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Abstract

A novel class of methods for solving path and end point constrained

dynamic optimization problems is proposed. These methods aim at im-

proving the performance of dynamic optimization algorithms employed

in on-line applications where the required solution time is a major con-

cern. The presented approaches are all based on the reformulation of the

dynamic model constraints into a higher order di�erential model repre-

sentation in which state variable derivatives are eliminated. Based upon

this representation, the complete state information can be accessed an-

alytically through explicit equations implying that numerical integration

as required by sequential optimization techniques is thus avoided. Since

these equations depend on only relatively few variables containing the en-

tire dynamic system behavior advantages over simultaneous optimization

strategies can be expected as well. Three di�erent dynamic optimization

problem formulations involving higher order di�erential model represen-

tations are discussed, of which the �rst requires the dynamic system to

be di�erentially 
at. The remaining two, however, do not depend on the


atness property. By means of a set of examples, the three problem formu-

lations are illustrated and classi�ed according to their potential to improve

the eÆciency in solving dynamic optimization problems.

Keywords: Dynamic optimization, Di�erential 
atness, Higher order dif-

ferential model representations

1 Introduction

Dynamic optimization of chemical process systems is gradually maturing. It
can be applied to a wide range of o�-line and on-line problems including the de-
sign of operational strategies for batch or continuous processes during transient
phases (Abel et al., 2000) as well as real-time monitoring and control employing
receding horizon strategies (Allg�ower et al., 1999). In particular for real-time
applications, computational eÆciency and robustness are still important issues.
Established direct approaches based on either control vector parameterization
(Vassiliadis et al., 1994a; Vassiliadis et al., 1994b) or on control and state vector
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parameterization (Biegler, 2000; Leineweber, 1999) rely on state space formula-
tions of di�erential-algebraic process models, approximate them by a nonlinear
program (NLP) and exploit its structure to the extent possible with considerable
success. These methods are also termed sequential or simultaneous, respectively.

State space models are, however, not the only possibility to represent non-
linear systems. Motivated by recent results on nonlinear control of 
at systems
(Fliess & Glad, 1993; Rothfu� et al., 1997) and nonlinear input-output represen-
tations (van der Schaft, 1989), we study dynamic optimization based on higher
order di�erential representations where the derivatives of the state can be elim-
inated from the constraints and explicit equations for the state variables can
be generated by symbolic preprocessing. Consequently, numerical integration of
model and sensitivity equations is avoided which forms the major computational
e�ort in methods based on control vector parameterization. Further, appropri-
ate discretization strategies may lead to signi�cantly less decision variables as
compared to simultaneous approaches based on control and state variable dis-
cretization. A related method has recently been suggested by Agrawal & Faiz
(1998) for dynamic optimization problems with exactly feedback linearizable
nonlinear dynamics. Path and end point constrained dynamic optimization for
the class of 
at dynamic systems has been considered independently by Ma-
hadevan et al. (2000), Faiz et al. (2000), Kansal et al. (2000), and by Oldenburg
& Marquardt (2000). Steinbach (1997) discussed optimization of inverse dy-
namic systems, an approach which is also based on symbolic elimination of the
dynamic model constraints.

This paper attempts to explore the potential of dynamic optimization based
on higher order di�erential system representations in a general sense. A theoreti-
cal background for the reformulation of state space models is outlined in Section
3 for the general optimization problem stated in Section 2. Section 3 further-
more shows how these models are integrated into di�erent modi�ed dynamic
optimization problem formulations according to the class of dynamic system
considered, i.e. 
at or non-
at dynamic systems. Suitable parameterization and
discretization strategies are presented and related to the established techniques
throughout Section 4. Section 5 provides the discussion of three di�erent exam-
ple optimization problems in order to illustrate and analyze the reformulation
approaches presented. Furthermore, Section 5 assesses the potential of each re-
formulation approach to improve eÆciency in dynamic optimization. Finally,
Section 6 gives a perspective on the application of the suggested approach and
points to further research issues.

2 Dynamic optimization problem

We consider the following dynamic optimization problem

min
x0; u(t)

J (x(tf );u(tf )) (1)

s.t. _x(t) = f(x(t);u(t)); t 2 [t0; tf ] ; (2)

0 � c(x(t);u(t)); t 2 [t0; tf ] ; (3)

0 � cf (x(tf );u(tf )) ; (4)

0 = x(t0)� x0 ; (5)
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where x 2 R
n are the state variables, u 2 R

m are the control variables and
x0 2 R

n denotes the initial state. The degrees of freedom u(t) and x0 are chosen
to minimize an (economical) objective function J : Rn � R

m ! R subject to
path and endpoint constraints in x, u. Without loss of generality, the objective
function J is assumed to be of Mayer type. f : Rn � R

m ! R
n contains the

right hand sides of the nonlinear dynamic system, and c : Rn � R
m ! R

np ,
cf : Rn � R

m ! R
nf comprise constraints to be enforced either during the

duration of the process or at the �nal time. Note, that di�erential-algebraic
equation (DAE) systems are considered here only to the extent that they can
be converted to (2) by symbolic manipulation. This is always possible even
for high-index problems, if the algebraic equations are linear in the algebraic
variables (Unger et al., 1995; Kumar & Daoutidis, 1995).

3 Model reformulation

Instead of solving (1){(5) directly by means of established optimization tech-
niques, we reformulate the dynamic model constraints (2). Motivated by recent
results on di�erential 
atness (Fliess & Glad, 1993; Rothfu� et al., 1997) we start
with q auxiliary variables yi and relate them by some suitably chosen functions
hi to the states x:

yi = hi(x) := �i;0; i = 1; ::; q : (6)

Each equation (6) is di�erentiated �i � 1 times:

_yi =
dhi(x)

dt
=

@hi(x)

@x
f(x;u) := �i;1 ;

... (7)

y
(�i)
i =

d(�i)hi(x)

dt(�i)
= ::: := �i;�i :

In total, we generate this way q + � auxiliary equations with � =
Pq

i=1
�i. The

functions y
(k)
i = �i;k , k = 0; ::; �i depend on the state variables x, but not on

their time derivatives which are eliminated by (2) after each di�erentiation. In
general, these functions depend not only on the controls uj , but also on their
time derivatives of higher order. With `j denoting the highest order derivative
of uj occurring in any of the functions �i;k , and ` =

P
m
j=1

`j we can form:

uj = (uj ; _uj ; ::; u
(`j)
j )T ; j = 1; ::;m; uj 2 R

`j+1 ;

U = (uT1 ;u
T
2 ; ::;u

T
m)

T ; U 2 Rm+` ;

yi = (yi; _yi; ::; y
(�i)
i )T ; i = 1; ::; q; yi 2 R

�i+1 ;

Y = (yT1 ;y
T
2 ; ::;y

T
q )

T ; Y 2 Rq+� ;

�i = (�i;0; �i;1; ::; �i;�i)
T ; i = 1; ::; q; �i 2 R

�i+1 ;

� = (�T1 ;�
T
2 ; ::;�

T
q )

T ; � 2 Rq+� :

Hence, equations (6) and (7) can be compactly written as

Y ��(x;U) = 0 ; (8)
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a set of �+ q equations which are redundant to the original equations (2) from
which they have been generated. We now want to check, whether (8) can replace
the original model (2) in the sense that any solution of (2),(6) is identical to
a solution of (8) for given U . Obviously, the equivalence conditions will yield
information on the yet undetermined choice of the number of auxiliary variables
q, the functions hi(x), and the number of di�erentiations �i.

