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Abstract: In this paper, a quantitative measure of partial observability is defined for PDEs.
The quantity is proved to be consistent in well-posed approximation schemes. A first order
approximation of an unobservability index using empirical gramian is introduced. For linear
systems with full state observability, the empirical gramian is equivalent to the observability
gramian in control theory. The consistency theorem is exemplified using a Burgers’ equation.

1. INTRODUCTION

Observability is a fundamental property of dynamical
systems that has an extensive literature (Isidori [1995],
Kailath [1980]). It is a measure of well-posedness for
the estimation of system states using both the sensor
information and other user knowledge about the system.
Some interesting work can be found in Gauthier-Kupka
[1994], Hermann-Krener [1977], Xia-Gao [1989] for non-
linear systems, Infante-Zuazua [1999] for PDEs, Mohler-
Huang [1988] for stochastic systems, and Zheng et al.
[2007] for normal forms. For complicated problems, a
challenge is to define the concept so that it captures
the fundamental nature of observability, and meanwhile,
the concept should be practically verifiable. In Kang-Xu
[2009a,b], a definition of observability is introduced us-
ing dynamic optimization. This concept is developed in
a project of optimal sensor placement for data assimila-
tions, a computational method widely used in numerical
weather prediction. Different from traditional definitions
of observability, the one in Kang-Xu [2009a,b] is able to
collectively address several issues in a unified framework,
including a quantitative measure of observability, partial
observability, and improving observability by using user
knowledge. Moreover, computational methods of dynamic
optimization provide practical tools of numerically ap-
proximating the observability of complicated systems that
cannot be treated using analytic approaches.

To extend the definition of observability in Kang-Xu
[2009a,b] to systems defined by PDEs, several fundamental
issues must be addressed. A partial observability makes
perfect sense for infinite dimensional systems such as
PDEs. However, its computation must be carried out
using finite dimensional approximations. It is known in
the literature that an ODE approximation of a PDE may
not preserve the property of observability, even if the
approximation scheme is convergent and stable (Infante-
Zuazua [1999], Hohn-Dee [1988]). Therefore, to apply
the concept of observability to PDEs, it is important to
understand its consistency in ODE approximations.
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In Section 2, some examples from existing literature are
introduced to illustrate the issues being addressed in this
paper. Observability is defined for PDEs in Section 3. In
Section 4, a theorem on the consistency of observability
is proved. The relationship between the unobservability
index and an empirical gramian is addressed in Section
5, which serves as a first order approximation of the
observability. Then the theory is verified using a Burgers’
equation.

2. OBSERVABILITY AND ITS CONSISTENCY

Consider the initial value problem of a heat equation

ut(x, t) = uxx(x, t), x ∈ [0, L], t ∈ [0, T ]
u(0, t) = u(L, t) = 0
u(x, 0) = f(x)

Suppose the measured output is

y(t) = u(x0, t)

for some x0 ∈ [0, L]. In this example, we assume L = 2π,
T = 10, and x0 = 0.5. This system can be approximated by
ODEs using Fourier spectrum method. The observability
of the ODEs can be measured using their gramian matrices
(Kailath [1980]) . The smallest eigenvalue, σNmin, measures
the observability of the inital state of the ODEs. A small
value of σNmin implies weak observability.

The system has infinitely many modes in its Fourier ex-
pansion. However, it has a single output. The computation
shows that the output can make the first mode observable.
However, when the number of modes is increased, their
observability decreases rapidly as shown in Figure 1. For
N = 1 we have σNmin = 1.216, which implies a reasonably
observable ū1(0), the first Fourier coefficient. However,
when N is increased, the observability decreases rapidly.
For N = 8, σNmin is almost zero, i.e

[ ū1(0) ū2(0) · · · ū8(0) ]
T

is extremely weakly observable, or practically unobserv-
able. In this case, a small sensor noise results in a big
estimation error.

