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Abstract

In this work we investigate the applicability of projection based

model reduction techniques in the context of dynamic optimization.

Especially, we focus on the question, whether dynamic optimization

with a reduced model can give the same solution in less computation

time, as compared to optimization with the original model.
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1 Introduction

Dynamic optimization becomes increasingly important to enhance operation
of chemical processes. Examples include the design of operational strategies
for batch and semi-batch reactors or for continuous processes during tran-
sient phases such as grade transitions, start-up or shut-down on the one hand,
and real-time applications for optimization-based monitoring and control on
receding horizons on the other hand. Large-scale and strongly nonlinear
problems with di�erential-algebraic as well as path and endpoint constraints
often have to be considered resulting in demanding computational problems.
Obviously, the computation time required by the solution of dynamic opti-
mization problems strongly depends on the size and the structure of the pro-
cess model considered. This leads to the fact that for large-scale processes the
optimization problems often still cannot be solved suÆciently fast, especially
not in real-time applications. To cope with this problem, in principal the
problem can be approached from two sides: On the on hand, the algorithms
for dynamic optimization solvers are subject to improvement. On the other
hand, one could apply model reduction and model simpli�cation techniques
in order to reduce the computational e�ort which is related to the size of the
model. In this work we investigate the bene�t of model reduction for dynamic
optimization. Since in transient plant operation the operational envelope of a
process usually covers a large region of the state space, the process dynamics
cannot be represented adequately by a linear model. Therefore, nonlinear
models and the use of nonlinear model reduction techniques is required. In
the literature, many approaches for nonlinear model reduction techniques
can be found (see Marquardt (2001) for a review). Model order reduction
techniques are among the most popular approaches. Usually, model order
reduction is carried out by using some projection technique. By means of
projection, the original state space is transformed into a state space better re-
vealing the important process dynamics. To achieve model order reduction,
the transformed space is decomposed into two complementary subspaces.
The reduction is �nally achieved by truncation of the non-dominant states
or by residualization. Various projection techniques have been suggested,
such as nonlinear balancing or proper orthogonal decomposition (POD), and
often quite signi�cant reductions in model order have been reported, mainly
for applications with distributed parameter systems.

However, for the application in dynamic optimization, some issues are
quite important, which usually have not been considered in the context of
projection based model reduction. What matters at �rst is really a reduc-
tion in computational complexity, not in model order. Afanasiev and Hinze
(2001) successfully used proper orthogonal decomposition for an optimal con-
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trol application in 
uid dynamics, envolving distributed parameters systems.
For lumped parameter systems, e.g. those arising in chemical engineering
applications, projection techniques tend to yield smaller, but more complex
models, which do not retain the structure of the original model. As we will
show, this is a major bottleneck of these techniques. Also, it is desirable
that optimization with a reduced model yields a solution, which is as close
as possible to the solution obtained with the full model regarding optimality
and feasibility. Such a behavior is not necessarily guaranteed. In this con-
tribution we will show the application of a projection method for nonlinear
reduction to a chemical process model. The reduced model will be used in
a dynamic optimization algorithm using the so-called sequential approach.
The results are compared to those obtained with the full model regarding
both, computational and economic performance. Bene�ts and drawbacks of
nonlinear model reduction for this application are discussed.

2 Dynamic optimization

2.1 Problem formulation

We focus on the use of dynamic optimization for optimal trajectory gener-
ation and consider an optimal control problem formulation of the following
form:

min
u(t);p;tf

� (x (tf ) ;y (tf )) (P1)

s.t. _x = f(x;y;u;p; t) ; t 2 [t0; tf ] ; (1)

0 = g(x;y;u;p; t) ; t 2 [t0; tf ] ; (2)

0 = x(t0)� x0 ; (3)

0 � h(x;y;u;p; t) ; t 2 [t0; tf ] ; (4)

0 � e (x (tf ) ;y (tf )) : (5)

In this formulation, x(t) 2 R
nx denote the di�erential state variables with

initial conditions x0. y(t) 2 R
ny are the algebraic state variables. The

variables to be determined by the optimization procedure for minimization
of the objective function � are the control vector u(t) 2 R

nu , the unknown
time{independent parameters p 2 R

np , as well as the �nal time tf . The
di�erential{algebraic (DAE) model is given by the equation system (1), (2).
We only consider DAE systems with an di�erential index of less than or equal
to one. Furthermore, path constraints (4) can be applied to the states, control
variables and time{independent parameters. Finally, endpoint constraints
(5) on the state variables can be employed.
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2.2 Sequential solution approach