3.1 Flat dynamic systems

There are special systems (2) which are called di�erentially 
at, if there exist
auxiliary variables yi and functions hi(x)

1, such that the states x and controls
u can be expressed (at least locally) as functions of Y only (Fliess & Glad,
1993; Rothfu� et al., 1997). These functions follow from equations (8) which are
then independent of the time derivatives of u in the case considered:

x = g1(Y ); u = g2(Y ) : (9)

The variables yi are sometimes called \
at coordinates" or \linearizing outputs"
of the dynamic system (2). The number of these variables is directly related to
the number of inputs, i.e. q = m must always hold. Flat systems include the
presumably more special subclass of nonlinear systems aÆne in the control
variables, e.g. f(x;u) = f 1(x) +

Pm

j=1 f 2;j(x)uj , which are exactly state space

linearizable2 (Isidori, 1995). Hence, for 
at systems, equations (9) comprise a
completely equivalent representation of equations (2),(6) and thus the state and
control variables can be substituted in (1){(5) to result in

min
Y (t)

J (g1(Y (tf )); g2(Y (tf ))) (10)

s.t. 0 � c(g1(Y (t)); g2(Y (t))); t 2 [t0; tf ] ;

0 � cf (g1(Y (tf )); g2(Y (tf ))) ;

0 = x0 � g1(Y (t0)) ;

a reformulated optimization problem with (functional) algebraic instead of dif-
ferential equation constraints. Thereby, the dynamic model constraints (2) are
entirely eliminated from the optimization problem (1){(5). With the solution of
problem (10), u and x can be computed from (9). The m auxiliary variables and
their � derivatives concatenated in Y can be interpreted as degrees of freedom
of the reformulated problem. The quantities in yi are, however, not all indepen-
dent. The existing relations between the elements of yi will be explored below
during the parameterization of the continuous problem.

Though a very compact formulation of the optimization problem has been
obtained for 
at systems, the approach is not completely satisfactory, since the
class of di�erentially 
at systems is known to be limited. In particular, large-
scale industrial chemical process models with a large number of states and only
few inputs are usually not 
at. Kansal et al. (2000) addressed this problem
by nonlinear time-scaling (Guay, 1999). This approach generalizes the class of
exactly feedback linearizable single-input systems and thus also that of 
at
systems with a single input variable.

1Note, that these functions could also depend on U .
2Note, that state space linearizability is suÆcient for 
atness but not necessary (Rothfu�,

1997).
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3.2 Non-
at dynamic systems

An extension of the approach presented to general (multi-input) dynamic sys-
tems is, however, also possible in a di�erent and rather intuitive way. This
extension relies on the fact that the \tendency" of a dynamic system to be
di�erentially 
at is increasing with an increasing number of input variables
(Rothfu�, 1997).

3.2.1 Defect elimination method

Usually, the number of input variables is determined by the process that is under
consideration and each input variable refers to a certain physical entity. Thus,
the introduction of any new input variable to the model will certainly alter its
structure and thereby its dynamical behavior. In particular, this fact can be
exploited to turn a non-
at system into a 
at system by manipulating its input
structure. This observation led to the idea of augmenting selected equations of
the system by �ctitious input variables w according to

_x = f(x;u) +Ww : (11)

To determine the number of �ctitious input variables to be introduced we can
utilize the de�nition of the \defect" of a nonlinear dynamic system (Fliess
et al., 1995). The defect Æ, a non-negative integer, is a measure for the dis-
tance of a dynamic system to di�erential 
atness3. This measure is calculated
by comparing the number of 
at output functions required for a 
at model rep-
resentation as in (9) with the number of actual independent input variables.
By de�nition, a 
at system has no system defect since Æ = q �m = 0. Hence,
the number of �ctitious input variables to be introduced has to be equal to the
system defect Æ. Therefore, W is a n � Æ matrix with rank Æ and w a Æ � 1
vector.W is an indicator matrix with a single one per row and zero otherwise.
Thus, matrix W contains Æ entries with the value one. Zero-valued elements
are placed in rows that correspond to equations of the original dynamic sys-
tem which contain input variables u. Hence, with a speci�edW the augmented
dynamic system can be analyzed for di�erential 
atness. Obviously, the deter-
mination ofW will in general be an iterative procedure and, moreover,W will
not be unique.

However, an augmented system with �ctitious input variables can only be of
any use if its dynamical behavior is equivalent to that of the original system (2).
The only way to assure this equivalence condition is to manipulate the new input
variable values. Fortunately, the natural formulation of a dynamic optimization
problem admits to in
uence their values by simply imposing equality constraints
forcing their values to be zero along the entire trajectory.

Assuming that the manipulated system is di�erentially 
at, the �ctitious
input variables w can be expressed as functions of the 
at outputs and their
derivatives as in equations (9):

w(t) = g3(Y (t)); t 2 [to; tf ] : (12)

Hence, the optimization problem formulation

min
Y (t)

J (g1(Y (tf )); g2(Y (tf ))) (13)

3For linear dynamic systems Æ is equal to the dimension of the uncontrollable subspace.
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s.t. 0 � c(g1(Y (t)); g2(Y (t))); t 2 [t0; tf ] ;

0 � cf (g1(Y (tf )); g2(Y (tf ))) ;

0 = g3(Y (t)); t 2 [t0; tf ] ;

0 = x0 � g1(Y (t0)) :

resembles that for 
at dynamic systems besides the fact that a set of additional
nonlinear equality path constraints is imposed.

Although optimization problem formulations for both 
at and non-
at dy-
namic systems were derived a further approach for general dynamic systems is
presented. This approach makes also use of a higher order model representation
but does not rely on any speci�c system property.

