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Abstract:
The aim of this paper is to introduce a combination of two control techniques proposed in the
90’s, namely the Smooth Sliding Control (SSC) and the Binary Model Reference Adaptive
Control (BMRAC) that shares common features with the recently proposed L1 Adaptive
Controller (L1-AC). The basic L1-AC structure is shown to be similar to that of the SSC,
except that the SSC is based on sliding mode control instead of adaptive control. On the other
hand, the B-MRAC provides a smooth transition between adaptive and sliding mode control.
The natural combination of both control techniques, called extended BMRAC (eBMRAC), is
shown to overcome important limitations of the L1-AC, such as poor tracking performance to
time-varying reference signals, the need of excessively large gains and the difficulty to extend it
to output feedback control. In contrast to the L1-AC designs, the new output feedback controller
eBMRAC does not need to be structurally redesigned for different types of systems.

1. INTRODUCTION

A recently proposed control architecture has attracted
notable attention in the past few years. The so-called
L1 Adaptive Control (L1-AC), firstly published in [Cao
and Hovakimyan, 2006a]-[Cao and Hovakimyan, 2006b]
and later in the book [Hovakimyan and Cao, 2010] is
claimed to provide fast adaptation with guaranteed tran-
sient properties. The controller basically consists of a mod-
ified Model Reference Adaptive Control (MRAC) using an
input filtered control, a state prediction loop and high-gain
adaptation law with parameter projection. From now on,
the latter will be referred to as projection adaptation, for
simplicity.

Despite the fact that several works reporting successful
applications of L1 can be found in the literature, see [Ho-
vakimyan et al., 2011] and references therein, some recent
papers questioning the efficiency of this technique can also
be found [Ortega and Panteley, 2014a,b], [Boskovic and
Mehra, 2013].

Criticisms regarding L1-AC include the use of excessively
high adaptation gains, the inability to track a time-varying
reference and the coincidence of L1-AC control signal with
a full state PI controller, which suggests that adaptation is
unnecessary in such scheme [Ortega and Panteley, 2014b],
[Ortega, 2013].

It should also be noted that the L1-AC scheme is different
according to the application. For instance, if the plant
input gain is unknown, the algorithm has to be modified to
a more complex architecture [Hovakimyan and Cao, 2010]
(pp.35). This is similar for output feedback.

⋆ This work was supported in part by the Brazilian Research
Agencies CNPq, CAPES & FAPERJ.

On the other hand, the ideas of using high gain, input
filtering and prediction loop is not new in tracking control
of uncertain systems. The Smooth Sliding Control (SSC),
proposed by Hsu [1997] as a solution to avoid chattering in
sliding mode control (SMC) systems, also relies on input
filtered control together with an output error prediction
loop, similarly to the L1-AC. The high-gain naturally ap-
pears since the control signal is generated by an amplitude
modulated relay function. The discontinuous control is
filtered prior to being injected into the plant, providing
a smooth control signal. Despite the similarity, however,
an essential difference is apparent since the SSC explicitly
employs a reference model - which L1-AC does not. It is
then possible to track a time-varying reference with a small
residual error with the SSC while such property is not
guaranteed with the L1-AC.

The use of high gain projection adaptation laws was pro-
posed by Hsu and Costa [1994], under the designation of
Binary-MRAC (BMRAC), as a method to improve adap-
tation transient and to achieve the good performance and
robustness properties of a sliding mode controller (SMC),
while avoiding chattering. It was argued that the BMRAC
tended to a sliding mode controller as the adaptation gain
was increased. Therefore, it can be expected that the SMC
can be replaced by a BMRAC loop.

In this context, this paper seeks to discuss how to overcome
some of the flaws of L1-AC by combining the SSC and
BMRAC schemes. The key idea is to use the BMRAC high
gain projection adapdation law with the input filtering
and prediction architecture of the SSC and compare the
resulting scheme, named extended BMRAC (eBMRAC)
with the L1-AC. Simulations with simple examples illus-
trate that the eBMRAC outperforms the L1-AC.
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2. MRAC ERROR EQUATIONS

Consider an uncertain SISO linear time invariant plant

ẋp = Apxp + bpu , yp = hT
p xp , (1)

where xp∈R
n is the state, u∈R is the input and yp∈R is

the output. The corresponding input-output model is

yp = Gp(s)u, Gp(s) = kp
Np(s)

Dp(s)
,

where Kp∈R is the high frequency gain, Np(s) and Dp(s)
are monic polynomials.

