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Abstract: This work presents a new technique to securely transmit and retrieve a message
signal via chaotic systems. In our system, a two-valued message signal modulates the frequency
of a Duffing oscillator sinusoidal term. An observer is used in the receiver side to retrieve the
sinusoidal signal that contains the message and a novel frequency estimator is then used to
reproduce an approximated estimation of the message signal. The performance of the system is
analyzed by means of numerical simulations performed in Matlab.

1. INTRODUCTION

The possibility of synchronization of two coupled chaotic
systems was first shown by Pecora and Carroll [1990].
The idea is to use the output of the driving system to
control the response system in such a way that they
both oscillate in a synchronized manner. A wide variety
of synchronization schemes have been developed since
then, from those that assume perfect knowledge of the
system to those that account for uncertainties as can be
seen in the works by Chua et al. [1993], Feki [2003] and
Benitez and Acho [2007], to name a few. This opened
the possibility of using the signals generated by chaotic
systems as carriers for analog and digital communications.
This discovery soon aroused great interest as a potential
means for secure communications [Morgul and Feki, 1999,
Andrievsky, 2002, Yang, 2004].

Several works can be found in literature about chaotic se-
cure communications. For instance, Wang andWang [2009]
proposed an observer based on parameter modulation the-
ory where the information modulates the parameters of
the chaotic system. Wang and Zhang [2006] proposed a
chaotic secure communication scheme based on nonlinear
autoregressive filter with changeable parameters where the
nonlinear filter was used as a chaotic dynamic system. Hua
et al. [2005] proposed a unified chaotic system in which
the useful information is embodied in the parameter of
the chaotic system.

In this paper, we propose a novel chaotic secure communi-
cation system. The message signal is coded into two values
that modulate the frequency of the sinusoidal term of a
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Duffing oscillator. As a result, two chaotic-state signals are
sent through the channel. In the receiver side, a Lyapunov-
based observer is used to retrieve the sinusoidal term of
the oscillator based on the two transmitted chaotic states.
Finally, this estimated signal is the input to a frequency es-
timator that retrieves the message signal. Therefore, with
this scheme the message signal modulates the frequency of
a sinusoidal signal instead of modulating parameters as it
is usually done.

One key contribution of this paper is the frequency es-
timator. Online frequency estimation has been studied
extensively due to its applications in engineering. For
example, an approach using globally convergent adaptive
notch filter design is studied in Hsu et al. [1999], and an
alternative method employing adaptive observer design is
given in Bobtsov [2008]. In this paper, we propose a new
system where Lyapunov theory is invoked to guarantee
the stability of the system. This work assumes that the
sinusoidal signal is unbiased. An interesting contribution
for the biased case is given in Bobtsov [2008].

This paper is structured as follows. The problem statement
is presented in Section 2. The complete chaotic secure
communication scheme details are presented in Sections
2.1 - 2.3. In order to illustrate the efficiency of the proposed
method, in Section 3 numerical simulations are analyzed.
Finally, the conclusions are stated in Section 4.

2. PROBLEM STATEMENT

The objective of this work is to send a signal ω between
two points in a secure manner. The components of our
proposed chaotic secure communication systems are fully
explained in the following subsections. A block diagram of
the system is shown in Figure 1
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Fig. 1. Block diagram of the proposed method.

2.1 Encryption stage

In the transmitter side of the communication system, there
is an encryption system consisting of a Duffing oscillator. A
two-valued message signal ω will be used to modulate the
frequency of the oscillator sinusoidal term f(t) = q cosωt.

The Duffing oscillator is a periodically forced oscillator
with nonlinear elasticity and is described by the differential
equation

ẍ+ p1ẋ+ p2x+ p3x
3 = q cosωt

where p1, p3 and q are positive constants while p2 < 0 and
the overdot denotes differentiation with respect to time t.
An adequate choice of these parameters leads the oscillator
to chaotic behavior.

Let t = ατ , α > 0. This time scaling allows for the use of
higher frequency values without compromising the chaotic
behavior of the oscillator. By defining ẋ = y and using the
fact that dt = αdτ , we obtain the state space realization
of the Duffing oscillator as follows:

ẋ = αy, (1)

ẏ = α
(
−p2x− p3x

3 − p1y
)
+ αq cos (ωατ)
︸ ︷︷ ︸

f(τ)

(2)

where the overdot from now on in the paper denotes
differentiation with respect to the new variable τ . Finally,
the states x and y that contain the encrypted message are
transmitted through the channel.