3.2.2 Method for higher order di�erential input-output model rep-

resentations

The second equation in (9) comprises an input-output representation of a nonlin-
ear 
at system which is completely equivalent to the state space representation
(2),(6). Input-output representations are, however, also known for general dy-
namic systems. Van der Schaft (1989) shows that any dynamic system (2),(6)
satisfying mild regularity conditions can be reformulated into

_x1 � f1(x1;x2;u) = 0 ; (14)

~�(x2;U ;Y ) = 0 ; (15)

where x = (xT1 ;x
T
2 )

T with x1 2 R
n0 ;x2 2 R

n�n0 and functions ~� : Rn�n
0

�
R
m+` � R

q+� ! R
n�n0+q. Further it is shown, that (15) can always be split

into two sets of n � n0 and q equations. The �rst set can be solved (at least
locally) for x2 to be then inserted into the second set to result in an input-
output representation equivalent to the state space representation (2),(6). It is
worth mentioning, that equations (15) are related to (8), since they are also
generated by higher order di�erentiation of (6) and nonlinear combinations of
the intermediate derivatives. For a more detailed discussion of the theoretical
background and of the corresponding symbolical algorithm we refer to van der
Schaft (1989).

Van der Schaft (1989) �nally shows, that the states x1 correspond to the
unobservable part of (2),(6). In order to illustrate equations (14),(15) and to
show the unobservability in (14) we consider the following simple linear example
(Rothfu�, 1997):

_x1 = �x1 ; (16)

_x2 = x2 + u ; (17)

y = x2 : (18)

This system can be trivially transformed into the following two equations:

_x1 = �x1 ; (19)

0 = � _y + y + u : (20)
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Equation (19) corresponds to equation (14) and forms the unobservable part of
the system.

If the auxiliary variables yi and the functions hi are chosen such that the
dynamic system (2),(6) is observable, the di�erential equations (14) do not oc-
cur. Instead of x2, x appears then in (15) which can be solved again at least
locally:

x = g(Y ;U ) : (21)

Equation (21) can then be used to form the higher order input-output repre-
sentation of the dynamic system according to:

0 =  (Y ;U ) ;  2 Rq : (22)

Since we are free to choose number and type of auxiliary variables yi and to de-
�ne functions hi, we can always ful�ll the observability condition. In the (usually
not recommendable) extreme case, we could trivially choose y = x. Obviously,
choosing y = x would not lead to a reformulation and to any potential com-
putational advantage. Hence, with a proper choice of auxiliary variables we can
transform the dynamic system (2),(6) into explicit equations for x. Then, the
original optimization problem (1){(5) can be reformulated into

min
Y (t); U(t)

J (g(Y (tf );U (tf ));u(tf )) (23)

s.t. 0 =  (Y (t);U (t)); t 2 [t0; tf ] ;

0 � c(g(Y (t);U (t));u(t)); t 2 [t0; tf ] ;

0 � cf (g(Y (tf );U (tf ));u(tf )) ;

0 = x0 � g(Y (t0);U (t0)) :

where the model constraints (2) are substituted by the equivalent input-output
representation in (22).

3.3 Structural di�erences of the reformulated problems

Although all three reformulation approaches (10),(13) and (23) have in common
that state variable derivatives are eliminated and explicit equations for the sys-
tem state can be stated there is a major structural di�erence between the 
at
(cf. problem (10)) and non-
at cases (cf. problems (13),(23)).

Within the method for 
at systems the state and input variables are uniquely
determined once the 
at output functions are speci�ed and their derivatives are
calculated. Since the 
at output functions yi contained in Y themselves are
not interrelated they can be chosen independently and thereby represent \pure"
degrees of freedom of the dynamic system. In fact, when problem (10) is assumed
to contain no path constraints and the �nal time constraints are equalities it
can be regarded as an interpolation problem in which optimal trajectories Y (t)
between �xed initial and �nal time points are to be determined.

On the other hand, the approaches for non-
at dynamic systems require ad-
ditional nonlinear functional equations that interrelate either the auxiliary vari-
ables yi through equation (12) in problem (13) or relate the auxiliary variables
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Y to the inputs U through the input-output model representation (22) within
problem (23). Hence, the latter approach may be interpreted as a boundary
value problem (BVP) in Y for which an optimal input U is to be determined.

The consequences of these properties will be explored below during the dis-
cretization of the optimization problems. For reasons of convenience, we intro-
duce abbreviations for the di�erent methods. In particular, we use FS in case

at systems are considered and DE (Defect Elimination) or HO (Higher Order)
for the two alternative treatments of non-
at systems.

4 Discretization

In order to determine optimal trajectories for the degrees of freedom the re-
formulated continuous time optimization problems (10),(13), and (23) have to
be approximated by nonlinear programming problems (NLP) by parameterizing
the degrees of freedom.

4.1 Problems (10) and (13)

In order to approximate Y (t) we parameterize the highest order derivative of
each auxiliary variable yi by the expansion

~y
(�i)
i (t) =

KX
j=1

�i;j�j(t) ; (24)

where �j(t) are local basis functions represented by piecewise polynomials of
order K de�ned on Ny �nite elements with t 2 [tk; tk+1]. Furthermore, we
exploit the relation between the elements of Y (t) and deduce all lower order
derivatives and the auxiliary variables themselves by successive integration:

~y
(j�1)
i (t) =

Z
~y
(j)
i dt + 
yi;j ; 1 � j � �i : (25)

This way, we obtain piecewise continuous polynomials for all derivatives up to
order �i�1 on t 2 [tk; tk+1], if continuity conditions for equations (25) are stated
at the element boundaries. The parameters for the discretization of Y (t) include
the expansion coeÆcients �i;j and the constants of integration 
yi;j collected in
the vector a:

a = [aT1 ; ::;a
T
q ]

T ; (26)

ai = [�1i;1; ::; �
Ny

i;K ; 

y;1
i;1 ; ::; 


y;Ny

i;�i
]T ; i = 1; :::; q : (27)

Hence, for the FS method we have the nonlinear program with the decision
variables a:

min
a
J (g1(

~Y f (a)); g2(
~Y f (a))) (28)

s.t. 0 � c(g1( ~Y i(a)); g2( ~Y i(a))) ; i = 1; :::;KNy ;

0 � cf (g1(
~Y f (a)); g2(

~Y f (a))) ;

0 = x0 � g1( ~Y 0(a)) :
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Note, that Y i stands for Y (ti). A similar formulation is obtained for the DE
method (cf. problem (13)). In this case we have to additionally incorporate the
set of equality constraints

0 = g3(
~Y i(a)) ; i = 1; :::;KNy ; (29)

into the optimization problem (28). Equation (29) is obtained by applying an
appropriate method to discretize the (time dependent) functional equation (12).
We here apply collocation on �nite elements, a well-known discretization method
which is equivalent to implicit Runge-Kutta (IRK) techniques. For more details,
we refer to Ascher et al. (1995). Note, that a proper choice of the basis functions
in equation (24) also leads to the same type of discretization in (12).

