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Abstract: In this note we prove that if a switched system F formed by a pair of linear vector
fields of R2 is asymptotically controllable, then the discrete time operator associated to F
admits at least one real eigenvalue λ, with |λ| < 1. For the particular case at hand, this is an
improvement of previous existing results.
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1. INTRODUCTION

A key result of linear control theory states that if a linear
system is asymptotically controllable (i.e., any initial state
can be asymptotically steered to the origin by an open-loop
strategy), then it admits a stabilizing feedback (i.e., the
same task can be accomplished by a closed-loop strategy).
Note that while the definition of asymptotic controllability
does not impose any regularity on the dependence of
the open-loop controls on the initial state, the stabilizing
feedback can be found linear, and hence it preserves the
structure of the system (i.e., the closed-loop system has
the same regularity as the plant to be controlled).

As well known, such a nice conclusion cannot be extended
to nonlinear systems. Indeed, asymptotically controllable
smooth (even polynomial) nonlinear systems do not admit,
in general, continuous static state stabilizing feedbacks.
All the existing results on this subject (see for instance
Ancona and Bressan (1999); Clarke et al. (1997); Coron
(1995); Goebel et al. (2009); Rifford (2000)) require the
introduction of feedback laws which are discontinuous (and
so based on some generalized notion of solution), time-
varying or hybrid. In any case, the regularity properties of
the resulting closed-loop system are lost or weakened.

In Bacciotti and Mazzi (2011), a different point of view is
proposed. Instead of looking for closed-loop strategies with
weakened properties, one may address the problem by the
opposite site, searching open-loop strategies with strength-
ened properties. More precisely, it is proved in Bacciotti
and Mazzi (2011) that, under an additional assumption
called radial controllability (see later), any asymptotically
controllable bilinear control system represented by a fam-
ily of linear vector fields admits a stabilizing eventually
periodic switching rule. This means that any initial state
can be asymptotically steered to the origin by a control
input with a special structure: a transient time interval,
where the control depends on the initial state, followed by
a steady state, where the control is periodic and indepen-
dent of the initial state.

In the present note, we consider in particular the planar
case. We show that the more difficult part of the construc-
tion of an eventually periodic stabilizing rule performed
in Bacciotti and Mazzi (2011), that is the construction
of a discrete time operator with a stable manifold, can be
obtained without need of the radial controllability assump-
tion.

The precise statement of the problem is presented in
Section 2. The main result is stated in Section 3, while
the proof is given in Section 4. The final section contains
some conclusive remarks.

2. STATEMENT OF THE PROBLEM

The problem studied in this note is related to the dynamic
behavior (especially, stability and asymptotic controlla-
bility) of linear switched systems in the plane; a subject
which has been recently addressed in a number of papers
(Bacciotti and Ceragioli (2006); Boscain (2002); Balde and
Boscain (2008); Huang et al. (2010); Xu and Antsaklis
(2000)).

Our precise problem can be described in this way. Let
F = {A1, A2} be any pair of 2 × 2 real matrices, and
consider the linear operator

Φ(t1, t2) = et2A2et1A1

where t1, t2 are nonnegative numbers. From the main
result 1 of Bacciotti and Mazzi (2011), it follows that:

(A) there exist t1, t2 ≥ 0 such that Φ(t1, t2) has at least
one real eigenvalue λ with |λ| < 1

provided that:

(H1) for each x ∈ R2 and each ε > 0, there exist an integer
N ≥ 1 and finite sequences of nonnegative numbers {t1,n},
{t2,n} (n = 1, . . . , N) such that

1 The main result of Bacciotti and Mazzi (2011) actually holds
without any restriction on the dimension of the state space and on
the number of the members of F
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|Φ(t1,N , t2,N ) · · ·Φ(t1,1, t2,1)x| < ε

(H2) for each x, y ∈ R2 (x 6= 0, y 6= 0), there exist an
integer M ≥ 1, finite sequences of nonnegative numbers
{t1,m}, {t2,m} (m = 1, . . . ,M) and c > 0 such that

Φ(t1,M , t2,M ) · · ·Φ(t1,1, t2,1)x = cy .

In this note, we show that (A) can be proved under
assumption (H1), without need of (H2). To complete this
section, some comments are in order.

