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Abstract: In this paper, a multi-objective control of a three-degrees-of-freedom cabin model for a 

commercial truck excited by random road disturbances is studied. The multi-objective control problem is 

formulated as a non-convex and non-smooth optimization problem with controller order restricted to be less 

than the vehicle model order. For a range of control orders, controllers are synthesized by using the HIFOO 

toolbox. The simulation results show that the cabin vibrations are effectively suppressed by this 

methodology.   

 

1. INTRODUCTION 

Heavy road vehicles are typically used for transportation and 

have different characteristics than those of a car. They  may 

have more than two axles and each axle weighs an order of 

magnitude greater than a typical car axle. In addition, heavy 

vehicles comprise more than one unit and thus require distinct 

suspension design approaches. In the comprehensive work of 

Cole (2001), published literature on suspension design for 

heavy road vehicles  was surveyed and fundamental issues in 

suspension design for heavy road vehicles that require further 

attention were identified. 

The issue of ride comfort for vehicle operations has generated 

considerable interest recently; see for example Thomson 

(1971), Hrovat, (1993), Fialho and Balas (2002), Akcay and 

Turkay (2011). Since long-distance drivers are more likely to 

experience high levels of vibration it is an  important factor in 

transportation  and  can be defined as how a vehicle  responds 

to different  road conditions or  inputs. In order to capture, 

record and to analyze the ride vibration in practice, measuring 

sensors, i.e., ‘accelerometers’ are used. 

Very few studies took an integrated look at the primary and 

secondary suspensions. In Uffelmann (1993), elimination of 

the seat suspension and using softer cabin suspension and 

stiffer primary suspension was suggested. It was argued that 

the primary suspension dampers are not effective in dissipating 

the vibration energy due to the frame bending, and as a result, 

the driver can experience large levels of vibrations in the 

longitudinal and the vertical directions, depending on the cabin 

mounting and location. The cabin and the seat suspension 

system (secondary suspension) provides the driver with a 

comfortable ride without requiring soft primary suspension 

and consequent problems with vehicle handling, stability, and 

static deflection. Recent activity El Madany (1988), Tong et 

al. (1999), in the area of cabin and suspension design has 

focused on the use of controllable suspension elements which 

provide ride benefits of active/semi-active primary 

suspension. 

In El Madany, (1988), stochastic optimal control theory was 

used to design an active cabin suspension for a tractor semi-

trailer. A pitch-plane model, including the first bending modes 

of the frames, was used, and the control law was calculated for 

a range of vehicle speeds. Tong et al. (1999), proposed a 

design comprising semi-active cabin and seat suspensions on 

a tractor-semi-trailer. The suspension system consisted of 

semi-active dampers with sky-hook controllers, and the ride 

quality was assessed using a dynamic model of a cabin with 

two-degrees-of-freedom. The longitudinal and the pitch 

motions of the driver were not considered. The selected 

vehicle model was planar and included a cabin with two-

degrees-of-freedom: the pitch and the vertical displacement. 

A controller design method based on the modal input-output 

decoupling was proposed in Evers et al. (2009). Application of 

non-convex and non-smooth optimization algorithms in 

Overton, (2011) to suspension control problems was reported 

in the recent works Gümüşsoy et al. (2009), Akçay and Türkay 

(2011). Solutions to these problems were obtained by using the 

HIFOO toolbox and the results were compared with 

benchmarks in the literature.   

The purpose of this study is to analyze the ride motions of the 

cabin under random excitations transmitted from the primary 

suspension and to improve the cabin ride performance by 

designing a suitable low order controller. The active 

suspension systems synthesized in Section 3 by using the 

HIFOO toolbox show that controllers with low-complexity, 

for example a static or first-order controllers yield remarkable 

performance improvements in heave, pitch and roll 

accelerations.  It is unlikely to reach these performance levels 

with any other  zeroth or first degrees-of-freedom controllers  

in the literature under the same complexity constraint, see for 

example Akçay and Türkay (2009). 