In the sequential approach (Kraft, 1985) the control pro�les ui(t); i = 1; :::; nu
have to be approximated, and often piecewise polynomial expansions of the
form

ui(t) � ui(ci; t) =
X

k2�i

ci;k�i;k(t); (6)

are used, where �i denotes the index set of the chosen parameterization
functions �i;k(t) and the vector ci contains the corresponding parameter vec-
tor. For brevity, in this paper we only consider piecewise constant functions
�i;k(t) := 1 8 tk � t � tk+1, otherwise �i;k(t) = 0, though an extension to
higher{order polynomials is possible. The grid points for each ui are con-
tained in the mesh ��i

:= ftkjk 2 �ig.
By discretization of the control variables, the dynamic optimization prob-

lem (P1) can be reformulated as an NLP:

min
c;p;tf

� (x (c;p; tf) ;y (c;p; tf)) (P2)

s.t. 0 � h(x;y; c;p; ti) ; 8ti 2 �� ; (7)

0 � e (x (tf ) ;y (tf)) : (8)

The path constraints (7) are now evaluated on the uni�ed mesh of all control
variables �� :=

Snu
i=1��i

. The DAE model (1), (2), (3) is not present directly
in the NLP problem, rather it is solved by numerical integration in each
function evaluation step of the NLP solver to determine x(c;p; t) for given
c and p and therefore present implicitly. Algorithms for the solution of this
NLP, typically SQP methods, require gradient information of the constraints
and the objective function with respect to the decision variables. There are
several possibilities to obtain these gradients. Here, we consider the explicit
solution of the arising sensitivity equation systems, which is the method of
choice in most sequential approach dynamic optimization algorithms.

The sensitivity systems can be solved by numerical integration together
with the original DAE system. EÆcient algorithms are available for this
purpose, which exploit the special properties of the sensitivity system (e.g.
Feehery et al. (1997)). Nevertheless, the by far largest amount of computa-
tion time in sequential approach dynamic optimization (typically more than
90 %) is spent on the numerical integration of states and sensitivities.

Therefore it is natural to think about applying some sort of model reduc-
tion to the DAE system. Ideally, a reduced model should give similar results
to the full model in a much shorter computation time.
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3 Projection based model reduction

3.1 Basic procedure

Projection methods have been suggested in a great variety in the recent
literature. A generic procedure can be formulated as follows:

1. Transform the original state space into a state space better revealing
the important contributions to process dynamics, i.e.

x� x� = Uz ; (9)

with a homomorphic transformation U and the transformed state vec-
tor z 2 Rnx. The reference state x� is often a non-zero nominal oper-
ating point.

2. To achieve order reduction we decompose the transformed space into
two complementary subspaces with state vectors z1 2 R

m and z2 2
R
nx�m, respectively. Hence, we obtain

Uz = U1z1 +U2z2 ; U = [U1;U2] : (10)

We call z1 the dominant states and refer to z2 as the non-dominant
states. Note that the new states are linear combinations of the original
states in the linear case. After transformation and subsequent decom-
position into two subsystems, we obtain

_z1 = U
T
1 f(x

� +U1z1 +U2z2;y;u) ; (11)

_z2 = U
T
2 f(x

� +U1z1 +U2z2;y;u) ; (12)

z1(0) = U
T
1 (x0 � x�) ; (13)

z2(0) = U
T
2 (x0 � x�) ; (14)

0 = g(x� +U1z1 +U2z2;y;u) (15)

3. Finally, we have to deduce a nonlinear dynamic model for the dominant
states. Here, one can apply truncation of the transformed state by
setting z2 = 0:

_z1 = U
T
1 f(x

� +U1z1;y;u) ; (16)

z1(0) = U
T
1 (x0 � x�) ; (17)

0 = g(x� +U1z1;y;u) (18)
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Alternatively, a residualization can be applied by setting _z2 = 0, lead-
ing to the following reduced model:

_z1 = U
T
1 f(x

� +U1z1 +U2z2;y;u) ; (19)

0 = U
T
2 f(x

� +U1z1 +U2z2;y;u) : (20)

z1(0) = U
T
1 (x0 � x�) ; (21)

0 = g(x� +U1z1 +U2z2;y;u) (22)

In contrast to the truncated model, the residualized model is a di�e-
rential-algebraic model with the same number of equations and vari-
ables as the original model, but less di�erential and more algebraic
equations. The residualized model has the feature of being steady-state
accurate, which is not necessarily the case for a truncated model.

