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Abstract: Motivated by developments on differential Lyapunov functions for contraction
analysis in Forni, Sepulchre (2012) we propose a definition of differential passivity, based on
the geometric framework of the prolongation of a nonlinear system in Crouch, van der Schaft
(1987). We explore the ramifications of this definition and its potential uses.
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1. INTRODUCTION

Over the last years there has been ample interest in
extending the notion of Lyapunov stability to various
forms of incremental stability, in order to cope with, for
example, convergence in regulation, synchronization and
observer design for nonlinear systems; see in particular
Angeli (2000), Aghannan, Rouchon (2003), Lohmiller, Slo-
tine (1998), Pavlov, Pogromsky, van de Wouw, Nijmeijer
(2004), Pavlov, van de Wouw, Nijmeijer (2005), Sontag
(2010), Forni, Sepulchre (2012) (see also Jouffroy (2005)
for references to older work in this area, as well Boyd, Chua
(1984)). In such problems the stability with respect to a
specific solution (e.g., an equilibrium) needs to be replaced
by a stronger notion ensuring the convergence between any
pairs of solutions, coined as contraction analysis in the
influential paper Lohmiller, Slotine (1998).

One of the interesting directions in this area is to ’by-
pass’ the problem of explicit construction of a feasible
distance measure by considering some form of infinitesimal
distance. This idea can be already traced back to work
by Demidovich, which was utilized for control purposes
in Pavlov, Pogromsky, van de Wouw, Nijmeijer (2004);
Pavlov, van de Wouw, Nijmeijer (2005). The infinitesimal
distance measure used by Demidovich can be interpreted
as a constant Riemannian metric, while in Lohmiller, Slo-
tine (1998) the extension was made to general Riemannian
metrics on the state space manifold where contraction
should take place. In the recent paper Forni, Sepulchre
(2012) a further step was taken by extending the concept of
Lyapunov functions defined on the state space to so-called
Finsler-Lyapunov functions defined on the tangent bundle
of the state space; thereby unifying previous forms of
infinitesimal distance measures as explored in e.g. Pavlov,
Pogromsky, van de Wouw, Nijmeijer (2004); Pavlov, van
de Wouw, Nijmeijer (2005); Lohmiller, Slotine (1998); Son-
tag (2010). In the conclusions of Forni, Sepulchre (2012)
the problem is stated of extending the thus developed
differential Lyapunov framework for contraction analysis
to open and interconnected systems, aiming at an exten-
sion of classical dissipativity theory Willems (1972); van
der Schaft (2000) towards differential dissipativity theory.
Motivated by Forni, Sepulchre (2012) we will explore in

this paper the possibilities for setting up such a differential
dissipativity theory 1 . For clarity of exposition we mainly
restrict ourselves to differential passivity.

A first step is to recall, in Section 2, the coordinate-
free definition of the prolonged system of a nonlinear
control system as originally given in Crouch, van der
Schaft (1987). Basically, this prolonged system is the
original nonlinear system together with all its variational
systems, with state, input and output space being the
tangent bundle of the original state, input, respectively,
output space. This provides an appropriate mathematical
framework for exploring notions of differential passivity
and dissipativity, simplifiying computations which in local
coordinates tend to become cumbersome.

Using this geometric notion of the prolonged system we
will study in Section 3 the properties of passivity of the
prolonged system which may be inherited from properties
of passivity of the underlying nonlinear control system.
Next, in Section 4 we define in a compact way the notion
of differential passivity, and study some of its possibilities
and limitations. In Section 5 we explore some of the
potential uses of this concept, while Section 6 contains
the conclusions and outlook.

2. PROLONGATION OF A NONLINEAR SYSTEM

In this section we will recall from Crouch, van der Schaft
(1987), see also Cortes, van der Schaft, Crouch (2005),
how any nonlinear control system on an n-dimensional
state space manifold X with m inputs and m outputs can
be prolonged to a system on the 2n-dimensional tangent
bundle TX with 2m inputs and 2m outputs. Let X be an
n-dimensional manifold with tangent bundle TX . Denote
by X(X ) the set of vector fields on X , and by C(X ) the set
of functions on X . Throughout all objects will be assumed
to be smooth (infinitely differentiable).