The outline  of the paper is as follows.  A three-degrees-of-

freedom cabin model for a mid-sized commercial truck is 

reviewed in Section 2 and in Section 3, a multi-objective 
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suspension control problem is formulated and solved by using 

HIFOO toolbox. The paper is concluded in Section 4.  

2. THE THREE-DEGREES- OF-FREEDOM TRUCK 

CABIN MODEL 

 A three-degrees-of-freedom truck cabin model intended to 

study the heave, the pitch and the roll motions of the vehicle is 

shown in Figure 1. The displacements at the chassis points A', 

B', C', D' with respect to an inertial frame are denoted 

respectively by wA, wB wC  wD.  Let zA, zB, zC, zD  denote the 

displacements at the corners a, b, c, d  of the cabin with respect 

to this inertial frame. The cabin center of gravity, its mass, and 

the heave degree-of-freedom are denoted respectively by G, ms 

and zG. The pitch and the roll degrees-of-freedom and 

moments of inertia are denoted respectively by θ, ϕ, Ix, and  Iy. 

 The cabin secondary suspension system consists of the 

actuators   ��,  ��, ��, ��	 in  parallel with the linear passive  

 

Fig. 1. Truck cabin model 

suspension elements: ��, ��, �� , ��	 (the springs) and 	�, 	�, 	� , 	� (the dampers). At the front, an anti-roll bar denoted by 
� is included in the cabin model. The parameter values 

chosen for this study are typical for a mid-sized truck cabin 

and are summurized in Table 1. Assuming that small motions 

take place, the governing equations of motion are derived as 

follows:                                  ��		 =	�� + ��	� − ��	� ��		 =	�� + ��	� + ��	� ��		 =	�� − ��	� − ��	� ��		 =	�� − ��	� + ��	� 

or compactly,   �� = ���  

are easily derived where 

� = �1 				�� −��1 				�� 			��1 	−�� −��1 	−�� 				��
� 

 

					�� = ��������� ,         �� = !���� ". 

 

Let 	�� − #�  and 	�� − #�	denote the suspension strokes 

at the corners a and b. Then, the rotation of the anti-roll bar in 

the counter-clockwise direction is given by 

 

       Table 1. The vehicle parameters for the truck-cabin 

                                           model. 

Cabin mass  mc 900 kg 

Pitch moment of inertia $% 700 kg m2 

Roll moment of inertia $(  650 kg m2 

Front-right/left suspension 

stiffness 
��, �� 31,000 N/m 

Rear-right/left suspension 

stiffness 
�� , �� 15,500 N/m 

Front-right/left damping 

coefficient 
	�, 	� 680 Ns/m 

Rear-right/left damping 

coefficient 
	� , 	� 560 Ns/m 

Front anti-roll bar stiffness 
� 30,000 N/m 

Distance between front-

right/left corner and cabin c. g. 

along � axis 

��, �� 0.84 m 

Distance between rear-

right/left corner and cabin c. g. 

along � axis 

��, �� 0.68 m 

Distance between front-

right/left corner and cabin c. g. 

along 0 axis 

�� 0.409 m 

Distance between rear-

right/left corner and cabin c. g. 

along 0 axis 

�� 1.091 m 

�� = 2��		 − #�3 − 2��	 − #�3	�� + ��  

and  accordingly a pair of forces  ± f  is formed as 
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4	2�� + ��3 = 
���, 
or more explicitly, 

4 = 
� 2��		 − #�3 − 2��	 − #�3	2�� + ��3� . 
Now,   let   5�, 5�, 5� , 5�  denote respectively the forces at 

the corners a, b, c, d exerted by the suspension system. Then, 

the following relations hold for   5�, 5�, 5� ,  5�: 		5� =	−4 − ��2��	 − #�3 − 	�2�6� − #6�3 − ��,            		5� = 		4 − ��2��		 − #�3 − 	�2�6� − #6 �3 − ��,     		5� =	−��2��		 − #�3 − 	�2�6� − #6 �3 − �� , 			5� = −��2��		 − #�3 − 	�2�6� − #6 �3 − ��. 
Thus, 						78�9� =	5� + 5� + 5� + 5�,																																	 	$%�9 = 25� + 5�3�� − 25� + 5�3��	, $(�9 = −5��� + 5��� − 5��� + 5���. 
Setting,  