4. Approximate di�erential states ~x of the original system can be easily
computed from

~x = x� +U1z1 +U2z2 : (23)

The variants of projection methods di�er mainly in steps 1 { 3, and especially
in the way, how the transformation matrix U is generated. In this work, we
apply proper orthogonal decomposition (POD) for obtaining the projection.

3.2 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a projection method, which has
found many applications especially in 
uid dynamics (e.g. Sirovich (1987))
or chemical vapor deposition processes (e.g. Baker and Christo�des (1999)).
The method comes in a number of variants. In this subsection, we will
summarize one of them following the presentation of Ravindran (1999).

Starting point is a representative trajectory of (1){(2) for a certain initial
condition x0 and control u(t) de�ned on a �nite time interval [t0; tf ]. The
trajectory is uniformly sampled for simplicity to form the ensemble S =
fx(tk)� x�gpk=1 = f�x(tk)gpk=1 containing p data sets of length n which are
often called snapshots. As before, x� is the reference which can be either a
steady-state or the ensemble average of the snapshots. We are interested in
a unit vector d which is in some sense close to the snapshots in S. We may
request that d is as parallel as possible to all the snapshots. This requirement
leads to the optimization problem

max
1

p

pX

k=1

(�x(tk)
Td)2

dTd
s.t. dTd = 1 : (24)
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We assume d to be a linear combination of the data, i.e.

d =

pX

k=1

wk�x(tk) ; (25)

and determine the weights wk to solve the optimization problem (24). Solv-
ing this optimization problem is the same as �nding the eigenvectors of the
correlation matrix N with elements

Ni;j = �x(ti)
T�x(tj) : (26)

Since this matrix is nonnegative Hermitian, it has a complete set of orthogo-
nal eigenvectors fw1; : : :wpg along with a set of eigenvalues �1 � �2 � � � � �p.
We can now construct an orthogonal basis spanfd1; : : : ;dpg by means of (25)
with

di =
1p
�i

pX

k=1

wi;k�x(tk); ; i = 1; : : : p (27)

where wi;k denote the elements of the eigenvector wi. It can be shown that
any approximation of x(tk) in a subspace spanned by the �rst p1 < p basis
vectors di maximizes the captured energy x(tk)

Tx(tk) of the data set. Due to
this property, we may just use a reduced basis spanfd1; : : : ;dp1g with p1 � p
to obtain suÆcient approximation quality. The value of p1 is determined after
some experimentation. The ratio

� =

Pp1
k=1 �kPp

k=1 �k
(28)

indicates the percentage of energy contained in the �rst p1 basis vectors.
Obviously, this ratio should be close to unity. Note that we therefore do not
have to match the number of snapshots (or basis vectors) p to the dimension
n of the dynamic system. Often, we want to use p � n for convenience, if
very large-scale systems are considered, which, for example, may arise after
discretization of a distributed parameter system.

There are at least two common ways of determining the basis vectors.
Banerjee and Arkun (1998) employ a singular value decomposition and con-
struct the basis from the left singular vectors of N . An alternative approach
does not rely on the correlation matrix N but on the n� p snapshot matrix

X = [�x(t1);�x(t2); : : :�x(tp)] (29)

the columns of which are the snapshots �x(tk) at tk (Aling et al., 1996;
Shvartsman and Kevrekidis, 1998). Again, the basis is formed by those
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p1 � p left singular vectors of X which are associated with the largest
singular values and hence capture most of the energy in the data set.