1 Note added in the final submission. Related interesting develop-
ments can be found in the paper Forni, Sepulchre (2013a), which
was submitted after the initial submission of the current paper. Some
recent developments can be found in Forni, Sepulchre, van der Schaft
(2013).
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Consider a nonlinear control system Σ with state space
X , affine in the inputs u, and with an equal number of
outputs y, given as

Σ :

 ẋ = f(x) +

m∑
j=1

ujgj(x) ,

yj = Hj(x) , j = 1, . . . ,m ,

(1)

where x ∈ X , and u = (u1, . . . , um) ∈ U ⊂ Rm. The
vector fields f, g1, . . . , gm on X are assumed to be complete
and H1, . . . ,Hm are real-valued functions on X . The set
U is the input space, which is assumed to be an open
subset of Rm, containing 0. The function t 7→ u(t) =
(u1(t), . . . , um(t)), that we will commonly denote as u(·),
belongs to a certain class of functions of time, denoted by
U, called the set of admissible controls. For our purposes,
we may restrict the admissible controls to be the piecewise
constant right continuous functions. Finally, Y = Rm is the
output space.

Given an initial state x(0) = x0, take any coordinate
neighborhood of X containing x0. Let t ∈ [0, T ] 7→ x(t)
be the solution of (1) corresponding to the input function
t ∈ [0, T ] 7→ u(t) = (u1(t), . . . , um(t)) and the initial state
x(0) = x0, such that x(t) remains within the selected
coordinate neighborhood. Denote the resulting output by
t ∈ [0, T ] 7→ y(t) = (y1(t), . . . , ym(t)), with yj(t) =
Hj(x(t)). Then the variational system along the input-
state-output trajectory t ∈ [0, T ] 7→ (x(t), u(t), y(t)) is
given by the following time-varying system,

˙δx(t) =
∂f

∂x
(x(t))δx(t)+

m∑
j=1

uj(t)
∂gj
∂x

(x(t))δx(t) +

m∑
j=1

δujgj(x(t))

δyj(t) =
∂Hj

∂x
(x(t))δx(t) , j = 1, . . . ,m ,

(2)

with state δx ∈ Rn, where δu = (δu1, . . . , δum), δy =
(δy1, . . . , δym) denote the inputs and the outputs of
the variational system. The reason behind the termi-
nology ‘variational’ comes from the following fact: let
(x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ] be a family of input-state-
output trajectories of (1) parameterized by ε ∈ (−δ, δ),
with x(t, 0) = x(t), u(t, 0) = u(t) and y(t, 0) = y(t),
t ∈ [0, T ]. Then, the infinitesimal variations

δx(t) =
∂x

∂ε
(t, 0) , δu(t) =

∂u

∂ε
(t, 0) , δy(t) =

∂y

∂ε
(t, 0) ,

satisfy equation (2).

Remark 2.1. For for a linear system ẋ = Ax+Bu, y = Cx
the variational systems along any trajectory are simply
given as ˙δx = Aδx+Bδu, δy = Cδx.

The prolongation or prolonged system of (1) corresponds
to considering the original system (1) together with its
variational systems, that is the system

ẋ = f(x) +

m∑
j=1

ujgj(x)

˙δx(t) =
∂f

∂x
(x(t))δx(t)+

m∑
j=1

uj(t)
∂gj
∂x

(x(t))δx(t) +

m∑
j=1

δuj(t)gj(x(t))

yj = Hj(x), j = 1, . . . ,m

δyj(t) =
∂Hj

∂x
(x(t)) δx(t), j = 1, . . . ,m

(3)
with inputs uj , δuj , outputs yj , δyj , j = 1, · · · ,m, and
state x, δx.

In order to formulate a coordinate-free definition of the
prolonged system (3), we need to introduce the notions of
complete and vertical lifts of functions and vector fields;
see Yano, Ishihara (1973).