In particular, if the collocation points within each �nite element are chosen
to be the roots of the Jacobi polynomial this method is referred to as Radau-
IRK. The simplest version of this IRK method is the one-stage Radau-IRK
where the only collocation point is located at the end of each �nite element.
Commonly, this method is referred to as the implicit Euler method. Besides
one-stage Radau-IRK, we here also apply its two-stage and three-stage variants.
It is important to note, that the order of the IRK method is directly related to
the order K of the polynomial in the expansion (24). According to Ascher et al.
(1995), the order of the polynomial expansion in (24) should be K � �, where
� denotes the highest order derivative occurring in equation (12). For �nite
element lengths suÆciently small this leads to an order of consistency of 2K for
collocation at Gaussian points and 2K � 1 at Radau points. Despite its lower
order of consistency the Radau scheme may have advantages when applied for
direct optimization techniques since it is asymptotically stable (L-stable) also
for large element lengths (Deu
hard & Bornemann, 1994; Bausa, 2000).

Finally, the optimal solution a� of (28) is used to obtain the optimal x� and
u� from (9).

4.2 Problem (23)

When applying the HO method (cf. problem (23)) we have to parameterize
the highest order derivative of the inputs in addition to that of the auxiliary
variables. Again, we specify trial functions for the highest order derivative of
each input variable on Nu �nite elements with t 2 [tk; tk+1] similarly to (24),

~u
(`i)
i (t) =

KuX
j=1

�i;j�j(t) ; (30)

and deduce lower order derivatives of the input trial functions by successive
integration:

~u
(j�1)
i =

Z
~u
(j)
i dt + 
ui;j ; 1 � j � `i : (31)

The parameters are concatenated in the vector b:

b = [bT1 ; ::; b
T
m]

T ; (32)

bi = [�1i;1; ::; �
Nu

i;Ku
; 
u;1i;1 ; ::; 


u;Nu

i;`i
]T ; i = 1; :::;m : (33)
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As a result, we obtain the nonlinear program

min
a; b

J (g( ~Y f (a); ~U f (b)); ~uf (b)) (34)

s.t. 0 =  ( ~Y i(a); ~U i(b)) ; i = 1; :::;KNy ;

0 � c(g( ~Y i(a); ~U i(b)); ~ui(b)) ; i = 1; :::;KNy ;

0 � cf (g( ~Y f (a); ~U f (b)); ~uf (b)) ;

0 = x0 � g( ~Y 0(a); ~U 0(b)) ;

for which again collocation on �nite elements based on Radau points is applied.
The optimal u� is determined from the optimal a�, b� by (30),(31). Subse-
quently, the optimal x� may be computed from (21).

4.3 Complexity considerations

Finally, we compare the complexity of the NLP of the suggested approaches
with that of established direct optimization methods. This task is, however,
not trivial since the complexity of the NLP depends on a number of factors
which are diÆcult to rank. Furthermore, since the complexity of the NLP is
a measure that is directly related to the solution technique applied we prefer
to explore it below in conjunction with the example problems. But, one of the
complexity measures, the number of parameters required in the NLP, can be
directly compared as follows. Assuming for simplicity Ny = Nu = N; K = Ku,
a number of K � (q +m) �N +N �

Pq
i=1�i +N �

Pm
j=1`j parameters is required

for the HO method and K � q �N +N �
Pq

i=1�i parameters for the FS and DE
methods. These numbers compare to K �m �N + n and K � (n+m) �N + n �N
for the sequential and simultaneous methods, respectively. Here, K denotes the
order of discretization (Ascher et al., 1995) for higher order di�erential equation
systems as well as for �rst order ODEs.

The number of parameters required in the NLP is always signi�cantly lower
for the FS method as compared to the simultaneous method. It is, however, im-
portant to note, that the simultaneous formulation is inherently sparse whereas
equations (9) employed to represent the states and inputs in the FS method lead
to denser Jacobians and thus some loss of eÆciency has to be expected despite
the reduced number of parameters. The computational e�ort of the FS method
can be expected much lower as compared to the sequential method, because
with a comparably low number of parameters there is no need to numerically
solve sensitivity di�erential equations in each iteration of the NLP solution al-
gorithm. The same holds for the DE method besides the fact that an additional
set of Æ equality constraints is enforced. In case the HO method (cf. problem
(23)) is applied, the number of parameters for the method depends on q; � and
`. If a small number of auxiliary variables q is suÆcient to ensure observability,
a large � + `, the total number of di�erentiated quantities, must be expected.
Thus, since the contribution of �; ` to the total number of parameters is small,
the number of parameters required for the suggested approach is smaller as
compared to the simultaneous method. If, on the other hand, q ! n, � ! q,
` ! 0, the complexity of the parameterization of the HO method approaches
that of a simultaneous method. The potential saving of parameters in the HO
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approach without a loss of accuracy is also con�rmed by the higher order collo-
cation theory (Ascher et al., 1995). However, the local error estimates of the HO
and DE methods strongly depend on smoothness properties of problems (13),
(23), respectively, a fact which will become obvious in the subsequent section.

5 Illustrative examples

Within this section, the three di�erent reformulation approaches (10),(13) and
(23) are illustrated and analyzed by means of a set of example problems. We start
with an example of a fermentation process representing the case of 
at dynamic
systems (cf. problem (10)). Subsequently, the defect elimination method of a
non-
at system (cf. problem (13)) is illustrated with a semi-batch reactor and
a simple batch distillation column. Finally, this section is concluded with an
example of a non-
at system which is optimized using a higher order di�erential
input-output model representation (cf. problem (23)).

5.1 Penicillin fermentation

Fermentation processes can be employed for the synthesis of the valuable an-
tibiotic Penicillin G. In particular, bio-reactors in a fed batch operation mode
have been widely used for that purpose. We here regard a fed batch process for
the production of Penicillin which is modeled as follows:

dx1
dt

= �(x2)x1 ; (35)

dx2
dt

= �
1

p1
�(x2)x1 �

1

p5
�penx1 �msx1 + p2u1 ; (36)

dx3
dt

= �
1

ypp
x1 + p6u2 ; (37)

dx4
dt

= �penx1 � p7x4 ; (38)

with �(x2) =
�maxx2
KsV + x2

:

For further details about the process including model constants, parameters and
information about a laboratory scale plant we refer to (Rothfu�, 1997). The
objective of the dynamic optimization is to drive the growth rate �(x2) and the
concentration of the precursor c3 = x3=V as quickly as possible to prespeci�ed
constant values and to keep their trajectories as close as possible to these values
throughout the entire batch. The optimization problem is formulated subject to
the dynamic model and path constraints as:

min
u1(t); u2(t)

NX
i=1

k1(�(ti)� 0:02)2 + k2(c3(ti)� 0:3)2 (39)

s.t. Equations (35) to (38) ;

k1 = 20:0 ; k2 = 2:0 ;

0:1 � c3(t) � 0:4 g=l ;

0:0 � �(t) � 0:06 1=h ;