# = �#�#�#�#�
 ,           u= ���������

 , 									�̂� = �� − #, 

the following equations of motion: 78�9� = −;��					��				�� 				��	<�̂� − ;	�					�				� 				�	<�̂6�	  
                −;1					1					1				1<�  

 $%�9 = −;����					���� 	− ���� − ����<�̂� 

           	−;	�	��					���		−	���		−	�	��<�̂6�	 −;��				�� 	− �� 	− ��<u,                               	$(�9 = ;���� + =>?@	A?B 		− 2���� − =>?@	A?B3���� 									−										−	����<�̂� +;	�	�� 		− 	���				���	– 	���	<�̂6�		
        +;�� 	− ��				�� 	− ��<�, 
or more compactly, D�9� + 
�̂� + E�̂6�	 + F� = 0 

are obtained where 

					D = �78 00 $% 00		0 		0	 $(	 ,										 
                        

                       
 = ;
�							
�	<,	 


� = GHH
I �� ������ ����J−���� − 
��� + ��K J���� + 
��� + ��KLM

MN, 
 


� = ! �� ��−���� −����−���� ���� ", 
 E	 = 	 ! 			� 					� 			� 									�					��� 		��� 	−	���	 −	���	−	��� 	��� −	��� 			���", 

 F	 =	 ! 1 			1 			1 		1		�� 		�� 	−�� 	− ��−�� �� −�� ��". 
Then, from  									�̂� = ��� − #,		 
we  get D�9� + 
��� − 
# + E��6�	 − E#6 + F� = 0.    (1) 

For the controlled cabin dynamics, state-space formulas will 

be derived next. To this end, first let  � = O���6�P 
denote the state vector and assume that the chassis 

displacement vector  #  is the output of the linear-shape filter �6Q =	RQ�Q + SQT,                                                                                            
                                                                                             (2)    

                                  # = EQ�Q 

with RQ ∈ V?WA?W 	 and T ∈ V� where T  shows white-

noise road excitations. Further, assume that the filter 2RQ,	 SQ, 	EQ, 03 has a zero at X = ∞	 with multiplicity at least 

two. This assumption is not stringent and, for example, is 

satisfied by the vehicle system under consideration. The 

relative degree assumption implies that  EQSQ = 0.  Hence, 

 �9� = −DZ�;
�				E�		 − 2
EQ + EEQRQ3<�[ 

              −DZ�F�, 
 

where   �[ = O ��QP. 
Then, 

                           �6[ = R�[ + S�T + S��                     (3) 
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where   0?x]  and  	I? 			are  respectively the  � by 7 null 

and the � by � identity matrices and R
= � 03x3 I3−DZ�
� −DZ�E� 03x?W−DZ�2
EQ + EEQRQ3				0?Wx3 							0?Wx3 RQ

 																																																																									 
S� =				 !03x403x4SQ ",       S� = −� 03x4DZ�F0?Wx4  . 
The filter parameters 	RQ , SQ , EQ 	 can be identified from 

the vertical acceleration measurements at the chassis points   

A', B', C', D' which constitute the common measurement set 

used in practice.  The identification algorithms developed in 

(Akçay and Türkay, 2004) and (Akçay, 2011) directly identify 

transfer function matrices in the state-space form from power 

spectral density measurements. Alternatively, it can be derived 

approximately by using first principles. This approach requires 

a simple bounce model of the truck and will be illustrated in 

the sequel. 

