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Abstract: Control of dynamical systems gets considerably harder with an increasing number
of control variables. Especially when the control variables are restricted to integer values, the
solution is of combinatorial complexity. An example of such systems are Digital Hydraulic Drives,
where several cylinders contribute to the output torque independently. In this work we present
an optimal control approach for torque control of Digital Hydraulic Drives using Mixed-Integer
Quadratic Programming in a Model Predictive Control framework. The nonlinear behavior and
discrete valued inputs resulting from the use of on-off valves, are accommodated in the control
model using a Mixed Logical Dynamical System representation. With the presented approach,
optimal switching sequences for the electrical valves are computed that produce the desired
torque trajectory with fast tracking and minimal ripple, while keeping switching events at a
minimum and respecting physical system constraints.
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1. INTRODUCTION

Digital Hydraulics gain increasing attention in the fluid
power community. As opposed to traditional analogue con-
trol components, such as proportional valves, which deliver
a smooth output but are sensitive to external changes, dig-
ital hydraulics utilize discrete valued on-off valves. Similar
to digital systems in electronics, digital hydraulic systems
achieve robustness, repeatability and redundancy through
the use of many yet simple components (Linjama and
Vilenius [2011]).

A particular application of digital hydraulic systems are
Digital Hydraulic Drives. They are comprised of cylin-
ders, which independently generate a portion of the total
torque output. In a radial design, the cylinders are radi-
ally arranged around an eccentric (Fig. 1). Each cylinder
contains a piston, and electrically actuated on-off valves,
that control the cylinder pressure. Due to the nature of
on-off valves, the amplitude of the drive output cannot be
altered continuously (i.e. either high- or low pressure is
applied to the piston) but is rather quantized in portions
according to the amount of cylinders present. This inherent
feature creates ripple in the torque output, which can
induce severe oscillations in the driveshaft, causing damage
or inhibiting proper machine function. Especially in high-
performance applications, such as hydraulic hybrid vehi-
cles, this feature is very restricting. However, the amount
of independent control variables holds potential for torque
ripple mitigation, and due to the combinatorial complexity
and nonlinear behavior, also makes control a challenging
task. Control methods for Digital Hydraulic Drives that

have been investigated in the past are limited and can be
divided into two basic approaches:

Ehsan et al. [2000] consider torque generation as a suc-
cession of pulses in which the demanded torque output
is modulated using delta-sigma (∆Σ) modulation. Simi-
larly, other modulation techniques, such as Pulse-Width
Modulation (PWM) can be considered as well. Because
modulation yields an average value, the instantaneous
torque output is afflicted with high errors in the form of
torque ripple. Armstrong and Yuan [2006] propose setpoint
tracking by scheduling all activated cylinders repeatedly
at every sample step. Cylinder selection is based on the
enumeration of switching possibilities, that yield the least
deviation from the current setpoint. However, transient
behavior and the number of switching events are not
regarded, leaving room for further exploration.

In this work, we propose a nonlinear Model Predictive
Control approach and employ a hybrid system model,
which accommodates the nonlinear pressure dynamics
and the discrete event behavior. By incorporating system
knowledge, we show how torque ripple can be significantly
reduced. Furthermore the presented methodology allows
to shape the torque output according to given demands,
such as frequency content and valve switching events.
The work is structured as follows: In section 2 a short
outline on related applications is given. Section 3 presents
the physical system modeling and derives a mixed logical
dynamical system representation. In section 4 the design
of optimal control is shown. In section 5 we discuss the
simulation results and conclude the work in section 6.

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

FrB3.4

Copyright © 2013 IFAC 827



ϕi

xi

qH,i qL,iqCV,i

yi

s0
si

e

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

high pressure accumulator

high pressure line

low pressure line

low pressure valve (LPV)

high pressure valve (HPV)

piston

oil

cylinder

check valve (CV)

oil tank

1.
2.

3.

4.

5.

6.

7.8.

9.

10.