11



0:0 � u1(t) � 1:0 l=h ;

0:0 � u2(t) � 1:0 l=h ;

8 t 2 [0; tf ]; tf = 30 h :

The initial conditions of the four di�erential states are x0 = [1:5 kg; 2 kg; 25 g;
1:6 kg]T . The degrees of freedom are the two substrate feed rates glucose, u1 and
precursor u2. An analysis of the fermenter model equations (35){(38) reveals
that the nonlinear system is di�erentially 
at. By identifying two 
at output
functions, y1 = x4 (�1 = 3) and y2 = x3 (�2 = 1) the model can be expressed in
terms of explicit equations for the system state and input (Rothfu� et al., 1997):

x4 = y1 ; (40)

x3 = y2 ; (41)

x2 = g1;1(y1; _y1; �y1) ; (42)

x1 = g1;2(y1; _y1) ; (43)

u1 = g2;1(y1; _y1; �y1; y
(3)
1 ) ; (44)

u2 = g2;2(y1; _y1; _y2) : (45)

These equations simultaneously serve as a proof for di�erential 
atness of (35){
(38), since the condition q = m holds. Now, the highest order derivatives of the

at output functions are parameterized by piecewise constant trial functions on
N = 50 equidistant time intervals according to (24). The arising NLP is then
solved using SNOPT (Gill et al., 1998), a solver capable to exploit the sparsity
of the Jacobian of the constraints. The Jacobian is determined eÆciently by ap-
plying an automatic di�erentiation method (Bischof et al., 1996). The optimal
pro�les are presented in Figures (1) and (2). The optimization results are com-
pared to results obtained with our own implementation of a collocation-based
simultaneous approach (SIM) incorporating SNOPT (Gill et al., 1998) and with
a sequential strategy (SEQ) implemented in DYNOPT (Abel et al., 1999). An
optimality tolerance of 10�6 was employed for all cases. Two facts are most con-
spicuous when comparing the optimization results. Firstly, the proposed method
outperforms the established techniques regarding the required computing time.
Secondly, even though the total computing time is shorter for the new method
it requires a larger number of SQP major iterations, a fact that might seem sur-
prising at �rst sight. Moreover, the average computing time required for solving
one QP subproblem is shorter when applying the FS method. To �nd a reason
for the fast QP solutions and the slow SQP convergence rate, we take a closer
look at the di�erent dynamic optimization techniques in close relation to the
model representation that was employed.

Table 1: Optimization results { Penicillin fermentation

Method Objective NLP par. SQP k � time QP k � time time [sec]

FS 6:7 � 10�6 300 101 0.185 984 0.019 18:7

SIM 6:4 � 10�6 500 86 0.36 1333 0.023 31:0

SEQ 1:4 � 10�6 100 30 3.11 512 0.182 93:3
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Figure 1: Rate of growth �, concentration of the precursor c3.

At �rst, the fast QP solution of the FS method is explained by the fact that
all model constraints were eliminated by the problem reformulation. Further-
more, function evaluation is rather cheap since state and input information is
available analytically. Thus, also exact gradient information is accessed at low
cost since automatic di�erentiation methods can be directly applied. As a result,
the combination of a cheap function and gradient evaluation and a compact QP
formulation leads to very quick major iterations within an SQP framework.

The QP problem solved in the SEQ approach displays an equivalent struc-
ture. In fact, it is even more advantageous than the QP of the FS approach,
since the objective function and path or end point constraints are in general
less complex in the original problem formulation (1){(5) without any symbolic
preprocessing. However, function and gradient evaluations come at a high price
within the sequential strategy due to the necessity of numerical state and sen-
sitivity integration which, in contrast, is avoided by the FS method.

The SIM method requires a series of comparably complex QP subproblems
to be solved within the SQP algorithm since a large set of discretized dynamic
model equality constraints is enforced. At the same time, the number of decision
variables is signi�cantly higher as compared to the other approaches. Despite
the fact that function and gradient evaluation is rather cheap, we end up with
QP subproblems that require more computing time than the FS approach.

Secondly, the slow convergence rate of the SQPmethod when employed in the
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Figure 2: Feed rates u1, u2.

FS approach is a consequence of an inadequate search direction pk determined
in the QP subproblems. To �nd a reason for the \bad" direction itself, we have
to recall that pk is determined by minimizing a quadratic approximation of
a (modi�ed) Lagrangian subject to a set of linearized constraints around an
iterate xk (for more details, see Gill et al. (1998)). Or in other words, a local
minimization is responsible for the global progress of the nonlinear optimization
algorithm. Qualitatively speaking, a local minimization is expected to provide a
\good" search direction pk if the original problem is only moderately nonlinear
since in this case, the QP subproblems properly re
ect the nonlinear problem
globally4. This fact becomes even more relevant when recalling that second order
derivatives of the Lagrangian are not calculated exactly but approximated by
BFGS quasi-Newton updates where curvature information is accumulated on
the basis of �rst order derivatives.

A 
at model representation contains the dynamic system information in a
very compact way which inevitably leads to rather complex and highly nonlin-
ear functions g1 and g2. Moreover, only few 
at output functions and their time
derivatives hold the entire dynamic system behavior. Hence, the corresponding
QP subproblems involving the discretized functions g1; g2 will in general be less
reliable in good search directions pk and hence in providing fast global conver-

4An extreme case would be a quadratic objective subject to linear constraints which is
solved within one step.
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gence. The nonlinearity of the discretized problem (10) is further increased in
the presence of inequality constraints that are active at least temporarily over
the course of the optimization since the 
at output functions y are assumed
to be continuously di�erentiable. Thus, the Hessian of problem (10) has more
curvature than the one of the sequential or simultaneous formulations. As a con-
sequence, the accumulation of adequate Hessian information takes additional
time and iterations.

5.2 Non-
at dynamic systems

5.2.1 Semi-batch reactor

In order to illustrate the DE method (cf. problem (13)) we treat the productivity
optimization of a stirred semi-batch reactor in which a strongly exothermic
reaction A! B ! C takes place. B is the desired product while C denotes an
undesired byproduct. Before any reactant A is fed, the reactor is �lled with a
solvent. Assuming both (�rst order) reactions taking place in the liquid phase
of constant density �r and heat capacity cpr the reactor model is

dna
dt

= Fa � k1e
(�E1RTr

)na ; (46)

dnb
dt

= k1e
(�E1RTr

)na � k2e
(�E2RTr

)nb ; (47)

dnc
dt

= k2e
(�E2RTr

)nb ; (48)

dTr
dt

=
FaM

Vr�r
(Tf � Tr)� k1e

(�E1RTr
) ca
�rcpr

�H1 (49)

� k2e
(�E2RTr

) cb
�rcpr

�H2 +
�kAk

�rVr;0cpr
(Tw � Tr) ;