1. Recall that a switched trajectory of F is any continuous
curve which is piecewise coincident with an integral curve
either of the linear vector field f1(x) = A1x or of the
linear vector field f2(x) = A2x. Our interest in the
operator Φ(t1, t2) is motivated by the fact that it describes
in discrete terms the dynamic behavior of the switched
trajectories of F . More precisely, any finite time switched
trajectory of F can be represented as a composition of
these operators, with possibly different choices of t1 and
t2. In particular, given x, y ∈ R2, y is said to be reachable
from x if x can be joined to y by a switched trajectory or,
formally, if there exist an integer K and finite sequences
of nonnegative numbers {t1,k}, {t2,k} (k = 1, . . . ,K) such
that

Φ(t1,K , t2,K) · · ·Φ(t1,1, t2,1)x

= et2,KA2et1,KA1 . . . et2,1A2et1,1A1x = y .

The set of all the points y reachable from x is denoted by
R(x). Note that for each x 6= 0, 0 /∈ R(x).

2. Condition (H1) can be reformulated by saying that for
each x 6= 0 and each ε > 0, R(x) contains at least one
point y such that |y| < ε. In fact, Condition (H1) is
clearly equivalent to asymptotic controllability, which is
more usually defined by saying that every initial state can
be steered asymptotically (for t → +∞) to the origin along
a switched trajectory of F .

3. Condition (H2) can be reformulated by saying that for
each x 6= 0, R(x) has a nonempty intersection with any ray
issuing from the origin. This property is called radial con-
trollability (Bacciotti (2012); Bacciotti and Mazzi (2011)).

4. As a consequence of (A), Φ(t1, t2) has a stable manifold
of dimension at least one. This can be used to transform
an open loop switching signal performing asymptotic con-
trollability into a (hybrid) stabilizing feedback rule (see
Bacciotti and Mazzi (2011); Bacciotti (2012)).

3. STATEMENT OF THE RESULT AND NOTATION

We begin by the formal statement of the result.

Theorem 1. Assume that a pair of 2 × 2 real matrices
F = {A1, A2} satisfies (H1). Then, it satisfies (A).

The proof will be given in the next section. The following
notation will be used.

xx

Ax

Ax

BxBx

Fig. 1. The case ωB,A(x) > 0 on the left; the case ωB,A(x) < 0 on
the right.

If E is a nonempty subset of R2 with 0 /∈ E, we denote
by `+(E) the positive cone generated by E, that is the set
{x ∈ R2 : ∃c > 0 such that cx ∈ E}. If `+(E) = E, we say
that E is a positive cone. If E is a singleton, say E = {x},
the set `+({x}) is also called a ray. In this case, we use the
simplified notation `+(x). Moreover, we denote by Ē the

closure of E, and by
◦

E the interior of E.

Given two linear vector fields f(x) = Ax and g(x) = Bx,
for x 6= 0 we denote ωB,A(x) = ((Bx)⊥)tAx, where
x⊥ = (x1, x2)

⊥ = (−x2, x1) and t denotes transposition.
The sign of ωB,A(x) indicates the relative position of the
vectors Ax and Bx (see Xu and Antsaklis (2000)). As
indicated in Figure 1, if ωB,A(x) > 0 then Ax points in
the counterclockwise direction with respect to the vector
Bx.

If B = Id, we simply write ωA(x) instead of ωId,A(x). If
A = Ai (i = 1, 2) we can further simplify the notation by
writing ωi(x) instead of ωAi

(x). Clearly, ωA(x) = 0 if and
only if x is an eigenvector of A (provided that x 6= 0).

Let S = {x ∈ R2 : |x| = 1}, where |x| is the Euclidian
norm of x. We denote r(x) = x/|x| (x 6= 0) the radial
projection of R2 \ {0} on S. If x, y ∈ R2, we say that x is
parallel to y if x = ay for some a ∈ R.

4. THE PROOF

Some preliminary remarks allow us to restrict considerably
the discussion.

Remark 1. If at least one between A1, A2 has complex
conjugate eigenvalues (with nonzero imaginary part), then
F satisfies (H2), as well. Then (A) follows from the main
result of Bacciotti and Mazzi (2011).

Remark 2. If at least one between A1, A2 has a real eigen-
value µ with µ < 0, then (A) is trivially true (if for
instance the matrix with the negative eigenvalue is A1, we
can take any t1 > 0 and t2 = 0).

According with the previous remarks, without loss of
generality we can assume from now on:

(H3) the eigenvalues of both A1 and A2 are all real and
nonnegative.

Remark 3. Under Assumptions (H1), (H3), A1 and A2

cannot have a common real eigenvector, v 6= 0. Indeed,
in the opposite case, we should have for some λ1, λ2 ≥ 0
and each t1, t2 ≥ 0,
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et2A2et1A1v = et2λ1et2λ1v

meaning that et2A2et1A1v is parallel to v and that

|et2A2et1A1v| ≥ |v| .

This implies in turn that (H1) does not hold with x = v.