The family of solutions of a PDE is an infinite dimensional
space. Finite many sensors may not provide adequate
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Fig. 1. Observability of the heat equation

information to accurately estimate all modes in an initial
state. For the heat equation, a single output makes the
first two or three modes observable. All other modes are
practically unobservable. On the other hand, in practical
applications a finite number of modes is enough to provide
accurate approximations. All we need is the observability
of these finite modes. This is the reason we would like to
measure a system’s partial observability. The concept is
useful not only for PDEs. In large scale systems with high
(finite) dimensions, it may not be possible or necessary to
make the entire state space observable. In many applica-
tions a partial observability is all we need.

Another issue to be addressed in this paper is consistency.
In general the observability for a PDE is numerically
computed using a system of ODEs as an approximation.
However, it is not automatically guaranteed that the ob-
servability of the ODEs is consistent with the observability
of the original PDE. In fact, a convergent discretization
of a PDE may not preserve its observability. Take the
wave equation as an example. It is known that the total
energy of the system can be estimated by using the energy
concentrated on the boundary. However, in Infante-Zuazua
[1999] it is proved that the discretized ODEs do not have
the same observability, i.e. the observability of the PDE is
not preserved by its discretizations.

In this paper, we introduce a quantitative measure of
partial observability for PDEs. Sufficient conditions are
proved for the consistency of the observability for well-
posed discretization schemes.

3. PROBLEM FORMULATION

Following Canuto et al. [2006], we formulate a linear
evolution problem

ut + Lu = g, in Ω× (t0, t1]
u(·, t) ∈ D(L) for t ∈ (t0, t1]
u = u0 in Ω× {t = t0}
y(t) = H(u(·, t))

(1)

where Ω is an open set in IRn, L is a linear operator,
bounded or unbounded, defined in D(L) that is a subspace
of a Banach space (X, || · ||X). In the following, u(t)
represents u(·, t) ∈ D(L). We assume that the boundary
conditions of (1) are included in the definition of D(L). We
also assume that the initial conditions lie in a subspace of
X, denoted by D0. We consider the family of solutions,
in either strict or weak sense, generated by u(t0) ∈ D0.
For weak solutions, D0 is not necessarity the same as
D(L). The right-hand side g is a continuous function of
the variable t with values in X, i.e g ∈ C([t0, t1], X). A

solution u(t) for this problem is a X-valued function that
is continuous in [t0, t1], du/dt exists and is continuous for
all t ∈ (t0, t1], satisfying u(t0) = u0 and u(t) ∈ D(L) for
all t ∈ (0, t1]. We assume that (1) is a well-posed problem
in the Hadamard sense (Hille-Phillips [1957], Richtmyer
[1978]). More specifically,

• For any u0 ∈ D0, (1) has a solution.
• The solution is unique.
• The solution depends continuously on its initial value.

In (1), y(t) = H(u(·, t)) represents the output of the
system in which H is a linear operator from X to IRp.
The output y(t) ∈ C([t0, t1]) has a norm denoted by
||y||Y or ||y(t)||Y . Rather than the entire state space, the
observability is defined in a finite dimensional subspace.
Let

W = span{e1, e2, · · · , es}
be a subspace ofD0 generated by a basis {e1, e2, · · · , es}. In
the following, we analyze the observability of u(t0) using
estimates from W . Therefore W is called the space for
estimation.