For the controller design, assume that the vertical acceleration 

and the secondary suspension stroke measurements at the 

corners a, b, c, d  stacked into the output vector 

y = `�9��̂�a 	= E��[ + b���,                        (4)                                                 

where 

     		E� = 	E��	E��, 

						E�� =			 `�DZ� 04x404x3 I4 a 
						E�� = `−
� 	−E� 		2	
EQ + EEQRQ3			� 04x3 				−EQ														 a, 
     	b�� = −`�DZ�F04x4 a, 
are available. From Table 1 and Equation (1), the natural 

frequencies of the heave, the pitch, and the roll motions of the 

cabin are computed 1.6145, 1.2761, and 1.8493 Hertz, 

respectively. The damping ratios of these modes are 

respectively 0.1552, 0.1144, and 0.0981. The significance of 

these values, in particular the natural frequencies will be 

emphasized later. 

The twelve-degrees of freedom truck model is assumed to 

travel with a constant forward velocity along a road profile. A 

simplified bounce model of the truck is used to study the 

‘heave-only’ motion of the vehicle in Akçay and Türkay 

(2009). The shape-filter parameters in Equation (2) are 

obtained by using this model. It is assumed that the 

displacement excitations at the chassis points A’, B’, C’, D’ 

are independent. This assumption may be hardly justifiable; 

but  guarantees the simultaneous excitation of all the three 

body motions of the truck cabin. The derivative of the road 

roughness, i.e., c  is commonly specified as a random variable μ√f	g2h3 where f is the vehicle's forward velocity, µ is the 

road roughness coefficient, and g2h3 is a unit intensity white-

noise process. In this study, f and µ are fixed as f = 20 m/s 

and  μ = 0.0027. Thus, the covariance function of  c  

denoted by Rk satisfies 	Rk2τ3 = μ�fm2n3 

where   m2n3	  is the unit impulse function. 

 

3. MULTI-OBJECTIVE CONTROL VIA FIXED ORDER 

OPTIMIZATION 

 

In this section we consider the following multi-objective 

control design problem. Before, let’s make the following  

arrangments; Stack the heave, the pitch and the roll 

accelerations of the cabin into a vector o�� = 	p�9� 		�9 			�9 qr , 
and the suspension travels into a vector  o�� =	 �̂�,  and  let  stuvw2X3 and stuuw2X3 denote the closed-loop transfer 

functions from g to o�� and o��. For a given transfer function 

matrix s2X3 analytic on the open right-half plane, let  ‖s‖y 

denote its zy norm. (See, for example Zhou (1996)). Recall 

that when a system with scalar transfer function s2X3 is driven 

by a unit intensity white-noise input, its zy norm has the 

interpretation as the rms gain of the system. The multi-

objective control design problem of this section can be 

formulated as follows: 

 

Problem 4.3:  Given two	 matrices {�, {�, and a number |� 	> 0	and a specified controller order	�=, find an output-

feedback controller � = 
2X30  internally stabilizing the  

closed-loop system and minimizing ~{�stuvw~y	while 

satisfying 	~{�stuuw~y < |�	.  
 

This is a non-convex and non-smooth optimization problem 

solved by using the HIFOO toolbox  Gümüşsoy et al (2009) 

when �= is less than the order of the passive suspension 

system. The optimization algorithms in the HIFOO toolbox 

attempt to find the fixed-order controllers  minimizing the 

closed-loop zy norm, but do not attempt to find the global 

minimum. Thus, their success depends on the proper 

initialization. However, they have been applied with success 

to various benchmark control design problems in the literature.  

The authors compared their results with other published design 

techniques  Gümüşsoy et al (2009). 

 

The weight matrices and the parameters are chosen as follows. 

After some trial and error, we set  |�=1.1 and  let {�Z� = 

diag	2	~��9�w~y, ~��9 w~y, ~��9 w~y) and {�Z� =	~�tuuw~yI�. These are empirical values and the optimal 

values for the weight matrices or the parameter |� will not be 

searched. 
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In Table 2, the rms response variables are displayed for the 

passive and the active suspensions for controller orders 

varying from zero to six designed by the HIFOO toolbox. The 

vertical accelerations and  the suspension travels at the four  

corners of the truck cabin are used as the measurement signals 

for the system. Interestingly, the controllers of low orders 

achieve best performances. Surprisingly, a static gain 

controller provides a very good performance recruitment in 

comparison to the other order controllers even with the 

quarter-car active suspension designs. The simulation results 

displayed in Table 2 for the zeroth order HIFOO design show 

that the rms heave, pitch and roll accelerations are decreased 

by  60.31%, 73.82% and 66.38%, respectively, while the rms 

suspension travels are only increased by about  5.26%, and the  

rms gain of the suspension travels remain almost unchanged. 