As a consequence, we also see that the dimension of the
space generated by all the eigenvectors corresponding to
each eigenvalue of both A1 and A2 is exactly 1.

Remark 4. Clearly, if r(R(x̄)) = S for each x̄ 6= 0, then
F satisfies (H2). Thus, also in this case (A) follows from
Bacciotti and Mazzi (2011).

We can now start our main argument. By virtue of the
previous remark, we can make the following additional
restriction:

(H4) ∃x̄ 6= 0 such that r(R(x̄)) is a proper subset of S.

Let us fix a point x̄ with the property required in (H4).
The set r(R(x̄)) is connected; hence, its boundary with
respect to S is formed by two points p, q, with possibly
p = q. We have to distinguish two main cases.

Case 1. p = q. This possibility is ruled out by further
distinguishing the two following subcases.

Case 1.1. r(R(x̄)) = {p}. In this case both A1p and
A2p must be parallel to p. In other words, p must be
an eigenvector of both A1 and A2, which is excluded by
Remark 3.

Case 1.2. r(R(x̄)) = S \ {p}. If A1p is not parallel to
`+(p) (and hence in particular not zero) then there exists
a neighborhood U of p in S such that A1x is not parallel
to `+(x) for each x ∈ U . Hence some point y ∈ `+(p) is
reachable from some z ∈ R(x̄), and we should conclude
that p ∈ r(R(x̄)). This contradicts (H4). The remaining
possibility is that A1p is parallel to p. But the same
reasoning can be repeated for A2p, as well. In conclusion,
p should be a common eigenvector of A1 and A2, and this
is excluded by Remark 3, again.

Case 2. p 6= q. Let C = ¯`+(R(x̄)), and let Cc its
complement in R2. We adopt the following agreement,
borrowed from Bacciotti and Ceragioli (2006). The point
p and q are denoted in such a way that q can be moved
toward p by a counterclockwise rotation of an angle less
that 2π without leaving ¯r(C): see Figure 2.

If ω1(p) > 0, we could reach from x̄ some point y such
that y ∈ Cc. Hence, ω1(p) ≤ 0. Similarly, we realize that
ω2(p) ≤ 0, ω1(q) ≥ 0, ω2(q) ≥ 0. In addition, by Remark
3, we must have ωi(p) < 0 for at least one index i = 1, 2.
Without loss of generality, we assume

(H5) ω1(p) < 0.

Similarly, we must also have ωi(q) > 0 for at least one
index i = 1, 2. On the other hand, the case ωi(q) > 0 for
both i = 1, 2 is possible only if x̄ ∈ `+(q). But then, we

p

q

Fig. 2. Location of p and q and relative orientation.

ξ

p

q

C1

C2

Fig. 3. Splitting C in two cones C1, C2.

should have ω2(p) = 0 (ω2(p) < 0 would imply that p is
not a boundary point of r(R(x̄))). In summary, at least
one between ω1(q), ω2(q), ω2(p) must be zero. This shows
that, possibly exchanging the roles of p and q, we can limit
ourselves to the following cases.

Case 2.1. q an eigenvector of A1 and ω2(q) > 0.

Case 2.2. q is an eigenvectors of A2, and ω1(q) > 0.

In fact, Case 2.2 can be reduced to Case 2.1. Indeed, since

ω1(p) < 0 and ω1(q) > 0, there exists ξ ∈
◦

C such that
ω1(ξ) = 0. The ray `+(ξ) divides C in two positive cones
C1 and C2, and we have ω2(ξ) 6= 0 because of Remark 3.

Depending on the sign of ω2(ξ) (and possibly exchanging
the roles of A1 and A2), either C1 or C2 is in the same
situation as C in Case 2.1.

We finally focus on the Case 2.1. Without loss of restric-
tions, we can also assume:

(H6) for every index i = 1, 2 Ai does not have an

eigenvector ξ ∈
◦

C.

Indeed, if there exists ξ ∈
◦

C which is an eigenvector of
(say) A1, then the ray `+(ξ) splits C in two positive cones
C1, C2: clearly, at least one between C1 and C2 falls in at
least one between the Cases 2.1, 2.2. Thus, we can restart
our argument by replacing C by C1 or C2.

In conclusion, it remains to prove that in Case 2.1, assum-
ing (H1),(H3), (H5) and (H6), assertion (A) holds.

Since neither A1 nor A2 have eigenvectors lying in
◦

C, we

have ω1(x) < 0 and ω2(x) > 0 for each x ∈
◦

C. Because of
(H3), the origin is not attractive for the vector field f1(x);
more precisely, since this vector field is linear, there exists
ε > 0 such that |etA1p| ≥ ε for each t ≥ 0. Let us consider
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Fig. 4. Switched trajectory starting and ending on `+(ξ).

now the relative orientation of f2(x) with respect to f1(x):
to do so, we examine the sign of ω1,2(x) = ωA1,A2

(x).