We assume that the plant parameters are uncertain and
only known within finite bounds and consider the usual
MRAC design assumptions:

A1) Gp(s) is minimum phase.
A2) The plant is controllable and observable.
A3) The order of the plant (n) is known.
A4) The plant relative degree n∗ is known.
A5) The sign of Kp is known and assumed positive
without loss of generality.

Considering that a reference signal ym is generated by the
following reference model:

ym = M(s)r (2)

where M(s) is stable with relative degree n∗. The main
objective is to find a control law u such that the output
error e0 := yp − ym tends asymptotically to zero, for arbi-
trary initial conditions and uniformly bounded arbitrary
piecewise continuous reference signal r(t).

When the plant is known a control law which achieves
the matching between the closed-loop transfer function
and M(s) is given by u∗ = θ∗Tω, where the param-

eter vector is written as θ∗ =
[

θ∗T1 θ∗T2 θ∗3 θ∗4
]T

, with

θ∗1 , θ
∗
2 ∈ R

n−1, θ∗3 , θ
∗
4 ∈ R and the regressor vector ω =

[ωT
u ωT

y yp r]T ∈ R
2n is obtained from I/O state variable

filters given by:

ω̇u = Λωu + gu, ω̇y = Λωy + gyp, (3)

where Λ ∈ R
n−1×n−1 is Hurwitz and g ∈ R

n−1 is chosen
such that the pair (Λ, g) is controllable. The matching
conditions require that θ∗4 = Km/Kp [Ioannou and Sun,
1996]. The error equation is developed as usual for MRAC
[Ioannou and Sun, 1996], [Hsu and Costa, 1994].

ẋe = Ac xe + k∗bc [u− u∗], e0 = hT
c xe, (4)

or in an input/output form

e0 = k∗M(s) [u− u∗] (5)

3. BINARY MODEL REFERENCE ADAPTIVE
CONTROL (BMRAC)

The Binary-MRAC for arbitrary relative degree plants
was proposed by Hsu and Costa [1994] and consists of
a high gain projection adaptation based MRAC. The
resulting system presents better transient performance and
robustness to unmodeled dynamics than with conventional
adaptive controllers.

Since the parameter vector is not known, the control input
is designed using an estimate θ of the ideal parameter θ∗.
The implementable control law is given by:

u(t) = θT (t)ω(t) (6)

For the case n∗ = 1, θ is obtained by a projection-type
adaptation law

θ̇(t) = −σθ − γe0ω (7)

with high gain γ and the projection factor defined as

σ =

{

0 , if ‖θ‖ < Mθ or σeq < 0

σeq , if ‖θ‖ ≥ Mθ and σeq ≥ 0
(8)

with a constant Mθ ≥ ||θ∗|| and

σeq =
−γe0θ

Tω

||θ||2
(9)

The BMRAC scheme is depicted in Fig. 1.

Fig. 1. BMRAC block diagram

4. SMOOTH SLIDING CONTROL (SSC)

The Smooth-Sliding Control technique was proposed by
Hsu [1997] as a solution to avoid chattering in variable
structure model reference control systems. The architec-
ture of L1-AC resembles the SSC closely, but with a few
key differences: i) the absence of an explicit reference
model; ii) the use of projection based adaptation instead of
relay switched control; iii) the need to structurally redesign
the algorithm to deal with output feedback and unknown
input gain; and iv) the inability to track a time-varying
reference with acceptable error as will be seen in Section. 6.
Here, we focus on the case n∗ = 1 for the sake of simplicity,
since only straightforward modifications are needed to deal
with arbitrary relative degree [Hsu, 1997].

4.1 The case n∗ = 1

The SSC is also based on the MRAC framework where the
error equations are given by (4)-(5). The SSC employs a
filtered input and a prediction loop, which is also used in
the L1-AC. The smooth control law is obtained using an
averaging filter with sufficiently small time constant τ such
that the control u is replaced by uav

0 , an approximation of
the equivalent control (u0)eq . The control law is

u= unom − uav
0 ; uav

0 = (1/Fav(τs))u0 (10)

u0 = f(t)sign(ε0) (11)

where ε0 is an output prediction error associated with the
prediction loop

ε0 = e0 − ê0; ê0 = knomM [u0 − uav
0 ]; (12)

since ê0 can be interpreted as a predicted output error by
considering knom and u0 as estimates of k∗ and unom−u∗,
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respectively. With correct estimates the prediction would
be exact, as seen in eq. (6). The modulation function f(t)
is chosen such that f(t) ≥ |u∗(t)− unom(t)| ; ∀t. The SSC
scheme is presented in Fig 2.