Vr =
nM

�r
+ V 0

r ; n =
X

ni; ci =
ni
Vr

; i = a; b; c : (50)

It should be noted that (50) can be substituted into (46){(49) to result in a
system of type (2). The model parameters can be taken from Table 2. The

Table 2: Model parameters { Semi-batch reactor

Parameter Value Parameter Value

k1 15:0 1=s k2 85:0 1=s

E1 30000 kJ=kmol E2 40000 kJ=kmol

M 50:0 kg=kmol �r 1000 kJ=m3

cpr 3:9 kJ=kg=K Tf 300K

�H1 �40000 kJ=kmol �H2 �50000 kJ=kmol

�k 0:5 kJ=s=m2=K Ak 8:0m2

cpw 3:1 kJ=kg=K Vr;0 1:0m3

Vk 0:4m3 �w 700 kg=m3

optimal operational strategy should maximize the product concentration cB at
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the endpoint tf . The only degree of freedom u of the process is the reactant feed

ow Fa(t). The cooling water in the reactor jacket (�w, cpw ) is held at a con-
stant temperature Tw = 300K. At the �nal batch time, the integral amount of
added feed is �xed to a prede�ned value and the reactant concentration ca(tf ) is
restricted by an upper bound. The path constraint covers the case of a potential
total loss of cooling capacity by bounding the adiabatic end temperature Tad
(Stoessel, 1995):

Tad = Tr +
Vr[�(�H1 +�H2)ca ��H2cb]

�rcprVr + �wcpwVk
(51)

Thus, the following dynamic optimization problem can be formulated:

min
Fa(t)

� cB(tf ) (52)

s.t. Equations (46) to (50)

0 K � Tad(t) � 453K

n(tf ) = 20 kmol ;

0 � ca(tf ) � 1:7 kmol=m3 ;

0 � Fa(t) � 180 kmol=h ;

8 t 2 [0; tf ]; tf = 6 h :

The initial state is �xed according to ni(t0) = 0 kmol; i = a; b; c; Tr(t0) =
300K. The process model (46){(50) is not di�erentially 
at. In fact, the system
has defect 1 since two 
at output functions would be required for a model
transformation. We modify the enthalpy balance of the process model by adding
a �ctitious input variable w to (49). This is equivalent to introducing a new input
variable �Tw by augmenting the cooling temperature Tw by �w according to:

�Tw = Tw + �w; �w =
�rVr;0cpr
�kAk

w : (53)

Obviously, w = �w = 0 �xes the cooling temperature to its prede�ned value.
Thus, explicit equations (9) can be found for x = [na; nb; nc; Tr]

T , u = Fa,
and w with two suitable 
at output functions which are determined by phys-
ical insight (Rothfu� et al., 1997). The molar holdup nc = y1 (�1 = 3) and
the reactor temperature Tr = y2 (�2 = 2) are chosen as 
at outputs. Each of
them characterizes one \subsystem" of the model. They relate to two subsys-
tems comprising the material and enthalpy balances of the reactor, respectively.
Thereby, we obtain the following set of equations of type (9):

nc = y1 ; (54)

nb = g11( _y1; y2) ; (55)

na = g12( _y1; �y1; y2; _y2) ; (56)

Tr = y2 ; (57)

Fa = g21( _y1; �y1; y
(3)
1 ; y2; _y2; �y2) ; (58)

w = g22( _y1; �y1; y
(3)
1 ; y2; _y2; �y2) : (59)

Note, that w in equation (59) represents the �ctitious input variable which is
forced to zero by imposing an equality path constraint of type (12) at each
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collocation point ti in [t0; tf ]. The optimization problem (52) is solved using
equations (54){(59) by employing three-stage Radau-IRK discretization in or-
der to satisfy K � max(�1; �2) = 3. Thus, the highest order derivatives of
the output variables are approximated by piecewise polynomials of order three
according to equation (24) while the time horizon is divided into 40 equidis-
tant �nite elements. Figures 3,4 illustrate the optimal pro�les of the states and
inputs while Table 3 summarizes the optimization results and reveals a compari-
son to the established techniques, i.e. our own implementation of a simultaneous
solver (SIM) employing three-stage Radau-IRK discretization and SNOPT as
well as DYNOPT with piecewise constant control approximation representing
the sequential method (SEQ). As in the previous example, the DE approach
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Figure 3: Feed rate Fa.

requires the largest number of major iterations while the average computing
time needed for solving one QP subproblem is still relatively short. However,
the DE approach reveals a lower total computational eÆciency relative to the
SIM and SEQ method as the FS approach discussed in the previous section.
This fact can be explained by the comparably large number of (linearized) QP
constraints.

Table 3: Optimization results { Semi-batch reactor

Method Objective NLP par. SQP k � time QP k � time time [sec]

DE �7:4176 440 13 1:165 717 0:0211 15:1

SIM �7:4114 680 8 1:825 771 0:0189 14:6

SEQ �7:4116 40 11 1:136 125 0:1 12:5

Generalization of these results is, however, rather diÆcult since the comput-
ing time underlies signi�cant variations depending on chosen input parameters
of the SQP and integration method. Depending on the example treated, the DE
method may help to reduce computing time while it will be always inferior to
the FS approach discussed in the previous section.

It is, however, important to note, that the potential of the suggested method
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Figure 4: Reactor temperature Tr, adiabatic end temperature Tad (top) and
concentrations ca; cb; cc (bottom).

also relies on characteristics of the dynamic optimization problem to be solved
rather than the isolated dynamic process model itself. This hypothesis shall be
explained by applying the DE method to a batch distillation example problem
described next.

5.2.2 Batch distillation column

Within this section we consider the optimization of a single-stage ideal binary
batch distillation column. For the distillation model we assume a constant rel-
ative volatility � = 1:5 for both components throughout the column and a
theoretical tray, i.e. the vapor leaving the tray is in equilibrium with the liquid
on the tray. Further simplifying assumptions are a negligible vapor holdup and
a constant vapor 
ow rate of V = 50 kmol=h. A Francis weir formula is used
to relate the liquid holdup on a tray to the liquid 
ow L rate leaving the tray.
The batch column consists of a still pot charged with the feed mixture, one
ideal tray, a total condenser, and a re
ux drum. A re
ux valve splits the stream
leaving the re
ux drum into a distillate and a re
ux stream.
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The process is modeled by the following set of di�erential equations:

dxB;1
dt

=
1

MB

(Lin;B(xS;1 � xB;1)� V (yB;1 � xB;1)) ; (60)

dMB

dt
= Lin;B � V ; (61)

Lin;B = Lout;S = kD(MS �MS;w)
3

2 ; (62)

dxS;1
dt

=
1

MS

(Lin;S(xC;1 � xS;1)