Given a function H on X , the complete lift of H to TX ,
Hc : TX → R is defined by Hc(x, δx) = 〈dH, δx〉(x),
with 〈·, ·〉 denoting the duality pairing between elements
of the co-tangent space and tangent space at x ∈ X . In
local coordinates (x1, . . . , xn) for X and the induced local
coordinates (x1, . . . , xn, δx1, . . . , δxn) for TX this reads

Hc(x, δx) =

n∑
a=1

∂H

∂xa
(x) δxa .

The vertical lift of H to TX , Hv : TX → R, is defined
by Hv(x, δx) = H ◦ τX , where τX : TX → X denotes
the tangent bundle projection τX (x, δx) = x. In local
coordinates Hv(x, δx) = H(x).

Given a vector field f on X , the complete lift of f to TX ,
fc ∈ X(TX ) is defined as the unique vector field satisying
LfcHc = (LfH)c, for any H ∈ C(X ) (with LfH denoting
the Lie-derivative of the function H along the vector field
f , and similarly for LfcHc). Alternatively, if Φt : X → X ,
t ∈ [0, ε), denotes the flow of f , then fc is the vector field
whose flow is given by (Φt)∗ : TX → TX . In induced local
coordinates (x1, . . . , xn, δx1, . . . , δxn) for TX ,

fc(x, δx) =

n∑
a=1

fa(x)
∂

∂xa
+

n∑
a,b=1

∂fa
∂xb

(x)δxb
∂

∂(δxa)
(4)

Finally, the vertical lift of f to TX , fv ∈ X(TX )
is the unique vector field such that LfvHc(x, δx) =
(LfH)v(x, δx), for any H ∈ C(X ). In local induced co-
ordinates for TX

fv(x, δx) =

n∑
a=1

fa(x)
∂

∂(δxa)
(5)

This enables us to define the prolonged system (3) on the
whole tangent space TX in the following coordinate-free
way. Denote the elements of TX by z = (x, δx), where
τX (z) = x ∈ X with τX : TX → X again the tangent
bundle projection.

Definition 2.2. The prolonged system Σp of a nonlinear
system Σ of the form (1) is defined as the system
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Σp :


ż = fc(z) +

m∑
j=1

uj(t)g
c
j (z) +

m∑
j=1

δuj(t)g
v
j (z),

yj = Hv
j (z) , j = 1, . . . ,m

δyj = Hc
j (z) , j = 1, . . . ,m

(6)

with state z ∈ TX , inputs uj , δuj and outputs yj , δyj ,
j = 1, . . . ,m.

Note that Σp has state space TX , input space TU and
output space TY. One can easily check that in any system
of local coordinates x for X and the induced coordinates
x, δx for TX , the local expression of the system (6)
equals (3).

Remark 2.3. For a linear system ẋ = Ax + Bu, y = Cx
the prolonged system is simply the product of the system
with a copy system ˙δx = Aδx+Bδu, δy = Cδx.

3. INHERITED PASSIVITY PROPERTIES OF THE
PROLONGED SYSTEM

In this section we investigate to what extent properties
of the nonlinear control system Σ such as passivity are
being inherited by the prolonged system Σp. The relation
between local (strong) accessibility and local observability
of Σ and Σp was already discussed in Crouch, van der
Schaft (1987), see also Cortes, van der Schaft, Crouch
(2005).

We make extensively use of the following identities for lifts
of vector fields and functions, which are proved in Yano,
Ishihara (1973) and Crouch, van der Schaft (1987).

Proposition 3.1. For any vector fields f ∈ X(X ) and
functions H ∈ C(X ) the following identities hold:

LfcHc = (LfH)c (7)

LfcHv = (LfH)v = LfvHc (8)

LfvHv = 0 (9)

Recall Willems (1972); van der Schaft (2000) that a
nonlinear control system Σ given by (1) is called passive
(lossless) if there exists a differentiable S : X → R+ such
that

d

dt
S ≤ (=)uT y (10)

where d
dtS denotes the derivative along the system Σ, or

equivalently (since S is assumed to be differentiable)

LgjS = Hj , j = 1, . . . ,m

LfS ≤ (=) 0
(11)

Furthermore, if this holds for a function S : X → R
(i.e., without the nonnegativity condition), then Σ is called
cyclo-passive, respectively cyclo-lossless. The function S is
called the storage function and uT y the (passivity) supply
rate.