Fig. 1. Digital Hydraulic Drive

2. HYBRID MODEL PREDICTIVE CONTROL

Model Predictive Control is an iterative control method,
which optimizes an objective function on a finite horizon
with respect to given demands (Maciejowski [2002]). As a
model based control scheme, performance of MPC heavily
relies on the employed system model. For the optimization
to be manageable, low complexity models are demanded,
while simultaneously maintaining a high prediction accu-
racy. Hence for the nonlinear behavior and the discrete
nature of Digital Hydraulic Drives to be accounted for,
using a hybrid system representation is favorable. In the
context of speed control for Digital Hydraulic Drives, MPC
describes the commutation of individual cylinders. In an
outer loop, a conventional speed controller determines the
demanded torque based on the current and desired shaft
speed and feeds it into the MPC Controller (Fig. 2).

Related control tasks involving nonlinear, periodic system
behavior and discrete inputs have been approached by
employing MPC. Geyer et al. [2009] used MPC for the
control of three phase AC electric drives. The motor torque
and stator flux are kept within given hysteresis bounds
choosing the optimal inverter switching combination to
minimize switching events. Peyrl et al. [2009] examined
MPC for torque control of switched reluctance motors
(SRM). The optimization task for the nonlinear model is
solved by enumeration of all possible switching possibilities
for the DC-link power converter of a three phase SRM.
Switching and continuous dynamics for optimal control
of DC-DC Converters were considered by Asano et al.
[2006] in utilizing a hybrid prediction model using a Mixed
Logical Dynamical (MLD) system description. Modeling
using MLD systems was introduced by Bemporad and
Morari [1999] and an application of MPC using MLD
system models was shown for a multi-tank system by
Habibi et al. [2005].
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Fig. 2. MPC Control Strategy

3. SYSTEM MODELING

The basic element of the Digital Hydraulic Drive is a single
cylinder with a moving piston, two actively controlled
valves and a check valve (CV) that opens if the cylinder
pressure exceeds the supply pressure. When the high pres-
sure valve (HPV) is activated and the low pressure valve
(LPV) is closed, fluid from the high pressure supply flows
through an orifice into the cylinder, where pressure is built
up. The resulting force on the piston generates torque and
thus drives the shaft. When deactivated (open), the LPV
permits fluid intake from the tank and inhibits decom-
pression in the cylinder while the piston is in downstroke,
whereas it permits fluid outtake and inhibits compression
while in upstroke. When the LPV is activated (closed),
it permits compression and decompression. The electri-
cal valves determine the way pressure is built up in the
cylinder, and thus shape the torque output accordingly.
Each cylinder contributes to the overall torque output of
the system by generating a periodic torque. Because all
cylinders are phase shifted relative to each other around
the eccentric, the instantaneous torque output of each
cylinder is different.

3.1 Continuous Modeling

The continuity equation for compressible fluids

qin − qout = q =
dV

dt
+
V

β
· dx
dt

(1)

describes the pressure change dx
dt within the cylinder, when

there is a flow q into the cylinder or a change in cylinder
volume dV

dt . The pressure dynamics are characterized by
the hydraulic compressibility coefficient β. Considering the
cylinder geometry, (1) can be rearranged into

ẋi = (qi −A · ṡi(ϕ)) · β

A (s0 + si(ϕ))
, (2)

describing the evolution of pressure xi(t) over time t for
cylinder i = 1, 2, . . . , N . From the kinematic relation, the
piston stroke si and thus the displaced volume Vi = A · si
can be inferred from the shaft angle ϕ. The dead volume
A·s0 is the part of the cylinder volume, that remains undis-
placed after a full piston stroke. The kinematic relation
between shaft angle and piston stroke can be described by

si(ϕ) = e·(1− cos(ϕ+ (i− 1)φ)) , ∀i = 1, 2, . . . , N, (3)

and accordingly the stroke velocity

ṡi(ϕ) = eω sin(ϕ+ (i− 1)φ), (4)

where φ = 2π
N is the phase shift, e the eccentricity and

ω = dϕ
dt the angular shaft velocity. The sum of flows into

the cylinder is given by

qi = qi,H + qi,L − qi,CV . (5)

Here the leakage behavior is accommodated in an adapted
compressibility coefficient β. The valve hydraulics are
described according to Akers et al. [2006] by

Copyright © 2013 IFAC 828



qm = αAm ·
√

2

ρ
·
√
|xm − x| · sgn(xm − x) · νm (6)

as the flow through an orifice, given the orifice flow
coefficient α, the oil density ρ, source pressure xm, cylinder
pressure x and the cross-sectional area of the orifice Am.
The valve stroke νm ∈ [0, 1] determines the orifice opening
of the valve and ultimately its volume flow. With m =
{H,L,CV } the pressure sources for the respective valves
are the supply pressure xH = xCV for the HPV and CV
and the tank pressure xL = 0 for the LPV.