Fig. 2. Smooth sliding control block diagram

5. LIMITATIONS WITH L1-AC

The L1-AC formulation considers the plant as

ẋ(t) = Ax(t) + b(u(t) + θTx(t)), y(t) = cTx(t); (13)

where A ∈ IRn×n, b, c ∈ IRn are assumed as known
[Hovakimyan and Cao, 2010] (pp.18). The following control
structure is used

u(t) = um(t) + uad(t), um(t) = −kTmx(t) (14)

where km renders Am , A− bkTm Hurwitz, while uad(t) is
an adaptive component that will be defined shortly. Thus,
the partially closed-loop system is given by:

ẋ(t) = Amx(t) + b(θTx(t) + uad(t)), y = cTx(t) (15)

The following state-predictor is used

˙̂x(t) = Amx̂(t) + b(θ̂Tx(t) + uad(t)) ŷ = cT x̂(t) (16)

where x̂(t) ∈ IRn is the state of the predictor and θ̂(t) ∈
IRn is the estimate of the parameter θ, obtained by a
projection based adaptive law

˙̂
θ = γProj(θ̂(t),−x̃T (t)Pbx(t)), θ̂(0) = θ̂0 ∈ Θ; (17)

the prediction error is defined as x̃(t) , x̂(t)−x(t), γ ∈ IR+

is the adaptation gain, P = PT is the solution of Lyapunov
equation AT

mP + PAm = −Q for arbitrary symmetric
Q = QT > 0. The projection is confined to the set Θ.
The adaptive control signal in the frequency domain is

uad(s) = −C(s)(η̂(s)− kgr(s)) (18)

where r(s) and η̂(s) are the Laplace transforms of r(t)

and η̂(t) = θ̂T (t)x(t), respectively. The input gain kg ,

−1/(cTA−1
m b) is assumed known and C(s) is a stable filter.

The L1-AC architecture is presented in the block diagram
of Fig. 3. It is interesting to note that the L1-AC needs
to be adjusted to be applicable to different situations.
For instance, if the states are not measurable, the scheme
showed above is no longer suitable. Similarly, if the input
gain is unknown, the structure has to be redesigned. Also,

Fig. 3. L1-AC architecture

the L1-AC is not able to track time-varying references nor
it presents parameter convergence.

In [Ortega and Panteley, 2014a] and [Ortega and Panteley,
2014b], the control signal generated by the L1-AC is shown
to be equivalent to a full state PI controller, suggesting
that adaptation would be unnecessary.

This can be illustrated using a first order stable LTI filter
in L1-AC scheme, although it is also true for general filters
according to Ortega and Panteley [2014b]. Note that the
filtered input can be rewritten as

u̇ = −k(u− θ̂Tx) (19)

the control signal generated by (19) coincides with the
output of a perturbed LTI PI controller

v̇ = kb†Amx− µkθ̃Tx; u = v − kb†x (20)

where b† is the pseudo-inverse of b, given by b† =
(bT b)−1bT . This means that if the parameter error con-
verges to zero, the obtained controller converges to an LTI
controller that could be obtained without adaptation.

It is also important to note that L1-AC analysis does not
guarantee zero tracking error for time-varying reference
signals, as shown in [Hovakimyan and Cao, 2010]. The
same applies to parameter error, such that only the pre-
diction error is assured to be uniformly bounded.

Note that this controller requires full state measurement,
which as mentioned is quite restrictive and it also requires
knowledge of input gain. Even though the L1-AC theory
is able to extend the idea shown above to contour these
limitations, it is important to note that this is achieved by
changing the control architecture.

The proposed controller is able to overcome these diffi-
culties, since it does not require knowledge of input gain
and is able to track a time-varying reference with residual
error using output feedback without the need to modify
the control scheme.

6. COMBINING SSC AND B-MRAC

The core idea of this paper is to propose a controller
that combines the SSC and BMRAC by using the SSC
architecture with the BMRAC adaptation. The resulting
scheme is named Extendend BMRAC (eBMRAC) To
that end, the relay of the SSC is replaced by an output
feedback projection adaptation law with standard MRAC
parametrization. The scheme is seen in Fig. 4.

Consider the MRAC error equations (4)-(5). As well as the
SSC, the eBMRAC uses an input filtered control signal
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u = C(s)[u0]; u0 = θTω (21)

where θ is an adaptive parameter. For the sake of simplic-
ity, the plant high frequency gain Kp is assumed known.
Nevertheless, the case where only sign(Kp) is known can
be addressed using a similar development as in [Hsu, 1997].