Using (7) we immediately obtain

Proposition 3.2. Let Σ be cyclo-passive or cyclo-lossless
with storage function S. Then the prolonged system Σp

satisfies

d

dt
Sv = uT y + (LfS)v (12)

d

dt
Sc = uT δy + δuT y + (LfS)c (13)

Hence if Σ is passive (lossless) then also Σp is passive
(lossless) for the supply rate uT y with storage function
Sv. The same holds for cyclo-passivity (-losslessness).
Furthermore, if Σ is cyclo-lossless then Σp is cyclo-lossless
with respect to the supply rate uT δy + δuT y with storage
function Sc.

Equation (12) expresses a rather obvious result: if Σ is
passive then it will remain passive with respect to the
supply rate uT y if the variational systems are added.
On the other hand, equation (13) can be interpreted as
a kind of ’differentiated’ version of d

dtS = uT y + LfS

(’differentiating’ uT y by the product rule to uT δy+δuT y).

Note that by definition of the complete lift S ≥ 0 does
not imply Sc ≥ 0. In fact, the function Sc will be
always indefinite whenever it is non-zero (because of linear
dependence on δx). Similarly, LfS ≤ 0 does not imply
(LfS)c ≤ 0. This prevents us from formulating results
regarding inherited passivity or losslessness with respect
to the supply rate uT δy + δuT y.

4. DIFFERENTIAL PASSIVITY

Using the definition of the prolonged system (Definition
2.2) it is straightforward to define a notion of differential
passivity, respectively, differential losslessness.

Definition 4.1. Consider a nonlinear control system Σ
given by (1) together with its prolonged system Σp given
by (6). Then Σ is called differentially passive if the pro-
longed system Σp is dissipative with respect to the supply
rate δuT δy, that is, if there exists a function P : TX → R+

(called the differential storage function) satisfying

d

dt
P ≤ δuT δy (14)

for all x, u, δu. Furthermore Σ is called differentially loss-
less if (14) holds with equality.

Since the time derivative d
dtP along the prolonged system

Σp is given as

d

dt
P (z) = LfcP (z)+

m∑
j=1

uj(t)Lgc
j
P (z)+

m∑
j=1

δuj(t)Lgv
j
P (z)

(15)
the following proposition immediately follows.

Proposition 4.2. Consider a nonlinear control system Σ
together with its prolonged system Σp. Then Σ is differ-
entially passive with storage function P : TX → R if and
only if

LfcP ≤ 0, Lgc
j
P = 0, Lgv

j
P = Hc

j , j = 1, . . . ,m (16)

The first two conditions LfcP ≤ 0 and Lgc
j
P = 0, j =

1, · · · ,m, on the differential storage function P are very
close to the conditions for a differential Lyapunov function
as discussed in Forni, Sepulchre (2012), if we additionally
assume that P : TX → R is a candidate Finsler-
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Lyapunov function 2 . Indeed, for a fixed input function
ū : [0,∞) → U the basic requirement for a differential
Lyapunov function in the sense of Forni, Sepulchre (2012)
amounts in our notation to

LfcP +

m∑
j=1

ūj(t)Lgc
j
P ≤ −α(P ), (17)

for some function α : [0,∞) → [0,∞). Requiring this
uniformly for every ū amounts to the conditions LfcP ≤
−α(P ) and Lgc

j
P = 0, j = 1, · · · ,m. Thus a differen-

tial storage function qualifies as a differential Lyapunov
function. Hence Definition 4.1 extends the existence of
a differential Lyapunov function (in the sense of Forni,
Sepulchre (2012)) in a similar way as ordinary passivity
extends the existence of an ordinary Lyapunov function.

Remark 4.3. As discussed in Forni, Sepulchre (2012), the
existence of a differential Lyapunov function P of the form
P (x, δx) = 1

2δx
TM(x)δx for some positive definite matrix

M(x) amounts to the basic conditions for contraction
analysis as derived in Lohmiller, Slotine (1998), while
for a constant matrix M it amounts to the Demidovich
conditions; Pavlov, Pogromsky, van de Wouw, Nijmeijer
(2004); Pavlov, van de Wouw, Nijmeijer (2005).