Let u(t) be a solution of (1). Suppose uw(t0) is the best
estimate of u(t0) in W in the sense that uw(t) minimizes
the following output error,

min ||H(uw(t))−H(u(t))||Y
subject to
duw/dt+ Luw = g
uw(t) ∈ D(L) for all t ∈ (t0, t1]
uw(t0) ∈W

(2)

Let ur(t) = u(t)− uw(t) be the remainder, then

u(t) = uw(t) + ur(t) (3)

If the output y(t) represents the sensor measurement, then
it has noise. The data that we use in a estimation process
has the following form

y(t) + d(t)

where d(t) is the measurement error. The observability
addressed in this paper is a quantity that defines the
sensitivity of the esimation error relative to d(t). From (3),
the best estimate uw(t) has an error that is the remainder
||ur(t0)||X . This error is not caused by d(t) because the
remainder cannot be reduced no matter how accurate the
output is measured. This error is due to the choice of W ,
not the observability of W . Therefore, the following partial
observability is defined for uw(t0) only. Or equivalently, we
assume u(t0) ∈W in the definition.

Definition 1. Given a nominal trajectory u of (1) with
u(t0) ∈W . For a given ρ > 0, define

ε = inf ||H(û(t))−H(u(t))||Y (4)

where û satisfies
ût + Lû = g
û(t) ∈ D(L) for all t ∈ (t0, t1]
û(t0) ∈W
||û(t0)− u(t0)||X = ρ

(5)

Then ρ/ε is called the unobservability index of u(t0) along
the trajectory u(t).

Remark. The ratio ρ/ε can be interpreted as follows: if the
maximum error of the measured output, or sensor error, is
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ε, then the worst estimation error of u(t0) is ρ. Therefore,
a small value of ρ/ε implies a strong observability of u(t0).

Remark. If u(t0) is not in W , then the overall error in
the estimation of u(t0) is bounded by the error of the
estimate of uw plus the remainder, or the truncation error,
||ur(t0)||X . For u(t0) to be strongly observable, it requires
a strong observability of uw(t0) and a small remainder
ur(t0).

Remark. If u(t0) = uw(t0) + ur(t0) is not in W , we can
compute the observability of uw(t0) without solving (2)
first to find uw(t0). All the computations can be done
based on u(t0). For the observability of uw(t0), consider
any solution of (5) in which u(t0) = uw(t0). It can be
expressed as

û(t) = uw(t) + δu(t)

where δu(t) is a solution of the associated homogeneous
PDE and

δu(t0) ∈W, ||δu(t0)||X = ρ

Therefore,

û(t) + ur(t) = uw(t) + ur(t) + δu(t)
= u(t) + δu(t)

Because
||H(û(t))−H(uw(t))||Y
= ||H(û(t) + ur(t))−H(uw(t) + ur(t))||Y
= ||H(u(t) + δu(t))−H(u(t))||Y

the dynamic optimization (4)-(5) is equivalent to

ε = inf ||H(ū(t))−H(u(t))||Y
subject to
ūt + Lū = g
ū(t) ∈ D(L) for all t ∈ (t0, t1]
ū(t0) ∈ u(t0) +W
||ū(t0)− u(t0)||X = ρ

(6)

In the formulation (6), it is not necessary to compute
uw(t).

Remark. It can be shown that, for linear problems, ρ/ε is
a constant. The expressions in (4)-(5) can be simplified
(See Section 5). However, we prefer the form adopted
in Definition 1 because it can be easily generalized to
nonlinear problems or to problems with user-knowledge
(Kang-Xu [2009a]).

To numerically compute a system’s observability, (1) is
approximated by ODEs. In this paper, we consider a
general approximation scheme using a sequence of ODEs,

duN

dt
+ANuN = gN , uN ∈ IRN

uN (t0) = uN0

(7)

where N ≥ N0 for some integer N0. The approximation is
constructed using two linear mappings

PN : D0 → IRN

ΦN : IRN → X
(8)

In addition, a norm, || · ||N , is defined on IRN . The ap-
proximation scheme is said to be well-posed if it is conver-
gent and the metrics in X and IRN are consistent. More
specifically, a well-posed approximation scheme satisfies
the following conditions.