The resulting cylinder pressure dynamics in (2) consist of
two parts, each with significantly different time constants:

ẋi = ( qi︸︷︷︸
fast

−A · ṡi(ϕ)︸ ︷︷ ︸
slow

) · β̃i(ϕ), (7)

with β̃i(ϕ) = β
A(s0+si(ϕ)) . Therefore it is beneficial to

decompose (2) into fast and slow dynamics. The fast
dynamics are given by the volume flow through the opened
valves, whereas the slow dynamics are governed by the
piston stroke velocity. Decomposition yields the impulsive
system with instantaneous state jumps:

ẋi =

0, xi(t+ τ) = xH if νH = 1 ∧ νL = 0 or xi(t) > xH ,

Aṡi(ϕ)β̃i(ϕ) if νH = 0 ∧ νL = 0,

0, xi(t+ τ) = 0 if νH = 0 ∧ νL = 1 and xi(t) < 0,

(8)

with τ representing a dead time due to present valve
dynamics. The discrete time description is obtained by the
forward Euler approximation

xi(k+1) =

xH if νH = 1 ∧ νL = 0 or xi(k + 1) > xH ,

xi(k) + fi(ϕ) if νH = 0 ∧ νL = 0,

0 if νH = 0 ∧ νL = 1 and xi(k + 1) < 0

(9)

where the change in pressure is governed by

fi(ϕ) = ∆T Aβ̃i(ϕ)ṡi(ϕ). (10)

Because system commands are synchronized and triggered
by the measured shaft angle, it is desirable to transform
the system evolution from the time domain into the
domain of the shaft angle ϕ. Given the relation dϕ =
ω(t)dt, and assuming that ∆ω ≈ 0, the sample time can be

stated as ∆T = ∆ϕ
ω(t) . Thus the discrete system evolution

is described along the shaft angle ϕ = k∆ϕ, where k is the
sample number. Equation (10) can be restated to

fi(k) =
∆ϕ

ω(k)
Aβ̃i(k)ṡi(k). (11)

Note that from (4) ṡi(k) ∝ ω(k), fi(k) becomes indepen-
dent of the shaft speed and thus constant in the domain of
the shaft angle. The torque output of a single cylinder
is defined by the cylinder pressure xi(k) acting on the
piston surface area A and the lever arm of the eccentric
li(k) = e sin(k∆ϕ+ (i− 1)φ), resulting in the output

yi(k) = Axi(k)li(k). (12)

The overall torque output of the system is given by the

superposition of all cylinder outputs y(k) =
N∑
i=1

yi(k).

3.2 MLD System Representation

The hybrid system model (9) is ruled by externally induced
switching events through valve actuation and system state
dependent switching. For the use in MPC and the related

solution of optimal control problems, an integrated system
model is required. This can be provided using a Mixed
Logical Dynamical system formulation. In the framework
of Bemporad and Morari [1999], systems described by
physical laws, logic rules, and operating constraints, are
described by linear dynamic equations subject to mixed-
integer inequalities. Upon this description, the case depen-
dent equation (9) can be expressed in the integral form

xi(k + 1) = xi(k)δi(k) + fi(k)δi(k) + xHui(k), (13)

by introducing the logical variables δi(k), ui(k) ∈ {0, 1}.
The nonlinear term xi(k)δi(k) can be overcome by defining
an auxiliary variable z(k) = xi(k)δi(k), which together
with the logical variables represents the input variables of
the system. The value of zi(k) needs to be imposed by
δi(k) such that

[δi(k) = 1]→ [zi(k) = xi(k)]