The basis constructed from the correlation or snapshot matrices gives rise
to a representation of an approximate solution ~x by a linear combination of
the basis vectors. Hence,

~x� x� =
p1X

k=1

zk dk : (30)

If the expansion coeÆcients zk and the basis vectors dk are collected in a
vector z1 = [z1; z2; : : : zp1] 2 Rp1 and a matrix U1 = [d1;d2; : : :dp1] 2 Rn�p1

we can rewrite this equation as

~x = x� +U1z1 (31)

which has the same structure as Eq. (23) in case of truncating the non-
dominant states. The reduced model is

_z1 = UT
1 f(x

� +U 1z1;u) ; (32)

z1(0) = UT
1 (x0 � x�) ; (33)

which has exactly the same appearance as the truncated model (16){(17)
resulting from model reduction by projection.

Alternatively, the full basis spanned by p < n vectors can be employed by
summing to p instead to p1 in the approximation (30). This approach would
result in a model structure completely analogous to the system (19){ (21).
Residualization by setting _z2 to zero can then be used to potentially reduce
the computational e�ort.

The choice of the initial u(t) plays an important role in POD. The fre-
quency content of the input signal determines, which dynamics are excited
and therefore identi�ed by the POD.

4 Implementation

If a projection technique is applied to the process model, the dynamic opti-
mization problem P1 to be solved turns into

min
u(t);p;tf

� (x (tf ) ;y (tf )) (P3)
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s.t. _z1 = U
T
1 f(x

� +U1z1;y;u) ; (34)

0 = g(x� +U1z1;y;u) ; (35)

z1(0) = U
T
1 (x0 � x�) ; (36)

0 � h(x;y;u;p; t) ; t 2 [t0; tf ] ; (37)

0 � e (x (tf ) ;y (tf)) ; (38)

in case of truncation, and

min
u(t);p;tf

� (x (tf ) ;y (tf )) (P4)

_z1 = U
T
1 f(x

� +U1z1 +U2z2;y;u) ; (39)

0 = U
T
2 f(x

� +U1z1 +U2z2;y;u) ; (40)

0 = g(x� +U1z1 +U2z2;y;u) ; (41)

z1(0) = U
T
1 (x0 � x�) ; (42)

0 � h(x;y;u;p; t) ; t 2 [t0; tf ] ; (43)

0 � e (x (tf ) ;y (tf )) ; (44)

if residualization is chosen.
As dynamic optimizer, the tool ADOPT (Schlegel et al., 2001) is used.

It is an implementation of a sequential approach dynamic optimizer and
is interfaced to the dynamic modeling and simulation package gPROMS
(gPROMS, 2002), which is used as the model source. For convenience, both,
the original model as well as the projected model have been implemented in
gPROMS. In concrete terms, the gPROMS model looks as follows:

xd = f(x;y;u;p; t) ; (45)

0 = g(x;y;u;p; t) ; (46)

x = Uz + x� ; (47)

_z = U
Txd ; (48)

0 = z(t0)�U
T (x0 � x�) : (49)

Truncation can be realized by replacing U by U1 in above equations, which
corresponds to replacing z by z1. For residualization, the equations

0 = U2xd (50)

have to be added to the model. Note that the equations (47){(48) increase
the size of the model without containing physical information. They are
just added for the convenience of retaining the original model (45){(46) in
gPROMS format. Therefore, in the subsequent case study, we refer to the
original, i.e. un-projected model by setting U = I (identity matrix) in above
equations, in order to enable a fair comparison of original and projected
models in terms of number of equations and variables.
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5 Case study

As a test case, we consider a chemical plant consisting of a reactor, a distil-
lation column and a recycle. The 
owsheet of the plant is depicted in Figure
1. Initially, the plant is �lled with pure component A, which undergoes the
irreversible reaction A! B.

ÿ� � �

� �

ÿ�� �
� �

�

�

�

�

�
ÿ

� � � �

ÿþ
��

� �
� �

�

Figure 1: Flowsheet of the case study plant.

The plant is operated in semi-batch mode. The dynamic optimization prob-
lem considered in the case study is to minimize the time of operation tf ,
which is required for yielding a pre-speci�ed amount of product Np with
a de�ned composition xp. In concrete terms, we employ the two endpoint
constraints

Np(tf ) = 2000 mol ; (51)

xp(tf ) = 0:01 : (52)

Additionally, we impose a path constraint on the reactor hold-up:

350 mol � N(t) � 600 mol : (53)

The operational degree of freedom, whose optimal pro�le over time is to be
found by the dynamic optimization, is the re
ux ratio R = L=D. The distil-
lation column has 41 trays. The original model of this plant, in the form of
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Eqns. (1)-(2) has nx = 47 di�erential and ny = 48 algebraic variables. Be-
sides the composition on the 41 trays, the 47 di�erential states comprise the
composition, hold-up and temperature in the reactor as well as the product
amount and concentration, and one additional state representing the process
time.