• Given any solution of (1), u(t) : (t0, t1] → D(L).
Let uN (t) be a solution of (7) satisfying uN (t0) =
PN (u(t0)), then

lim
N→∞

||ΦN (uN (t))− u(t)||X = 0 (9)

converges uniformly on [t0, t1].
• For any u ∈ D0, the sequence defined by uN = PNu

satisfies

lim
N→∞

||uN ||N = ||u||X (10)

Given the space for estimation W , we define a sequence of
subspaces, WN ⊆ IRN , by

WN = PN (W )

They are used as the space for estimation in IRN . If
{e1, e2, · · · , es} is a basis of W , then their projections to
WN are denoted by

eNi = PN (ei), i = 1, 2, · · · , s
So WN = span{eN1 , eN2 , · · · , eNs }.

Example. For a spectral method, approximate solutions
can be expressed in terms of an orthonormal basis

{qN (x) : N = 0, 1, 2, · · ·}
For any function,

v(x) =

∞∑
k=0

vkqN (x) ∈ D0

one can define

PN (v) = [ v0 v1 · · · vN ]
T (11)

Obviously, ΦN is defined by

ΦN ([ v0 v1 · · · vN ]
T

) =

N∑
k=0

vkqN (12)

Because the basis is orthonormal, the l2 norm and the
inner product in IRN is consistent with those in L2(Ω). 2

Example. Some approximation methods, such as finite
difference and finite element, are based on a grid defined by
a set of points in space, {xk}Nk=1 and a basis {qk} satisfying

qk(xj) =

{
1 k = j
0, otherwise

(13)

In this case, the mappings in the approximation scheme is
defined as follows

PN (v) = [ v(x1) v(x2) · · · v(xN ) ]
T

ΦN ([ v1 v2 · · · vN ]
T

) =

N∑
k=1

vkqk
(14)

The inner product in IRN can be induced from the L2

space, i.e. for u, v ∈ IRN ,

< u, v >N=<

N∑
k=1

ukqk,

N∑
k=1

vkqk >

If a function v in D0 are uniformly continuous, then
ΦN (PN (v(t))) converges to v(t) uniformly. It can be shown
that < ·, · >N is consistent with the inner product in

Copyright © 2013 IFAC 447



L2(Ω).2

Following Kang-Xu [2009a], we define the observability for
ODE systems.

Definition 2. Given ρ > 0 and a trajectory uN (t) of (7)
with uN (t0) ∈WN . Let

εN = inf ||H ◦ ΦN (ûN (t))−H ◦ ΦN (uN (t))||Y
where ûN satisfies

dûN

dt
+AN ûN = gN

ûN (t0) ∈WN

||ûN (t0)− uN (t0)||N = ρ

(15)

Then ρ/εN is called the unobservability index of uN (t0) in
the space WN .

4. THE CONSISTENCY OF OBSERVABILITY

In this section, we address the consistency of observability.
The theorem is based on a continuity assumption. In
the problem formulation, the output mapping H is not
required to be bounded. However, in the proof of the
consistency theorem we require H be continuous in the
following subspace of X extended from W

WE = span
{
{e1, e2, · · · , es} ∪ {ΦN (eN1 ), · · · ,ΦN (eNs )}∞N=N0

}
Output Continuity Assumption: Given a sequence

{vk(t)}∞k=k0 ⊂ C
1([t0, t1],WE)

If vk(t) converges to v(t) in WE uniformly on [t0, t1], then

lim
k→∞

H(vk(t)) = H(v(t))

Remark. The Ouput Continuity Assumption is easy to
prove for some special cases. In fact, any one of the
following conditions implies this assumption. (a) H is a
bounded linear operator. (b) In a spectral method PN

and ΦN are defined in (11)-(12). (c) For finite difference
or finite element methods PN and ΦN are defined in (13)-
(14). (d) WE has a finite dimension.

Theorem 1. Suppose the initial value problem (1) and its
approximation scheme (7)-(8) are well-posed. Suppose H
satisfies Output Continuity Assumption. Then,

lim
N→∞

εN = ε (16)

To prove this theorem, we need the following lemma.