Clearly, the conditions for differential passivity as derived
above are demanding. In particular the condition Lgc

j
P =

0, j = 1, . . . ,m, puts heavy restrictions on the existence of
P . In the following we will investigate in more detail the
consequences of these conditions in the case of differential
losslessness. In order to do so we first recall the following
identities proved in Yano, Ishihara (1973); Crouch, van der
Schaft (1987).

Proposition 4.4. For any two vector fields f1, f2 ∈ X(X )

(i) [fc1 , f
c
2 ] = [f1, f2]c

(ii) [fc1 , f
v
2 ] = [f1, f2]v

(iii) [fv1 , f
v
2 ] = 0

(18)

Let us denote by L the accessibility algebra of the non-
linear system Σ, and by O its observation space; see e.g.
Nijmeijer, van der Schaft (1990).

Proposition 4.5. Suppose Σ is differentially lossless with
differential storage function P : TX → R. Then

LkcP = 0, for all k ∈ L (19)

LkvP ∈ Oc, for all k ∈ L (20)
while for all H ∈ O there exists k ∈ L such that LkvP =
Hc.

Proof. In order to show (19) we note that by (16)

L[fc,gc
j
]P = LfcLgc

j
P − Lgc

j
LfcP = 0

and thus, making use of (18), L[f,gj ]cP = 0, j = 1, . . . ,m.
The same holds for all repeated Lie brackets of the vector
fields f, g1, . . . , gm, and thus (19) results.

In order to show (20) we note that in view of (16)

LfcLgv
j
P = LfcHc

j = (LfHj)
c, j = 1, · · · ,m

and hence, since LfcP = 0,

L[fc,gv
j
]P = (LfHj)

c, j = 1, · · · ,m
2 This entails, apart from positivity conditions on P , homogeneity
conditions in the variational state δx; see Forni, Sepulchre (2012) for
details.

which by (18) is the same as

L[f,gj ]vP = (LfHj)
c, j = 1, · · · ,m

The same reasoning holds for all k ∈ L. The proof of the
final claim uses the same argument.

Especially the condition LkcP = 0 for all k ∈ L puts
severe conditions on the existence of storage functions
P : TX → R. Take a basis of vector fields {k1, · · · , kr} for
the accessibility algebra L (with r = dimX if the system is
locally accessible, Nijmeijer, van der Schaft (1990)). Then
this condition implies that P needs to satisfy the equations
∂P

∂x
(x, δx)ki(x) +

∂P

∂δx
(x, δx)

∂ki
∂x

(x)δx = 0, i = 1, · · · , r
(21)

Trying as before a candidate solution P (x, δx) =
1
2δx

TM(x)δx for some positive definite matrix M(x) (cor-
responding to a Riemannian metric) leads to the condi-
tions

∂

∂x

1

2
δxTM(x)δx ki(x) + δxTM(x)

∂ki
∂x

(x)δx = 0 (22)

for i = 1, · · · , r.
If M is a constant matrix this means that all the matrices
M ∂ki

∂x (x), i = 1, · · · , r, should be skew-symmetric, which
places a severe condition on M . On the other hand, note
that for a linear system ẋ = Ax + Bu this reduces to the
well-known single condition ATM +MA = 0.

5. USES OF DIFFERENTIAL PASSIVITY

In this section we will discuss some initial ideas about the
use of the concept of differential passivity as defined in the
previous section.

Of course, a main aim of passivity (and dissipativity)
theory is the ability to derive stability results for intercon-
nected systems. Thus passivity theory is a prime example
of a compositional analysis technique: properties of the,
possibly complex, interconnected system can be inferred
from properties of the component systems. In a similar
vein, passivity theory can be utilized for the construction
of controller systems such that the controlled system re-
mains stable when interacting with unknown, but passive,
environments.