5.1 Nominal solution

As nominal solution, we consider the optimal solution found by performing
a dynamic optimization run with the full model using a discretization of
R according to Eq. (6) with 20 piecewise constant elements. The optimal
pro�le of R is shown in Figure 2. The pro�les of the constrained quantities
xp and N are depicted in Figure 3 (a) and (b). Note that the re
ux is �rst at
the lower bound for quality and then raised for maximum product amount,
but limited by the path constraint on N .

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

10

R
 [−

]

t [s]

Figure 2: Optimal trajectory for re
ux ratio R (nominal case).

The optimal solution was obtained by employing the software setup as
described in Section 4. The integration tolerance for the numerical integrator
has been set to 10�6, the optimality and feasibility of the NLP solver to 10�5.

The minimum �nal time (objective function value), which can be achieved
by meeting all constraints is 8918.6 seconds. The solution took 169 CPU
seconds on a 1.2 GHz PC. The NLP solver required 31 major iterations, and
in total 73 numerical integrations (for states and sensitivities) were needed
for solving this problem.

As mentioned before, the nominal model considered here includes a pro-
jection with the unity matrix. In the following studies with projected models
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Figure 3: Constrained quantities reactor hold-up N and product quality xp
(nominal case).

the projection will be solely applied to the column part of the model. There-
fore, the vector z contains at most nz = 41 elements, corresponding to the 41
trays in the column. For this reason, an extra 82 equations of type (47)-(48)
are added to the model, so that the nominal model �nal comprises 47 di�er-
ential and 130 algebraic equations and variables. As a basis for subsequent
comparisons, the sparsity pattern of the Jacobian matrix of the full model
is shown in Figure 4. It shows 502 nonzero entries for 177 equations and
variables.

0 50 100 150
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20

40

60

80

100

120

140

160

nz = 502

n 
=

 1
77

 m
 =

 1
77

Figure 4: Sparsity pattern of the Jacobian (nominal case).
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5.2 Solutions with projected models

Consecutively, the same problem has been solved by applying di�erent kinds
of projections to the model. As mentioned before, only the column model
has been used in the projection, therefore 41 of the 47 di�erential states are
e�ected by this.

The snapshot matrix for generating the POD projection matrix U has
been generated based on a simulation with the optimal nominal trajectory
for u(t) according to Figure 2.

In the following we show, how truncation and residualization with di�er-
ent levels of order reduction e�ect the numerical and computational perfor-
mance of the optimization with the projected model.

5.2.1 Truncation

First, we investigate the e�ect of applying truncation to the projected model.
For this purpose, �ve di�erent levels of reduction have been explored, which
are nz = f30; 20; 18; 16; 8g. The same dynamic optimization problem has
been solved with increasingly reduced models. The computational statistics
are summarized in Table 1.

model number of number of obj. fun. CPU
order iterations integrations value time [s]

nominal 41 31 73 8918.618 169.7

truncation

30 31 73 8918.622 758.1
20 30 68 8921.933 562.4
18 27 54 8889.999 397.6
16 25 46 8958.987 317.5
8 problem infeasible

residuali-
zation

30 31 73 8918.618 975.6
16 32 77 8918.614 1083.2
8 31 74 8916.406 1025.8

Table 1: Computational statistics: comparison of optimization runs with the
nominal model and with truncated and residualized models of di�erent size.

It can be seen, that the case nz = 30 gives almost exactly the same solu-
tion as the nominal model. However, with 758 CPU seconds the computation
time is more than four times longer than with the nominal model. The reason
for this behavior becomes obvious by looking at Figure 5 (a), which shows
the Jacobian pattern for this truncated model. As compared to the pattern
of the nominal model there are less equations and variables, but much more
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Jacobian entries. This is due to the full blocks in the lower right corner of
the matrix, which are the result of the projection equations (47)-(48), since
U here is not the unity matrix anymore, but a dense projection matrix.