[δi(k) = 0]→ [zi(k) = 0] ,
(14)

which can be expressed by the inequalities

zi(k) ≤Mδi(k)

zi(k) ≥ mδi(k)

zi(k) ≤ xi(k)−m(1− δi(k))

zi(k) ≥ xi(k)−M(1− δi(k)),

(15)

with m = 0 and M = xH representing the range limits
of the system state xi(k) ∈ [m,M ]. Now the system is
described by the linear equation

xi(k + 1) = zi(k) + fi(k)δi(k) + xHui(k). (16)

The desired system behavior given by (9) is achieved by
defining the logical relations

[xi(k + 1) ≥ xH ]↔ [ui(k) = 1] ∧ [δi(k) = 0] ,

[0 < xi(k) < xH ]↔ [ui(k) = 0] ∧ [δi(k) = 1] ,

[xi(k + 1) ≤ 0]↔ [ui(k) = 0] ∧ [δi(k) = 0] ,

[δi(k) = 1]→ [ui(k) = 0] ,

[ui(k) = 1]→ [δi(k) = 0] ,

(17)

expressing the state saturation xi(k) ∈ [m,M ], compres-
sion/decompression behavior, and restricting concurrent
opening of high and low pressure valves to prevent hy-
draulic short-circuiting. Herein the logical variable ui(k)
directly corresponds to the HPV state νH , whereas δi(k)
corresponds to ¬(νH ∧ νL). The resulting inequalities are

xi(k + 1) ≤M
xi(k + 1) ≥ m

xi(k) + fi(k)δi(k) ≤M(δi(k) + ui(k))

sgn(si(k))yi(k) +Ali(k)fi(k) ≤M(δi(k) + ui(k))

1 ≥ δi(k) + ui(k).

(18)

Finally the entire system comprising N cylinders is ex-
pressed in the time variant MLD system form

x(k + 1) = z(k) +B2(k)δ(k) +B1u(k),

y(k) = cT (k)x(k), (19)

E2(k)δ(k) +E3z(k) ≤ E1u(k) +E4(k)x(k) +E5(k),

where y(k) ∈ R is the torque sum, x(k) ∈ RN
the cylinder pressure vector, z(k) ∈ RN the aux-

iliary variable vector and δ(k),u(k) ∈ {0, 1}N are
the logical variable vectors. The system matrices are
B2(k) = diag(f1(k), f2(k), . . . , fN (k)), B1 = xHIN ,
the N × N identity matrix IN and the output ma-
trix cT (k) = A [l1(k) l2(k) . . . lN (k)]. The inequali-
ties (15) and (18) are contained in (19) with E1 =
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[0N ,0N ,0N ,0N ,−B1,B1,B1,B1,−IN ]T andE2(k),E3,
E4(k), E5(k) are established accordingly, where 0N is the
N ×N zero matrix.

4. OPTIMAL CONTROL OF A DIGITAL
HYDRAULIC DRIVE

The goal of the optimization is to compute the input
variables necessary to achieve a minimum deviation be-
tween the desired- and produced torque. The computation
is carried out for a specified finite horizon of samples,
yielding an optimal switching sequence for each electrical
valve. The number of switching events is also considered
in the optimization task to be minimized.

4.1 Design Objectives

The optimization task to be solved is described by the
objective function

min
u,δ,z

J =

Np∑
j=1

‖y(k)− w(k)‖2Q︸ ︷︷ ︸
setpoint deviation

+ ‖∆u(k)‖2R1
+ ‖∆δ(k)‖2R2︸ ︷︷ ︸

switching events

,

(20)
where w(k) is the setpoint and ‖x‖2P = xTPx. Equation
(20) consists of conflicting objectives. Naturally, minimiz-
ing switching events ∆u(k) = u(k)−u(k−1) and ∆δ(k) =
δ(k)− δ(k − 1) will result in a greater setpoint deviation,
because less combinatorial possibilities arise for achieving
the desired torque. Hence there is a trade-off based on the
control objective. Priorities can be set by an appropriate
choice of the weighting values Q ≥ 0,R1 � 0,R2 � 0.

4.2 Control Constraints

Because highest priority and motivation of Digital Hy-
draulic Drives is a high efficiency operation, activating
cylinders contributing with opposing torques is prohibited.
Thus an additional constraint is formulated, where

yi(k + 1) · sgn(w(k + 1)) ≥ 0, (21)

which also greatly reduces the solution space, as only half
of the cylinders become available for control.