Consider the auxiliary errors

ê0 = k∗M(s)[u− u0], ε0 = e0 − ê0 (22)

The adaptation law with parameter projection is

θ̇(t) = −σθ − γε0ω (23)

σ =

{

0 , if ‖θ‖ < Mθ or σeq < 0

σeq , if ‖θ‖ ≥ Mθ and σeq ≥ 0
(24)

σeq =
−γε0θ

Tω

||θ||
2

(25)

The eBMRAC equations are e = yp − ym, Eq. (21)–
(25) with ω as defined in Section 2. The block diagram is
shown in Fig. 4. The predicted error ê0 state dynamics can

Fig. 4. Extended BMRAC (eBMRAC) block diagram

be written as
˙̂xe = Ac x̂e + k∗bc [u− u0], ê0 = hT

c x̂e, (26)

which allows to obtain the state dynamics for the predic-
tion error

ẋε = Ac xε + k∗bc [u0 − u∗], ε0 = hT
c xε, (27)

ε0 = k∗M(s)[u0 − u∗]; (28)

Note that the prediction error does not depend on the
filtered input.

The following properties are guaranteed by the projection
based adaptation law:

Theorem 1. Consider the error system described by (4)-
(5) and the auxiliary errors (22),(27). The control signal
is given by (6) with adaptation law (23)–(25). Assume
that assumptions (A1)-(A4) hold, ||θ(0)|| ≤ Mθ and Kp

is known. If τ is sufficiently small, then

i) ||θ|| ≤ Mθ, ∀t ≥ 0;

ii) ||xε(t)||
2
≤ c1e

−λ1t ||xε(0)||
2
+O(γ−1), ∀t ≥ 0 for some

positive constants c1 and λ1;
iii) The prediction error ε0 tends asymptotically to zero;
iv) e0 tends exponentially to some small residual interval
of order τ .

The more general case, when only sign(Kp) is known
and unmodeled dynamics (including delays) are present,
can also be considered following the same developments
presented by Hsu [1997].

7. SIMULATION RESULTS

7.1 Example 1

In order to show the efficiency of the proposed controller
in comparison with L1-AC, we use a simple first order
example. Consider the following plant, state predictor and
filter:

ẋ = 3x+ u+ θx; ˙̂x = −2x̂+ u; C(s) =
c

s+ c
(29)

It is desired to track a sinusoidal reference signal, given
by r(t) = 10 sin(0.5t). High-gain is used as suggested by
Hovakimyan and Cao [2010]. In this case, Γ = 104 and
c = 160. The unknown parameter is assumed to be in the
set θ = [−10, 10]. For θ = −5 the result is seen in Fig. 5,
note that the system output does not track the reference
input. The same plant, reference model and filter is used
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10
tracking error

0 10 20 30 40 50

−5
0
5

10
tracking performance

 

 

0 10 20 30 40 50

−20

0

20

filtered control signal

time(s)

reference
plant

Fig. 5. L1-AC performance for Example 1

for the eBMRAC, that is

G(s) =
1

s− 3− θ
; M(s) =

1

s+ 1
; Fav =

1

τs+ 1
(30)

Design parameters are chosen as γ = 10; Mθ = 10 and
τ = 0.02. The result is shown in Fig. 6, where it is possible
to note a good tracking performance.

7.2 Example 2

L1-AC: To further compare the two schemes, the
simulation results in this section consider the second order
plant used in [Cao and Hovakimyan, 2006a,b], already
including the unknown parameter θ of (13), that is:

[

ẋ1

ẋ2

]

=

[

0 1
−1 −1.4

]

+

[

0
1

]

u; y = [1 0]

[

x1

x2

]

(31)

The reference signal is r(t) = 100cos(0.2t) and the filter
is designed as C(s) = 160/(s + 160). Adaptation gain
is Γ = 104 and θ is assumed to be in the set θi =
[−10, 10], i = 1, 2.
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Fig. 6. eBMRAC performance for for Example 1

The plant transfer function has relative degree n∗ = 2.
However, when dealing with state feedback, one can obtain
an output of relative degree n∗ = 1 . The results of Figs. 7
reproduce the results shown in [Cao and Hovakimyan,
2006b] and it is possible to note a poor tracking perfor-
mance as well as oscillatory parameter values.