0 50 100 150
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20
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160
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=

 1
66

 m
 =

 1
66

(a) nz = 30
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0

50

100

150

nz = 1732

n 
=

 1
52

 m
 =

 1
52

(b) nz = 16

Figure 5: Sparsity pattern of the Jacobian (truncated models).

This observation highlights one major bottleneck of the projection tech-
niques. The reduced model is smaller in dimension, but much more dense
than the original model. Sparsity structures, which are common e.g. in
chemical engineering models, are partly destroyed. This has a bad impact
on the computational performance, if sparse solvers are used for solving the
linear algebra problems in the numerical integration algorithms. In our case,
such a sparse solver is used for this purpose in order to enable the solution
of large-scale systems.

This e�ect becomes less severe, the more the model is reduced. The
matrix �ll-up becomes smaller, as can be seen e.g. for the case nz = 16 in
Figure 5 (b). Table 1 shows a computation time of 317 CPU seconds, which is
much faster than the case nz = 30. However, even this is almost the double
of the reference computation time for the nominal solution. As a rough
estimate, it can be stated that the computational e�ort with sparse linear
algebra is proportional to the number of nonzero elements in the Jacobian
pattern (and to the number of integrations needed for the optimization).
Consequently, even for the case nz = 16, the computation time has to be
much higher than for the nominal case, because there are still more Jacobian
entries.

The quality of the numerical solution is the second important aspect
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Figure 6: Optimal trajectory of re
ux ratio R (truncated models of di�erent
order).

besides the computational performance, when investigating reduced models.
As mentioned before, the truncated model with 30 states in the column model
yields the same solution. This, however, is not the case anymore, if the model
is reduced further. This becomes clear by looking at the Figures 6 and 7.
They show the optimal trajectory for the re
ux ratio and the constrained
quantities found by optimizations with the di�erent reduced models, and the
nominal solution for comparison. The pro�les in Figure 7 have been obtained
by simulating the corresponding optimal trajectories in the original model.
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Figure 7: Constrained quantities reactor hold-up N and product quality xp
(truncated models of di�erent order).

It is interesting to note that the optimal pro�les deviate the more from
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the nominal case, the larger the amount of reduction is. Most important is
the fact, that the endpoint constraint on the product quality (Figure 7 (b))
is not met. The reason for this lies in the fact, that the reduced models
by de�nition just give approximations of the nominal process behavior. In
particular, the truncated model shows a steady-state error, which leads to
the deviation in the trajectory of xp.

For the case nz = 8, the dynamic optimizer even could not �nd a feasible
solution for the problem at all.

5.2.2 Residualization

As an alternative to truncation, also residualization of the reduced model
has been considered. As stated above, this does not really lead to a reduced
model, rather some di�erential states are replaced by algebraic ones, keeping
the overall size of the model constant. Therefore, the Jacobian pattern does
not change with the level of reduction nz. Figure 8 shows this pattern for a
residualized model.
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Figure 8: Sparsity pattern of the Jacobian (residualized model).

Due to this fact, the �ll-up of the Jacobian caused by this type of model
"reduction" is even more severe than in the case of truncation. Consequently,
the computation times with residualized models, reported in Table 1 for
nz = f30; 16; 8g, are all quite closely together and signi�cantly higher than
for the truncated models.

However, a di�erent conclusion can be drawn with respect to the solution
quality. For all residualized models, even for nz = 8, the obtained solution
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was almost identically to the nominal case. For this reason, no solution plots
for these cases are given here.

6 Conclusions

In this paper, we have investigated the applicability of projection based model
reduction to dynamic optimization in chemical engineering problems. Proper
orthogonal decomposition (POD) has been chosen as the method for obtain-
ing the required projection matrix. By means of a case study, the e�ect
of using projected models with respect to computational performance and
solution quality has been studied.

From our case study we can conclude, that the bene�t of using reduced
projected models in dynamic optimization applications is limited, at least
for lumped parameter systems. The required computation times are much
higher than for optimizations with un-reduced models. This is caused by the
matrix �ll-up, which partly destroys the problem inherent structure. Real-
world applications will always show such a structure. Note, that this is
principal problem, which holds for all kinds of projection methods, not only
for POD.

Besides the computation time issue, truncated models additionally lack
of suÆcient accuracy, leading to a loss in solution quality, which grows with
the degree of reduction. Residualized models do not show this problem, but
require even higher computation times.
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