2.2 Synchronization stage

In the receiver side of the communication system, a partial
synchronizer is used to reconstruct the signal f that
contains the message signal. It consists of an observer

that estimates f̂ based on x and y. It is assumed that
the signal f , varies slowly with respect to the observer
dynamics. That is, we use the hypothesis that ḟ = 0 to
design the observer. However, in practice this hypothesis
does not need to be fulfilled as can be seen in Chen
et al. [1999, 2000] where by simulation and experiment
an observer designed under the same previous assumption
can also track fast time-varying disturbances (ḟ 6= 0). In
practice we only need f to vary slowly with respect to
the observer dynamics. Thus, the hypothesis used for the
observer design is not a restrictive assumption in practice.

Theorem 1. Consider the system

˙̂y = k1(y − ŷ)− α(p2x+ p3x
3 + p1ẋ) + f̂ , k1 > 0 (3)

ż = −ŷ + y(αp1k2 − k22)− k2z

+ αk2(p3x
3 + p2x)−

k2
α
x, k2 > 0 (4)

where k1 and k2 are design parameters and

f̂ = k2y + z +
x

α
(5)

Assume that ḟ = 0. Then:

i) f̂ is an observer of the signal f .
ii) ŷ is an estimation of y.

iii) ˙̂y is an estimation of ẏ.

Proof 1. Consider the Lyapunov function

V =
1

2
(f − f̂)2 +

1

2
(y − ŷ)2

Differentiating the positive definite function V along the
system trajectory and taking into account that ḟ = 0 yield

V̇ = (f − f̂)(− ˙̂
f) + (y − ŷ)(ẏ − ˙̂y)

and by substituting (3) into the previous equation, we
obtain

V̇ =(f − f̂)(− ˙̂
f) + (y − ŷ)(ẏ − k1(y − ŷ)

+ α(p3x
3 + p2x+ p1y)− f̂) (6)

From (2) we have that

f = αq cosωατ = ẏ + α(p3x
3 + p2x+ p1y) (7)

Substitution of (7) into (6) yields:

V̇ = (f − f̂)(− ˙̂
f + y − ŷ)− k1(y − ŷ)2

Clearly, by defining
˙̂
f as

˙̂
f = y − ŷ + k2(f − f̂) (8)

the derivative of the Lyapunov function becomes

V̇ = −k1(y − ŷ)2 − k2(f − f̂)2

and, thus V̇ is negative definite. To complete the proof of
i) and ii) it only remains to prove that the equation (8)
corresponds to equations (4) and (5). For this purpose,
replace f by ẏ + p1ẋ+ p2x+ p3x

3 in (8) to obtain

˙̂
f = y − ŷ + k2(ẏ + α(p1y + p2x+ p3x

3)− f̂)

Define ż = −ŷ+k2α(p1ẋ+p2x+p3x
3)−k2f̂ . By arranging

terms and integrating we obtain

˙̂
f − y − k2ẏ = ż ⇒ f̂ = z +

1

α
x+ k2y

Notice that using the previous equation, ż can be written
as

ż = −ŷ + y(αp1k2 − k22)− k2z + αk2(p3x
3 + p2x)−

k2
α
x
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This completes the proof of statements i) and ii). Finally,

to prove that ˙̂y is an estimation of ẏ, we can readily see
in (3) that ˙̂y converges to ẏ due to the fact that ŷ is an

estimation of y and f̂ is an estimation of f .

2.3 Decryption stage

The decryption system consists of a novel frequency ob-
server that makes an online estimation θ based on a
sinusoidal input with frequency ω. The estimation θ is
approximately equal to ω2.

Theorem 2. Let r(t) = a sinωt be a sinusoidal signal with
frequency ω and amplitude a, both unknown. Consider the
system

φ̇1 = ṙ − θ(φ1 − φ2) (9)

φ̇2 = r − φ1 (10)

θ̇ = ρφ1(φ1 − φ2) (11)

where ρ > 0. Then
√
θ is an estimation of ω.

Proof 2. We begin the proof by considering the following
system,

φ̇1 = ṙ − θ(φ1 − φ2) (12)

φ̇2 = r − φ1 (13)

where r(t) = a sinωt. Suppose that there exists θ = θ∗

such that φ1 = 0, which implies that φ̇1 = 0. Then, the
system (12)-(13) reduces to

θ∗φ2 = −ṙ (14)

φ̇2 = r (15)

Thus, θ∗φ̇2 = −r̈, which is equivalent to

θ∗r = −r̈ (16)

corresponding to a linear oscillator with the oscillation
frequency: θ∗ = ω2. This is because r̈(t) = −ω2a sinωt =
−ω2r(t), i.e. it is equivalent to (16). Now, the objective is
to find a dynamic system for θ such that a combination
of φ1 and θ yields a stable equilibrium point in the sense
of Lyapunov. In order to fulfill this objective, consider the
following Lyapunov function:

V =
1

2
φ2
1 +

1

2ρ
(θ − θ∗)2 +

1

2

(

φ2 −
(

− ṙ

θ∗

))2

(17)

Here, ρ is a positive constant. The last term in (17)
captures the convergence of φ2 to a periodic motion, as
expected. Then, the derivative of V along the trajectory
of system (12)-(13) is

V̇ = φ1φ̇1 +
1

ρ
(θ − θ∗)θ̇ +

(
θ∗φ2 + ṙ

θ∗

)(

φ̇2 −
(

− r̈

θ∗

))

Substitution of (16) into the previous equation yields

V̇ = φ1ṙ − θφ1(φ1 − φ2) +
1

ρ
(θ − θ∗)θ̇

Defining θ̃ = θ − θ∗, and using (14),

V̇ = −φ1θ
∗φ2 − θφ1(φ1 − φ2) +

1

ρ
θ̃θ̇

= θ̃

[

θ̇

ρ
− φ1(φ1 − φ2)

]

− θ∗φ2
1 (18)

Finally, by defining θ̇ as

θ̇ = ρφ1(φ1 − φ2) (19)

equation (18) becomes

V̇ = −θ∗φ2
1

Thus, V̇ is negative semi-definite. Also, the equations
above imply that φ1, θ, φ̇1, θ̇ ∈ L∞ and φ1 ∈ L2. By
Barbalat’s lemma we can guarantee that V̇ → 0 as t → ∞.
Therefore, we can conclude that φ1 converges to zero as
time passes. Note this implies that:

(i) θ is an estimation of θ∗. The convergence of φ1 to

zero after a period of time implies, using (19), that θ̇
converges to 0 as time passes by. Thus θ converges to
a constant value θ∗ (as φ1 converges to zero).

(ii) φ2 is bounded. As φ2 converges to zero and θ con-
verges to θ∗ then we have that φ2 remains close to

− ṙ

θ∗
as t → ∞. That is, φ2 converges to a periodic

motion. This is verified in the numerical simulations.

Remark 1: In the implementation of our communication

system, r = f̂ ≈ αq cosαωτ and consequently
√
θ ≈ αω.

Remark 2: Note that ṙ =
˙̂
f = ż + y + k2ẏ. However ẏ

is not available in the receiver side of the communication
system but we can appeal to Theorem 1 in order to make

ẏ ≈ ˙̂y. Thus, it can be rewritten as
˙̂
f ≈ ż + y + k2 ˙̂y.

This expression is not too appropriate for implementation
though. Recall from (4) that ż contains a cubic term that
makes this derivative sensitive to noise or small errors. We
propose the use of the following filter which has proven to
accurately approximate derivatives. The dynamics of this
system is [Spong and Vidyasagar, 1989]:

ġ =
(

f̂ − g
)

/β,
˙̂
f ≈

(

f̂ − g
)

/β (20)

with β > 0 and sufficiently small.

Remark 3: The frequency estimator does not require the
amplitude of the sinusoid in order to make a correct esti-
mation of its frequency. Thus, we can use as input to the

frequency estimator a downscaled version of f̂ . By doing
this, we can avoid high overshoots during the transient and
besides it facilitates the physical implementation of the

system. Therefore, we use r = µf̂ and ṙ = µ
˙̂
f , 0 < µ < 1.

A block diagram of the frequency estimator (9)-(11) is
shown in Figure 2.

3. NUMERICAL SIMULATION

In order to analyze the performance of the chaotic secure
communication system, the systems of equations (1)-(2),
(3)-(5) and (9)-(11) were implemented and simulated in
Matlab with the following parameter values:

• Duffing oscillator: p1 = 0.4, p2 = −1.1, p3 = 1, q =
2.1, α = 5

• Observer values: k1 = k2 = 400.
• Frequency estimator values: ρ = 400, µ = 0.5
• Initial conditions: x(0) = 0.1, y(0) = −0.1, ŷ(0) = 0,
z(0) = 0, φ1(0) = φ2(0) = θ(0) = 0, g(0) = 0.

The message signal is a sequence of values ω = {1.8, 2.2}.
The differential equation solver used was the function
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Fig. 2. Block diagram of the proposed frequency estimator.

ode45. Figures 3-5 show the performance of the trans-
mitter side of the chaotic communication system. In these
figures we observe a 40-second simulation where a message
consisting of two values was sent. Figure 3 shows three
signals, namely, the states x and y and the recovered signal
ŷ. As can be seen, there is an accurate match between the
sent signal x and its estimate ŷ as predicted by Theorem 1.
A zoomed area of these signals is shown in Figure 4 where
it is possible to see that the observer takes less than 0.01
seconds to synchronize with the transmitter signal. An x
versus y plot is shown in Figure 5 where we can see the
chaotic behavior of the oscillator during the transmission.
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x y ŷ

Fig. 3. Transmitter performance. Transmitted states x and
y and estimation ŷ.