Lemma 1. Given a sequence ûN (t), N ≥ N0, satisfying
(15). Then there exists a subsequence, ûNk(t), so that
{ΦNk(ûNk(t))}∞k=1 converges uniformly to a solution of (5).

Proof . Let ū(t) be the solution of the original PDE with
the initial value

ū(t0) = 0
and let hi(t), i = 1, 2, · · · , s, be the solutions of the
associated homogeneous PDE satisfying hi(t0) = ei, i.e.

∂hi/∂t+ Lh = 0, in Ω× (t0, t1]
hi = ei in Ω× {t = 0} (17)

Then any solution of the nonhomogeneous PDE with an
initial value in W has the form

ū+

s∑
i=1

aihi (18)

For each N , define ūN (t) be the solution of an approxi-
mating ODE satisfying

ūN (t0) = 0

We know that ΦN (ūN (t)) approaches ū(t) uniformly as
N → ∞. Let hNi (t), i = 1, 2, · · · , s, be the solution of the
associated homogeneous ODE with initial value eNi , i.e.

dhNi /dt+ANhNi = 0
hNi (t0) = eNi

(19)

Then ΦN (hNi (t)) approaches hi(t) uniformly as N → ∞.
For each ûN (t) in Lemma 1, it can be expressed as

ûN (t) = ūN (t) +

s∑
i=1

aNi h
N
i (t)

and

ûN (t0) =

s∑
i=1

aNi e
N
i

From the initial condition in (15), we know that the set

{||
s∑
i=1

aNi e
N
i ||N , N ≥ N0}

is bounded. Using the compactness of bounded sets in
IRN and the consistency of the norms, we can prove that
the sequence {(aN1 , aN2 , · · · , aNs )T }∞N=N0

has a bounded
subsequence which converges under the standard norm
|| · ||2. Let {(aNk

1 , aNk
2 , · · · , aNk

s )T }∞k=1 be the convergent
subsequence with a limit (a1, a2, · · · , as)T . Then

lim
k→∞

ΦNk(ûNk(t))

= lim
k→∞

(ΦNk(ūNk(t)) +

s∑
i=1

aNk
i ΦNk(hNk

i (t)))

= ū(t) +

s∑
i=1

aihi(t)

, û(t)

The limit converges uniformly. From (18), û(t) must be a
solution of the PDE in (5). Because

||ûNk(t0)− uNk(t0)||Nk
= ρ

and because of the consistency of the norms, we have

||û(t0)− u(t0)||X = lim
k→∞

||
s∑
i=1

aie
Nk
i − u

Nk(t0)||Nk

= lim
k→∞

||
s∑
i=1

aNk
i eNk

i − u
Nk(t0)||Nk

= ρ

Therefore, {ΦNk(ûNk(t))}∞k=1 converges uniformly to a so-
lution of (5). 2

Proof of Theorem 1. First, we prove

lim inf εN ≥ ε (20)

Suppose this is not true, then lim inf εN < ε. There exists
α > 0 and a subsequence Nk →∞ so that

εNk < ε− α
for all Nk. From the definition of εNk , there exist ûNk(t)
satisfying (15) such that

||H ◦ ΦNk(ûNk(t))−H ◦ ΦNk(uNk(t))||Y < ε− α
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From Lemma 1, we can assume that ΦNk(uNk(t)) con-
verges to û(t) uniformly and û satisfies (5). From Output
Continuity Assumption,

lim
k→∞

||H ◦ ΦNk(ûNk(t))−H ◦ ΦNk(uNk(t))||Y
= ||H(û(t))−H(u(t))||Y ≤ ε− α

However, from the definition of ε, we know

ε ≤ ||H(û(t))−H(u(t))||Y
A contradiction is found. Therefore, (20) must hold.