�V (yS;1 � xS;1) + V (yB;1 � xS;1)) ; (63)

dMS

dt
= Lin;S � Lout;S ; (64)

Lin;S = LRe;C = kD(MC �MC;w)
3

2 ; (65)

dxC;1
dt

=
1

MC

(V (yS;1 � xC;1)) ; (66)

dMC

dt
= V � LRe;C � LDist;C ; (67)

� =
yj;1(1� xj;1)

(1� yj;1)xj;1
; j = B;S;C; R =

LRe;C
LDist;C

: (68)

The model parameters required for the weir formulae are speci�ed as MS;w =

1:0 kmol, MC;w = 3:0 kmol and kD = 1581; 139 (kmol
3

2 s)�1. We search for the
optimal re
ux policy to obtain the highest purity possible in 1 kmol distillate
D and a �xed batch time of 1 hour for given initial states. The amount of dis-
tillate and its purity at the �nal time is evaluated by discretization of equations
(69),(70):

xD;1(tf ) =
1

D

Z tf

t0

LDist;C xC;1 dt ; (69)

D =

Z tf

t0

LDist;C dt : (70)

Alternatively, xD;1(tf ) and D could also be determined explicitly by numerical
integration of (69),(70).

Hence, with �xed initial values for the molar fractions xj;1(t0) = 0:5 ; j =
B;S;C, and holdupsMB;1(t0) = 10:0 kmol,MS;1(t0) = 1:09875 kmol,MC;1(t0) =
3:09875 kmol, the optimization problem can be stated as:

min
R(t)

�xD;1(tf ) (71)

s.t. Equations (60) to (70) ;

1:0 kmol � D(tf ) ;

30:0 � R(t) � 120:0 ;

8 t 2 [0; tf ]; tf = 1 h :

An analysis of the original dynamic system (60){(68) reveals that two 
at output
functions are required to obtain a 
at model representation (9). Hence, with R(t)
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being the only input variable the system defect is 1. When adding a �ctitious
input variable w to the right hand side of the material balance of the condenser,

dxC;1
dt

=
1

MC

(V (yS;1 � xC;1)) + w ; (72)

the system can be converted into a 
at representation (9),(12) with equation
(72) replacing the original balance (67). Then, the corresponding 
at output
functions are the molar holdup y1 = MB (�1 = 3) and the mole fraction y2 =
xB;1 (�2 = 3) in the still pot of the column. Thus, the number of model variables
is reduced by 4 using the two 
at output functions to represent the nonlinear
system dynamics. The dynamic model can be expressed in terms of the following
explicit equations for the states and inputs:

xB;1 = y1 ; (73)

MB = y2 ; (74)

xS;1 = g1;1(y1; _y1; y2; _y2) ; (75)

MS = g1;2( _y2) ; (76)

xC;1 = g1;3(y1; _y1; �y1; y2; _y2; �y2) ; (77)

MC = g1;4( _y2; �y2) ; (78)

R = g2;1( _y2; �y2; y
(3)
2 ) ; (79)

w = g3;1(y1; _y1; �y1; y
(3)
1 ; _y2; �y2; y

(3)
2 ) : (80)

Note, that w represents the �ctitious input variable which will be forced to
zero by an additional equality path constraint. The time-continuous problem
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Figure 5: Optimal re
ux ratio R(t).

is discretized by employing a three-stage Radau-IRK scheme in order to satisfy
K � max(�1; �2) = 3. Hence, the highest order derivatives of the output vari-
ables are approximated by piecewise polynomials of order three according to
equation (24). The time horizon is divided into 30 equidistant elements. How-
ever, by directly applying the DE method to solve problem (71) using equations
(73){(80) we failed to obtain an optimal solution that (at least approximately)
matches the \true" analytical optimal solution which is a bang-bang pro�le in
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Figure 6: Condenser mole fraction for higher (top), �rst order ODE (bottom)
and corresponding local integration error, + := collocation point.

the re
ux ratio R(t). An optimal control pro�le approximated by piecewise con-
stant functions on 30 time elements which was determined with DYNOPT is
depicted in Figure 5. Instead, with the DE method we determine a control pro�le
that oscillates between the lower and upper control bound around t = 0:5 h lead-
ing to a slightly lower objective value than the one obtained with DYNOPT.
To �nd a reason for these oscillations we applied the three-stage Radau-IRK
method to the higher order ODE system (79),(80) and also to the original ODE
(60){(68) with a given control pro�le R taken from Figure 5. Figure 6 shows the
corresponding integration errors in the condenser mole fraction pro�les for the
two ODE systems. Both where compared to a BDF method (SpeedUp, 1995)
applied to the �rst order ODE system (60){(68)(dashed lines). In the vicinity
of the discontinuity, the solution of the higher order ODE reveals a local inte-
gration error which is signi�cantly higher when compared to the original ODE
system. This integration error leads to a decreased objective value since the in-
tegral of xc;1 over t 2 [t0; tf ] is slightly higher (see Figure 6). Thus, an oscillating
control pro�le further decreases the objective function value at the expense of
a higher integration error.

Having accounted for the oscillating control pro�le obtained with the DE
approach we now examine the cause for the comparably high integration error
itself. By means of Figure 6 it is easily identi�ed that the �rst order ODE model
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(60){(68) is solved with higher accuracy around the point of discontinuity in R
when compared to the solution of the corresponding higher order system al-
though the same IRK-method on the same mesh was employed. At �rst sight,
one may be surprised by the worse numerical integration result for the higher or-
der ODE (79),(80). In order to investigate this behavior, equation (79) is solved

for y
(3)
2 , the highest order derivative of y2. The complex and highly nonlinear

right hand side of the ODE contains mixed nonlinear functions of R and the
lower order derivatives �y2; _y2:

y
(3)
2 = f(�y2; _y2; R) : (81)

Ascher et al. (1995) show that the local error estimates of the method strongly
depend on smoothness properties of the higher order ODE. Since (81) is non-
linear, we have to analyze the linearized ODE coeÆcients

ci =
@f(�y2; _y2; R)

@y
(i)
2

; i = 0; 1; 2 ; (82)

for the smoothness condition. Evaluation of (82) yields that the coeÆcients
c1; c2 themselves depend on �y2; _y2 and R. Recalling that R contains a jump
discontinuity, it is obvious that the coeÆcients c1; c2 are as well discontinuous
and thereby cause a dropping order of consistency (for more details, see Ascher
et al. (1995)).