4.3 Algebraic Reformulation

The system equations (19) are rewritten as prediction
equations for every step j = k to j = k+Np in the horizon,

X (k) = Z(k) + B2(k)D(k) + B1U(k), (22)

Y(k) = C(k) ·X (k) (23)

E2(k)D(k) + E3Z(k) ≤ E1U(k) + E4(k)X (k) + E5(k),
(24)

so that X (k) = [x(k + 1) x(k + 2) . . . x(k +Np)]
T

con-
tains the state values over time for a given input sequence

Z(k) ∈ RN ·Np ,D(k) ∈ {0, 1}N ·Np ,U(k) ∈ {0, 1}N ·Np .
Because Z(k),D(k),U(k) are defined as system inputs,
(22) alone represents a mere input-output relation. Only in
conjunction with (24) the recursive character of dynamical
systems becomes apparent. Considering the receding hori-
zon policy of the MPC scheme, given the measured shaft
angle velocity ω(k), the Matrices B2(k),C(k),E2(k),E4(k)
and E5(k) need to be evaluated for every optimization step
k, triggered at the respective shaft angle ϕ = k∆ϕ.

The objective function (20) can be restated to

min
u,δ,z

J = (Y(k)−W(k))
T Q (Y(k)−W(k))

+ ∆UT (k)R1∆U(k) + ∆DT (k)R2∆D(k),
(25)

where ∆U(k) = KuU(k) + Luu(k) and ∆D(k) =
KδD(k)+Lδδ(k), satisfying ∆u(k) = u(k)−u(k−1) and
∆δ(k) = δ(k)−δ(k−1) respectively. By concatenating the
inputs and prediction matrices, the optimization task can
be formulated in standardized form

min
V(k)

J = VT (k)S1(k)V(k) + S2(k)V(k)

s.t. F1(k)V(k) ≤ F2(k) + F3(k)x(k),
(26)

where V(k) = [Z(k) D(k) U(k)]
T

and the measured ini-
tial condition x(k). Solving the Mixed-Integer Quadratic
Programming (MIQP) Problem (26) at every sample step
k, yields the desired valve activation sequences.

5. SIMULATION RESULTS

The proposed control scheme was verified in a simulation
for a Digital Hydraulic Drive with N = 6 cylinders,
a normalized supply pressure xH = 1, and a constant
shaft speed ω(k) = 1000 1

min . During operation, a setpoint
change from w = 0.35 · ymax to w = 0.7 · ymax is to be
tracked, with minimum deviation in the transient- and
steady state. In a second approach, system deceleration
is simulated, by a setpoint change from w = −0.35 · ymax
to w = −0.7 · ymax. The control performance substan-
tially depends on the choice of the weighting matrices
Q,R1,R2, the sample size ∆ϕ and the prediction horizon
Np. First the weighting is chosen to yield a minimum set-
point deviation, neglecting the amount of valve switching
events. Subsequently, the weighting is shifted in favor of a
lower switching effort. In both cases the prediction horizon
needs to be sufficiently high to allow prediction of possible
constraint violations. For instance, the prediction must
always ensure, that any activated cylinder will not produce
negative torque, for any given positive setpoint. Figure 4
shows the solution of the optimization depicted in Fig. 3(a)
in detail. Here to respect constraints, the cylinder must be
deactivated, so that the subsequent decompression is com-
pleted (x1 = 0) prior to reaching the bottom dead center
(nominal torque y1 = 0). Herefrom it can be concluded,
that the prediction horizon has to be at least as large as
the largest decompression time or angle. The sample size
determines the resolution of the computed states and the
complexity of the optimization task. While small sample
sizes increase resolution, they also increase the problem
complexity and computation time. Therefore an appropri-
ate size is chosen. For the simulation, a prediction horizon
of Np = 10 samples and a sample size of ∆ϕ = 6◦ is
chosen, which for ω = 1000 1

min equals a sampling time of
1 ms. Computation is performed using Matlab R2011b
running on an Intel Core i7-2820QM CPU at 2.3 GHz with
8 GB RAM in Win 7. For solving the MIQP problem,
which is NP-complete and in general hard 1 to solve (Pa-
padimitriou and Steiglitz [1998]), CPLEX 12.3 is used with
Yalmip version 3 (Löfberg [2004]) as a Matlab interface.
With an average of 60 active binary decision variables per
iteration, the average solving time per iteration is 2 s.

