of PS4 (see Fig. 7). This can be attributed
to using local analysis. In addition, by Lemma 7, since
Hλ8

can be obtained by scaling Hλ7
in k-direction by

the ratio of λ7(L))/λ8(L), which is close to 1, the region
outside Hλ7

but inside Hλ8
is narrow, which challenges

the prediction of (k, τ) pairs yielding the expected partial
synchronization.

Finally, the occurrence of partial synchronization, which
is based on numerical simulations for (k, τ)-values on a
grid, is depicted in Fig. 8. Note that the type of partially
synchronous regimes and the transitions from one regime
into another by changing the parameters are correctly
predicted by Fig. 2.

5. CONCLUSIONS

We described an approach to analyze the occurrence of
partially synchronous regimes for coupled nonlinear oscil-
lators as a function of the coupling delay and the coupling
strength. In order to ensure the boundedness of solutions,
under mild conditions, the considered subsystems were
assumed to be strictly semi-passive. The predictions for
the occurrence and type of partially synchronous solutions
are based on : existence of the forward invariant sets of (1)-
(2), stability analysis of synchronized equilibria, and the
structure of the solutions in the unstable manifold which
depends on the eigenvector of the weighted Laplacian of

network topology. Although the analysis of synchronized
equilibria is only local, we have shown that both qualita-
tively and quantitatively valuable predictions can be made.
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