These results clearly indicate that higher order collocation methods with
an error controlled adaptive mesh selection, such as proposed e.g. by Ascher
et al. (1995) or Binder et al. (2000), should be applied to reliably solve dynamic
optimization problems involving control discontinuities. A �ne mesh will be re-
quired locally whenever steep gradients or discontinuities occur in the control
variables. Furthermore, the analysis of the higher order ODE (79),(80) reveals
that symbolic transformation of a �rst order ODE may change its dynamic sys-
tem behavior to a signi�cant extent, e.g. through the introduction of discontinu-
ities into the coeÆcients (82) of the (linearized) high order ODE. Note, that the
corresponding �rst order representation of (79),(80), which can be obtained by
back-transformation, has eigenvalues that di�er signi�cantly from those of the
original system (60){(68). Clearly, this also a�ects the sti�ness of the dynamic
system. Hence, the high e�ort for a stable numerical solution of these ODE sys-
tems may often not be compensated by the reduced variable space achieved by
symbolic transformation of the original dynamic system. The examples5 treated
in Sections 5.2.1 and 5.2.2 indicate that the numerical performance of the DE
method will generally depend on combined properties of the reformulated model
and the dynamic optimization problem.

5.2.3 Batch reactor

The �nal example problem treats the productivity optimization of a simple
batch reactor (Logsdon & Biegler, 1992) which is modeled as:

dx1
dt

= �(u+
u2

2
)x1 ; (83)

dx2
dt

= ux1 ; (84)

5Note, that both examples are singular dynamic optimization problems.
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where x1 and x2 denote the mole fractions of raw material and product, re-
spectively. The (dimensionless) reactor temperature u represents the free input
variable which is used to maximize the amount of product within a speci�ed
batch time of 1 hour. The dynamic optimization problem for the batch reactor
is stated as:

min
u(t)

�x2(tf ) (85)

s.t. Equations (83); (84) ;

0:5 � u(t) � 5:0 ;

x1(t0) = 1:0 ;

x2(t0) = 0:0 ;

8 t 2 [0; tf ]; tf = 1 h :

The dynamic system (83),(84) is not di�erentially 
at. This example points out
nicely that nonlinear controllable single input systems do not necessarily have
to be di�erentially 
at while, in contrast, the reverse holds. Nevertheless, by
introducing an auxiliary variable y = x2 we can convert the �rst order ODE into
a second order ODE. This way, we are at least able to apply the HO approach (cf.
problem (23)) for non-
at systems as described in Section 3.3. The second order
representation includes input and auxiliary variables and their time derivatives
instead of the original state and input variables. The transformed system takes
the following form:

�y + (u+
u2

2
�

_u

u
) _y = 0 : (86)

Equation (86) is referred to as the input-output representation of the model
(van der Schaft, 1989). For convenience we refer to the auxiliary variables as
the system output. Again, the highest order derivatives of both input and out-
put variables are approximated by piecewise polynomials. Equation (86) is then
discretized by applying a two-stage Radau-IRK method on 50 time elements.
The input variable u is approximated by means of piecewise linear (continuous)
polynomials on 25 �nite elements according to equation (30). The discretized
problem is optimized again using SNOPT (Gill et al., 1998). The results are
presented in Figure 7. Almost coinciding solutions were also obtained with the
simultaneous strategy using collocation on �nite elements and with the sequen-
tial strategy as in the previous sections. The same approximation order (two-
stage Radau-IRK) as for the HO method was used for the simultaneous method
for the state discretization while the controls were approximated by piecewise
linear trial functions on 25 equidistant time intervals. An optimality tolerance
of 10�6 was used. We here focus on a comparison of the HO method with the
simultaneous approach. For the sake of completeness, the results obtained with
the sequential approach are, however, also included in Table 4. The results in
Table 4 show that the HO method is not superior to the simultaneous approach
with regard to the total computing time. As in the other examples, the SQP
convergence rate of the HO method is substantially smaller than that of the
SIM and SEQ approaches, while the computing time required to solve one QP
subproblem is still relatively short. Obviously, in this case the overall perfor-
mance of the SQP algorithm again su�ers from search directions pk that lead
to poor convergence properties. At the same time, the reduction in computing
time for the QP solutions is not suÆcient to outweigh this drawback.
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Figure 7: Dimensionless reactor temperature u(t), mole fractions of reactant x1
and product x2.

6 Conclusions

In this contribution, three alternative approaches to dynamic optimization based
on higher order dynamic model representations are introduced and analyzed
rigorously. It is shown, that for di�erentially 
at systems a reformulated opti-
mization problem (cf. problem (10)) can be applied very eÆciently. The required
solution time can be reduced signi�cantly when compared to sequential methods
which is mainly due to the fact that numerical state and sensitivity integration
is avoided. Moreover, the new method can also have advantages over the simul-
taneous approach since the number of optimization variables is reduced to a
considerable extent.

We further discuss a natural extension of the optimization approach for the
limited class of 
at systems to treat non-
at systems. This approach is shown to
produce optimal results while its eÆciency is not superior to the established so-
lution techniques anymore for the examples presented. The problems occurring
in the defect elimination method trace back to the fact that stable numerical
solution of higher ODEs incorporating switching control variables is rather diÆ-
cult. Hence, optimization problems with bang-bang solutions cannot be handled
eÆciently with numerical algorithms without automatic grid adaptation, which
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Table 4: Optimization results { Batch reactor

Method Objective NLP par. SQP k � time QP k � time time [sec]

HO { 0.5735 250 106 0:091 359 0:0267 9:6

SIM { 0.5735 350 64 0:139 417 0:0213 8:9

SEQ { 0.5735 26 68 0:162 94 0:117 11:0

is a rather strong restriction of the method. Although extrapolating the results
obtained for general dynamic optimization problems is diÆcult, its potential is
shown to be strongly dependent on the particular dynamic optimization problem
considered.

Finally, a reformulation for a dynamic system into a higher order di�erential
input-output representation is presented, which is intended to reduce the num-
ber of optimization variables of simultaneous methods. Again, the eÆciency of
the method is diÆcult to rate in a general sense. However, the results obtained
in this paper clearly indicate that the DE and HO method require the inte-
gration of sophisticated numerical discretization methods with error controlled
adaptive mesh selection.

Concluding, experience with a number of example problems indicates that
the most promising approach among the methods presented in this paper will
be the one for 
at dynamic systems. Its main area of application should be the
on-line optimization and control of chemical or bio-reactors since their nonlin-
ear process models are rather often di�erentially 
at. Despite the potential of
reducing computational time the approach has the favorable property of being
always feasible with respect to all dynamic model constraints like the sequential
approaches are. This property is especially important for real-time applications
since intermediate solutions may be implemented in case of hard time limits
even though the optimization algorithm has not yet converged. Hence, a robust
and eÆcient implementation of the FS method for on-line applications would be
desirable. The identi�cation of 
at output functions and the model reformula-
tion required to treat the illustrative example problems were found to be rather
tedious and time-consuming. Future research activities should therefore focus
on systematic methods to be able to reliably identify 
atness of a dynamic sys-
tem, to determine the corresponding 
at output functions, and to �nd suitable
�ctitious inputs to eliminate the system defect.
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