In the next step, we prove

lim sup εN ≤ ε (21)

It is adequate to prove the following statement: for any
α > 0, there exists N1 > 0 so that

εN < ε+ α (22)

for all N ≥ N1. From the definition of ε, there exists û
satisfying (5) so that

||H(û(t))−H(u(t))||Y < ε+ α (23)

Let ûN be a solution of the ODE

dûN/dt+AN ûN = gN

with the initial value

ûN (t0) = PN (û(t0))

Then the following limit converges uniformly

lim
N→∞

||ΦN (ûN (t))− û(t)||X = 0 (24)

A problem with ûN (t0) is that its distance to uN (t0) may
not be ρ, which is required by (15). Let us define

ūN (t) = γN (ûN (t)− uN (t)) + uN (t)

γN =
ρ

||ûN (t0)− uN (t0)||N
Then ū(t) satisfies (15). Due to the consistency of the
norms and the fact ||û(t0) − u(t0)||X = ρ, we know
limN→∞ γN = 1 Because of (24),

ΦN (ūN (t))− ΦN (uN (t)) = γN (ΦN (ûN (t))− ΦN (uN (t)))

converges uniformly to û−u. Output Continuity Assump-
tion and (23) imply

lim
N→∞

||H ◦ ΦN (ūN (t))−H ◦ ΦN (uN (t))||Y
= ||H(û(t))−H(u(t))||Y < ε+ α

This implies that there exits N1 > 0 so that

||H ◦ ΦN (ūN (t))−H ◦ ΦN (uN (t))||Y < ε+ α

for all N ≥ N1. From the definition of εN , we know

εN ≤ ||H ◦ ΦN (ūN (t))−H ◦ ΦN (uN (t))||Y < ε+ α

for all N > N1. Therefore, (21) holds. 2

5. GRAMIAN MATRIX

In this section, we assume that WN and the space of
y(t) are both Hilbert spaces with inner products <,>N
and < ·, · >Y , respectively. Suppose t0 = 0. Then εN/ρ
equals the smallest eigenvalue of a gramian matrix. More
specifically, let {eN1 , eN2 , · · · , eNs } be a set of orthonor-
mal basis of WN . For any ûN satisfying (15), we have

ûN (t)− uN (t) =

s∑
k=1

ake
−AN teNk for some coefficients sat-

isfying

s∑
k=1

a2k = ρ Therefore,

< H ◦ ΦN (ûN (t)− uN (t)),H ◦ ΦN (ûN (t)− uN (t)) >N
= [ a1 a2 · · · as ]G [ a1 a2 · · · as ]

T

where G is the gramian

G = [Gij ]
s×s ,

Gij =< H ◦ ΦN (e−A
N teNi ),H ◦ ΦN (e−A

N teNj ) >Y
(25)

This matrix is the same as the observability gramian if
WN is the entire space and if y(t) lies in a L2-space. It is
straightforward to prove

(εN )2 =
min < H ◦ Φ(ûN (t)− uN (t)),H ◦ Φ(ûN (t)− uN (t)) >N
= min∑

a2
k
=ρ2

[ a1 a2 · · · as ]G [ a1 a2 · · · as ]
T

= σminρ
2

where σmin is the smallest eigenvalue of G. To summarize,
if uN (0) and y(t) lie in Hilbert spaces, then the unobserv-
ability index of the discretized system can be computed
using the smallest eigenvalue of the gramian (25)

ρ/εN =
1

√
σmin

(26)

For the heat equation, the mappings can be defined by

PN (u) =
[
uN1 , u

N
2 , · · · , uNN

]T
uNk =

2

L

2π∫
0

u(x) sin

(
kπx

L

)
dx

ΦN (uN ) =

N∑
k=1

uNk sin

(
kπx

L

)
If we want to find the observability of the first s modes,
Definition 2 is equivalent to the analysis using the tra-
ditional observability gramian for N = s. In fact, for all
N ≥ s, G is a constant matrix and

G =

T∫
0

e(A
s)′t(Cs)′CseA

stdt

Therefore, εN = εs for all N ≥ s and εN is consistent.