Figures 6-8 show the performance of the receiver side
of the system. Figure 6 compares the sinusoidal signal
f = αq cosωατ and the signal retrieved by the observer

in the receiver side f̂ . In the zoomed area shown in
Figure 7 we can see that the observer takes 0.01 seconds
approximately to estimate the oscillator sinusoidal signal
from the transmitted oscillator states. Finally, Figure
8 compares the retrieved confidential message with the
original sent message.

Figure 9 is an analysis of the different values of the scaling
factor µ. During this simulation, the parameters k1, k2 and
ρ remained the same as those presented at the beginning
of this section. Thus, the effect of increasing µ is an
overshoot decrease in the frequency estimator response.
Moreover, a lower µ implies a longer transient response.
On the other hand, Figure 10 depicts the performance of
the communication system for different values of α. In this
case, there is the need to modify the parameters k1, k2
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Fig. 4. Transmitter performance. Closer look at the trans-
mitted signals and estimation.
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Fig. 5. Transmitter performance. Oscillator chaotic dy-
namics.

and ρ so that the system performs satisfactorily. Thus, for
α = 1 we have k1 = k2 = 40, µ = 1 and ρ = 100; for α = 3,
α = 5 and α = 7, we have k1 = k2 = 400, µ = 0.5 while the
values of ρ are 900, 250 and 250 respectively. As it can be
seen, varying α allow us for controlling the response of the
observer, that is, we can make it reduce the oscillations,
the time response and the overshoots. Setting an adequate
value of α is a compromise among these criteria. Finally,
Figure 11 shows the transmitted and retrieved message in
a 100-second simulation with α = 5, µ = 0.5, ρ = 250 and
k1 = k2 = 400.
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Fig. 6. Receiver performance. Retrieved sinusoidal signal
from the observer in the receiver side.
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Fig. 7. Receiver performance. Closer look at the retrieved
sinusoidal signal.
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Fig. 8. Receiver performance. Retrieved message.

Finally, the simulations were performed assuming a noisy
channel. A second-order Butterworth filter with 40 rad/s
cut-off frequency was added in the receiver side so that the
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Fig. 9. Effect of varying µ.
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Fig. 10. Effect of varying α.
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Fig. 11. Transmitted and retrieved messages.

signal states x and y were processed before they entered
the observer. The result of the 100-second simulation is
shown in Figure 12. The systems proofs to be robust
against noise as can be inferred from the accuracy of
the message signal estimation. Moreover, note that the
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Fig. 12. Transmitted and retrieved messages in a 100-
second transmission through a noisy channel.

transient response has lower peaks and faster response in
comparison to the case examined earlier where an ideal
noiseless channel was considered. This is because the noise
filters remove the high frequency contents of the state
signals x and y produced by the abrupt changes in the
message signal when it enters the oscillator (e.g. from 1.8
to 2.2 and vice versa).

4. CONCLUSION

In this paper we have proposed a new chaotic secure com-
munication scheme with frequency estimation. The mes-
sage is a two-valued signal which is used as the frequency
of oscillation of the Duffing oscillator sinusoidal term. In
order to retrieve the message, we use an alternative ap-
proach to on-line frequency estimation. This approach was
obtained by examining the problem from a novel viewpoint
and invoking the Lyapunov theory. A Lyapunov-based
observer was formulated for its use in the synchronization
of the chaos-based communication system. We introduced
a scaling parameter in the Duffing oscillator in order to
improve the frequency estimator response performance.
Numerical simulations have demonstrated the highly effec-
tive performance and robustness of the proposed method.

5. FUTURE WORK

In order to increase the security of the system, we propose
the addition of dynamic encryption and decryption func-
tions. Various methods have been proposed to design se-
cure communications based on chaotic signals, where some
popular ones are the additive masking and chaotic para-
metric modulation methods. When one-channel of commu-
nication is used for transmitting the information, the se-
cure communication has a low level of security for a smart
intruder. According to Jiang [2002], by using two-channels
of communication, the system security level is improved.
This security level can be further increased if, together
with the two-channels of communication, encryption and
decryption functions are employed. These functions can
be added to our security system in that same way as they
are used in Jiang [2002] without altering the proof of all
technical details given for our secure system. Moreover,

some cryptography algorithms (based on chaotic signals)
can be added too if we want to increase more the security
level of our system.
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