Clearly, if ω1,2(x) ≥ 0 for each x ∈
◦

C, the assumption
(H1) would be violated: indeed, switching from f1 to f2

would lead to increase the distance from the origin (the
reasoning is similar to the so-called “worse case” argument,

see Margaliot (2006)). Hence, there is a point ξ ∈
◦

C such
that ω1,2(ξ) < 0. By continuity, the same is true for all x
in some neighborhood O of ξ.

The ray `+(ξ) divides C in two parts, which are both
positive cones: let us denote by C1 the positive cone whose
sides are `+(ξ) and `+(p), and by C2 the positive cone
whose sides are `+(q) and `+(ξ) (see Figure 3).

Let z = eτA2ξ, with τ > 0 so small that z ∈ O, and let V
be a neighborhood of z, with V ⊂ O ∩ C1.

Of course, W = e−τA2V is a neighborhood of ξ. Let t1 > 0
be so small that y = et1A1ξ ∈ W .

By construction, y ∈ C2 as well, while eτA2y ∈ V ⊂ C1.
Hence, there exists t2 > 0 such that u = et2A2y =
et2A2et1A1ξ ∈ `+(ξ) (see Figure 4).

By construction, it is also clear that |u| < |ξ|. This implies
that ξ is an eigenvector of et2A2et1A1 corresponding to
some eigenvalue λ, with |λ| < 1, as required.

The proof of Theorem 1 is now complete.

5. FINAL REMARKS

The existence of a stable manifold of the discrete time
operator associated to F can be interpreted as a partial
stabilization result. To this respect, Theorem 1 may have
some interest, not only from the mathematical point of
view.

At a first sight, the co-existence of Conditions (H1) and
(H3) may appear counterintuitive. However, the fact that
sometimes a careful switching between unstable systems
can result in trajectories converging to the origin, is well
known (see Liberzon (2003)). We emphasize that the
examples usually reported to illustrate this phenomenon
involves matrices with complex eigenvalues. On the con-
trary, the following example involves matrices with real
eigenvalues.

Example 1. Let F be formed by the unstable matrices

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5. A trajectory of the system of Example 1.

A1 =

(

a −1
0 b

)

, A2 =

(

a 0
1 b

)

(a > 0, b > 0). Setting t1 = t2 = t, one easily computes

Φ(t, t) =









e2at (ebt − eat)eat

a − b
(ebt − eat)eat

b − a
e2bt −

(

ebt − eat

b − a

)2









. (1)

Now consider the numerical values a = 0.09, b = 0.11,
t = 2.34085. The eigenvalues of Φ(t, t) can be numerically
computed, which shows that one of them is negative and
less than one in absolute value. Figure 5 shows a trajectory,
obtained by composition of operators of the form (1),
issuing from x̄ = (1.8, 1) and approaching the origin.

We notice that if both F and −F satisfy (H1), in general
it is not possible to find t1 and t2 in such a way that
Φ(t1, t2) has one real eigenvalue λ with |λ| < 1 and one real
eigenvalue µ with |µ| > 1. This is proved by the following
example suggested by J.C. Vivalda:

A1 =

(

−1 1
−1 −1

)

, A2 = −A1 .

However, if all the eigenvalues of both A1 and A2 have
nonnegative real part, then for every choice of t1 ≥ 0 and
t2 ≥ 0, Φ(t1, t2) must have 2 at least one eigenvalue µ
with |µ| ≥ 1. Thus in this case, if in addition F satisfies
(H1), Φ(t1, t2) will have one real eigenvalue λ with |λ| < 1
(according to Theorem 1) and one real eigenvalue µ with
|µ| > 1 for a suitable choice of t1 ≥ 0 and t2 ≥ 0.

Finally, we point out that the arguments used in the proof
of Theorem 1 are very similar to those of Pukhlikov (1998)
(see also Margaliot and Branicky (2009)).

2 The argument can be sketched as follows: if A1 and A2 have all
the eigenvalues with nonnegative real part, then et1A1 and et2A2 will
have all their eigenvalues with modulus greater than or equal to 1, for
each t1 ≥ 0, t2 ≥ 0. Since the determinant of a matrix is the product
of its eigenvalues, this yields |det et1A1 | ≥ 1 and |det et2A2 | ≥ 1. This
in turn implies det |Φ(t1, t2)| ≥ 1 and hence, at least one eigenvalue
of Φ(t1, t2) must have modulus greater than or equal to 1.
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