The limitations of L1-AC can be more clearly shown in two
different scenarios: i) if the frequency is increased, which
severely impairs the performance as seen in Fig. 8 when
reference signal is r(t) = 100cos(t); and ii) if the input gain
is not known. In this case, the whole L1-AC scheme has
to be redesigned, which is a restrictive constraint. Fig. 8
shows that it is not even possible to track a unit step input
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Fig. 7. L1-AC: Example 2 with r(t)=100cos(0.2t)

eBMRAC: The same plant of Eq. (31) is used assuming
there is prior knowledge on the system states such that it
is possible to obtain an output of relative degree n∗ = 1.
Considering both states are measurable, an output of
relative degree one is obtained by combining the states
such that the output is ȳp = Pbpxp.

It is important to note that this is done for the sole
purpose of providing a fair comparison, since the L1-AC
is designed as state feedback. The more general version
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Fig. 8. L1-AC: Example 2 with r(t) = 100cos(t)
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Fig. 9. L1-AC step response for unknown input gain in
Example 2

of the eBMRAC would be able to deal with systems of
higher relative degree, however for the sake of simplicity
and for a more intuitive illustration of this comparison, it
is chosen to deal with output feedback of a system with
relative degree n∗ = 1.

The averaging filter is designed with τ = 0.02, and I/O
state variable filters are Λ(s) = 1/(s + 1). Projection
adaptation parameters are γ = 10 and Mθ = 10. Results
show good tracking performance with residual error, as
seen in Figs. 10, and a similar result when the frequency
is increased, showing in Fig. 11. Zero tracking error is still
obtained if kp is unknown. The result when knom = 1.2 is
shown in Fig. 12 Note that an excessively large gain is not
needed and that the error can be made smaller choosing
a smaller τ . It is important to stress that the eBMRAC
inherits the robustness of the SSC to unmodeled dynamics
such as delays and nonminimum phase dynamics.

8. CONCLUSION

This paper shows that the combination of two early control
strategies, the Smooth Sliding Control and the Binary-
MRAC, provides an adaptive controller that overcomes
fundamental limitations of the L1-AC, such as poor track-
ing performance to time varying reference and the use of
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Fig. 10. eBMRAC: Example 2 with r(t) = 100cos(0.2t)
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Fig. 11. eBMRAC: Example 2 with r(t) = 100cos(t)
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Fig. 12. eBMRAC step response for unknown Kp in
Example 2

excessively large gain. Also, the new controller is simpler
and its architecture does not need to be structurally re-
designed in order to be applied to problems of different
complexity, in contrast to the L1-AC.

9. PROOF OF THEOREM 1

Proof: Property (i) is derived by considering the Lyapunov candi-
date: 2Vθ = θT θ. The derivative is:

V̇ = (σeq−σ) ||θ||2=(σeq−σ)V/2 (32)

from (8) it follows that (σeq−σ) ≤ 0 for ||θ||≥Mθ, such that ||θ||≤Mθ

is positively invariant and therefore θ̃T θ̃ is uniformly bounded.

Property (ii) is obtained using through the following Lyapunov
candidate: V = xT

ε Pxε + 1

γ
θ̃T θ̃. The time derivative is

V̇ = −xT
ε Qxε −

2σ

γ
θ̃T θ (33)

without the Since ||θ|| is uniformly bounded V ≤ xT
ε Pxε + O(γ−1)

From which is possible to establish that V̇ ≤ −λ1

[

V −O(γ−1)
]

where λ1 = λmin(Q) λmax(P ), with λmin(Q) and λmax(P ) being
the minimum and maximum eigenvalues of Q and P, respectively.
The proof of (ii) is completed using a comparison lemma.

Following the same arguments presented in [Ioannou and Sun,
1996] (pp. 205) one can conclude that ε0 → 0. Thus, since ε0 =
k∗M(s)[u0 − u∗], it is possible to establish that u0 → u∗. Conse-

quently, referring to the tracking error: e0 = k∗M(s)

[

u∗

τs+ 1
− u∗

]

.

Which is equivalent to e0 = k∗M(s)

[

−τs

τs+ 1

]

u∗. Following similar

steps presented in the proof of Theorem 2 in [Hsu, 1997], it can
be shown that ω is bounded and hence u∗ is also bounded. Since

M(s) is minimum-phase, it follows that

∣

∣

∣

∣

∣

∣

k∗M
−τs

τs+ 1

∣

∣

∣

∣

∣

∣

≤ τK1. thus

||e0|| ≤ τK + c2e−λ2t for some positive constants c2 and λ2
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