The idea of gramian matrix can be applied to nonlinear
systems as a first order approximation of observability,
an approach inspired by the computational method in
Krener-Ide [2009].
Example. Consider the following Burgers’ equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= κ

∂2u(x, t)

∂x2
u(x, 0) = u0(x), x ∈ [0, L]
u(0, t) = u(L, t) = 0, t ∈ [0, T ]

(27)

where L = 2π, T = 5, and κ = 0.14. The output,
(y1(tk), y2(tk), y3(tk)) represents three sensors located at
x = L/4, 2L/4, and 3L/4. In the output space

||y||Y =

(
Nt∑
k=0

(y21(tk) + y22(tk) + y23(tk))

)1/2
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The approximation scheme is based on equally spaced
grid-points x0 = 0 < x1 < · · · < xN = L, where
∆x = L/N. System (27) is discretized using a central
difference method

u̇N1 = −uN1
uN2 − uN0

2∆x
+ κ

uN2 + uN0 − 2uN1
∆x2

...

u̇NN−1 = −uNN−1
uNN − uNN−2

2∆x
+ κ

uNN + uNN−2 − 2uNN−1
∆x2

(28)

where uN0 = uNN = 0. For any v(x) ∈ C1([0, L]), we define

PN (v) = [ v(x1) v(x2) · · · v(xN−1) ] ∈ IRN−1

For any vN ∈ IRN−1, define ΦN (vN ) = v(x) ∈ C1[0, L]
be the unique function of cubic spline determined by vN

and (x0, x1, · · · , xN ) satisfying v(0) = v(L) = 0. We adopt

L2-norm in C1[0, L]. For any vector vN ∈ IRN−1, its norm

is defined as ||vN ||2N =
2π

N

N−1∑
i=1

v2i .

The space for estimation is defined to be

W =

{
α0/2 +

KF∑
k=1

(
αk cos(

2kπ

L
x) + βk sin(

2kπ

L
x)

)}

where αk, βk ∈ IR, α0/2 +

KF∑
k=1

αk = 0 In this section,

KF = 2. This means that we want to find the observability
for the first five modes in the Fourier expansion of u(0).
Or equivalently, we would like to find the observability of

[ α0 α1 β1 α2 β2 ] (29)

Define XN = [ x1 x2 · · · xN−1 ]
T

then

WN =

{
α0/2 +

KF∑
k=1

(
αk cos(

2kπ

L
XN ) + βk sin(

2kπ

L
XN )

)}
where αk and βk satisfy (29).

In this example, the nominal trajectory has the following
initial value

u0(x) = −2 + cos(x) + sin(x) + cos(2x) + sin(2x)

To approximate its observability, we apply the empirical
gramian method to (28) in the space WN . The consistency
of observability is verified by the results. The ratio ρ/εN

is approximated for N = 4k, 5 ≤ k ≤ 21. The value of
unobservability index approaches (Figure 2) ρ/ε = 6.87. 2

20 30 40 50 60 70 80 90
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6.5

7

number of grid−points

ρ
/ε

Fig. 2. The observability consistency of Burgers’ equation

6. CONCLUSION

A definition of observability using dynamic optimization
is introduced for PDEs. Using the concept one can achieve
a quantitative measure of partial observability for PDEs.
Furthermore, the observability can be numerically approx-
imated. A practical feature of this definition for infinite di-
mensional systems is that the observability can be numer-
ically computed using well-posed approximation schemes.
It is mathematically proved that the approximated observ-
ability is consistent with the observability of the original
PDE. A first order approximation is derived using empiri-
cal gramian matrices. The consistency is verified using an
example of a Burgers’ equation. Although the results are
proved for linear PDEs in this paper, similar results can
be generalized to nonlinear PDEs. They will be reported
in a separate paper.
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