1 It is widely considered, that no polynomial time algorithm exists
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Fig. 3. MPC results for acceleration, deceleration and different weighting values
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Figure 3(a) shows simulation results for a minimum set-
point deviation priority, set by the diagonal weighting
matrices Q = INp and R1 = R2 = 0N ·Np . The upper plot
shows the switching values ui and δi ∀i = 1, . . . , N for the
respective cylinders (black ≡ [ui = 1], gray ≡ [δi = 1]).
The switching pattern yields the single torque values yi
(middle plot), which in sum create the overall output
torque y (bottom plot). Figure 3(c) shows an optimal
switching solution for shaft deceleration. As opposed to

accelerating, in deceleration each cylinder acts as a pump
where decompression is not available. Hence disabling
cylinders while being activated is not possible until pistons
change directions at their top dead center. This results
in the phase cutting characteristics of yi (middle plots)
where essentially fewer combination possibilities arise and
therefore more torque ripple retains. While activating u
yields high pressure transients and thus high torque ripple,
activation of δ enables de- or compression (depending on
the shaft angle) resulting in smooth transients that reduce
pulsation effects (Fig. 4). Therefore reducing torque ripple
and minimizing setpoint deviation demands a frequent
alternation between instantaneous pressurization and de-
compression, which increases control effort in terms of
valve switching frequency. In order to decrease the control
effort, weighting matrices were exemplarily adjusted to
Q = 0.5 · INp , R1 = R2 = 0.5 · IN ·Np , setting equal
penalty values on setpoint deviation and control effort.
The simulation results given in Fig. 3(b) and Fig. 3(d)
reflect this in an increase in setpoint deviation and a
decrease in switching frequency.

The direct comparison with the state of the art modulation
based control scheme in Fig. 5 shows that the presented
approach significantly reduces torque ripple. In contrast to
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∆Σ and PWM modulation, the MPC approach instantly
follows the setpoint change and has greater accuracy,
which can be improved further by using more cylinders.
Furthermore the weighting values implicitly determine the
frequency content of the output torque. Higher switching
frequencies yielding lower torque ripple, also correspond
to higher frequencies in the output. This consequence can
be exploited to shape the system behavior according to
system requirements. In applications, induction of criti-
cal resonance frequencies can be avoided (e.g. juddering
associated with driveline oscillations) by either producing
low pulsation amplitudes or shifting excitation frequencies.
Here weighting matrices are the tuning parameters within
the MPC strategy to shape system behavior. Alternatively,
admissible frequency content could possibly be formulated
within the objective function or as constraints.

6. CONCLUSION AND OUTLOOK

In this work, a model predictive control approach for
Digital Hydraulic Drives is presented. The nonlinear and
discontinuous system behavior is accounted for by utilizing
a MLD system formulation. Thereby a linear model with
mixed-integer variables subject to mixed-integer linear
inequalities is achieved. Employing the MPC scheme in
conjunction with the developed model, simulations demon-
strate that the instantaneous torque output can be kept
close to a reference, thus diminishing critical pulsations.
Valve switching events are explicitly considered within the
control scheme. Therefore, with the appropriate choice
of weights, switching sequences for an optimal trade-off
between best setpoint tracking and minimum switching
can be determined. In comparison with the state of the art
methods to control Digital Hydraulic Drives, the presented
hybrid MPC approach demonstrates superior performance
by optimally exploiting the system’s capability. Compared
to the steady state accuracy of state of the art modulation
strategies of about 60%, the presented MPC approach
yields up to 90 % accuracy, significantly reducing torque
ripple. The amount of decision variables present, results in
a complex and computationally demanding control task.
For online optimization to be tractable and compatible
with the application, ways to improve computation time
need to be explored. Here various approaches, from offline
computation of affine control laws, up to individually tai-
lored optimization solvers, offer promising solution possi-
bilities. Furthermore, the system performance beyond the

ideal model should be investigated, e.g. when dealing with
uncertainties and disturbances.
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