The basic passivity theorem, - negative feedback inter-
connection of two passive systems resulting in a passive
closed-loop system -, can be seen to extend to differen-
tial passivity as well. Consider two differentially passive
nonlinear systems Σi with states xi, inputs ui ∈ Rm and
outputs yi ∈ Rm, and with differential storage functions
Pi, i = 1, 2. The standard feedback interconnection is given
by

u1 = −y2 + e1, u2 = y1 + e2, (23)
where e1, e2 ∈ Rm denote external inputs. The intercon-
nection equations (23) imply that the variational quanti-
ties δu1, δu2, δy1, δy2, δe1, δe2 satisfy

δu1 = −δy2 + δe1, δu2 = δy1 + δe2, (24)

implying the basic equality

δuT1 δy1 + δuT2 δy2 = δeT1 δy1 + δeT2 δy2 (25)

It directly follows that the closed-loop system arising
from the feedback interconnection of Σ1 and Σ2 is a
differentially passive system with regard to the supply rate

δeT1 δy1 + δeT2 δy2
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and storage function P (z1, z2) := P1(z1) + P2(z2). In this
way complex differentially passive systems can be built
up from simpler ones. Note that this can be extended to
more general interconnections as long as the equality (25)
remains satisfied.

Furthermore, given a differentially passive system Σ with
differential storage function P , one can apply negative
static output feedback δuj = −δyj , j = 1, · · · ,m, in order
to obtain a closed-loop prolonged system satisfying

Lfc−
∑m

j=1
Hc

j
gv
j
P ≤ −

m∑
j=1

(Hc
j )2, Lgc

j
P = 0, j = 1, . . . ,m

(26)
Clearly, this opens up several possibilities for strengthen-
ing the properties of differential passivity, in particular the
properties of the differential Lyapunov function P . This
will be left for further research.

6. CONCLUSIONS AND OUTLOOK

Primarily motivated by the recent paper Forni, Sepul-
chre (2012) we have recalled a geometric, coordinate-free,
framework for dealing with systems that are prolonged to
the tangent bundle. We investigated how passivity prop-
erties are inherited by the prolonged system. Next we pro-
posed a definition of differential passivity, which extends
the definition of differential Lyapunov functions as recently
proposed in Forni, Sepulchre (2012) in pretty much the
same way as ordinary passivity theory extends ordinary
Lyapunov function theory. Furthermore, the consequences
of differential losslessness are explored in greater detail.
In the final section we have discussed some initial ideas
regarding the use of the concept of differential passivity.

Note that in a similar way differential versions of other
notions of dissipativity, such as L2-gain ≤ γ, can be
defined. Indeed, consider a nonlinear control system Σ
given by (1), where the number p of outputs may be
different from the number m of inputs, i.e., the output
equations are given by yj = Hj(x) , j = 1, . . . , p.
Σ will be said to have differential L2-gain ≤ γ if the
prolonged system Σp is dissipative with respect to the
supply rate 1

2γ
2‖δu‖2 − 1

2‖δy‖
2, that is, if there exists a

function P : TX → R+ satisfying

d

dt
P ≤ 1

2
γ2‖δu‖2 − 1

2
‖δy‖2 (27)

Since the time derivative d
dtP along the prolonged system

Σp is given by (15), this is the same as the satisfaction of

LfcP (z) +

m∑
j=1

ujLgc
j
P (z) +

m∑
j=1

δujLgv
j
P (z) ≤

1

2
γ2‖δu‖2 − 1

2
‖δy‖2

(28)

for all z = (x, δx), u, δu. This in turn holds if and only if
Lgc

j
P = 0, j = 1, . . . ,m, together with

LfcP (z) +

m∑
j=1

δujLgv
j
P (z) ≤ 1

2
γ2‖δu‖2 − 1

2
‖δy‖2 (29)

for all z = (x, δx), δu. By computing the minimizing δu
the last equation can be seen to be satisfied if and only if

LfcP (z) +
1

2

1

γ2

m∑
j=1

(Lgv
j
P (z))2 +

1

2

p∑
j=1

(Hc
j )2(z) ≤ 0

Summarizing, Σ has differential L2-gain ≤ γ if and only if
there exists a function P : TX → R+ satisfying

Lgc
j
P = 0, j = 1, . . . ,m,

LfcP (z) +
1

2

1

γ2

m∑
j=1

(Lgv
j
P (z))2 +

1

2

p∑
j=1

(Hc
j (z))2 ≤ 0

(30)
In future work we will expand on the uses of this.
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