 

Table 2. The rms responses of the passively and  

actively suspended cabin model with HIFOO controllers  

of order   �= .  

 

 

Figures 2-4 show the magnitudes of the heave, the pitch and 

the roll accelerations of the truck cabin to the warp input for 

the passive suspension and the HIFOO design for �= = 0.  

Once more it is acknowledged that the designed active 

suspension suppresses the body vibrations without increasing 

the suspension travels. The rms values of ��, ��, ��, ��	 
computed as  293.5, 364.9,  220.1, and 185.9  respectively, 

show that the actuator saturation is not likely to happen. 

 

 
Fig. 2. The heave acceleration frequency response 

magnitudes of the passive suspension and the HIFOO design 

for �= = 0 to the warp input �2h3: (-) passive suspension, (-

-) active suspension. 

 

 

 
 

Fig. 3. The pitch acceleration  frequency response 

magnitudes of the passive suspension and the HIFOO design 

for �= = 0 to the warp input �2h3: (-) passive suspension, (-

-) active suspension 

 

The performance enhancement by the HIFOO designs is  

remarkable in comparison to the controllers designed in  

Akçay and Türkay (2009). It has been observed that the 

HIFOO controller of order 3 outperforms the full order Linear 

Quadratic Gaussian controller designs in Akçay and Türkay 

(2009). The HIFOO  design  for a static or first order controller 

is even better than the reduced order LQG controller. For 

comparison the stochastic responses of the truck cabin for  the 

third order reduced LQG  and the HIFOO controllers are given 

in Table 3.   

 

 
    Fig. 4. The roll acceleration frequency response 

magnitudes of the passive suspension and the  HIFOO design 

for �= = 0 to the warp input �2h3 at corner A: (-) passive 

suspension, (--) active suspension. 

rms 
Passi

ve 
�=: 0 �=: 1 �=: 3 �=: 6 ~s�9�w~� 0.710 0.281 0.278 0.221 0.232 ~s�9 w~� 0.595 0.155 0.217 0.106 0.117 ~s∅9 w~� 1.338 0.450 0.407 0.362 0.430 	~stuuw~� 0.038 0.040 0.040 0.040 0.042 	~stuuw~y 0.134 0.135 0.134 0.134 0.135 
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Table 3. The rms responses of the passive suspension, the 3th 

order reduced order LQG design truncation and the 3th  order 

HIFOO design. 

 

rms Passive LQG HIFOO ~s�9�w~� 0.7102 0.5729 0.2215 ~s�9 w~� 0.5950 0.4746 0.1061 ~s∅9 w~� 1.3389 0.9832 0.3629 	~stuuw~� 0.0380 0.0356 0.0400 	~stuuw~y 0.1347 0.1353 0.1342 

 

Impressively, the rms accelerations of the heave,  the pitch and 

the roll motions are decreased by 68.81%, 82.17% and 72.90% 

for the HIFOO designs as opposed to  19.33%, 20.24% and 

26.57% decreases for the reduced order LQG designs. The rms  

suspension  travels are decreased by 6.32% for the reduced 

order  LQG design and they are increased by about 5.26%  for 

the  HIFOO design. The rms gain of the suspension travels 

remain almost unchanged for  both designs. It is seen that the 

performance of the HIFOO  is excellent in comparison to the 

LQG controller. The simulation results demonstrate that the 

HIFOO paradigm is as an effective alternative to the existing 

LQG control design methodology.  Moreover, the HIFOO 

paradigm is more flexible in that it allows the designer to set 

the controller order a priori. 

 

4. CONCLUSIONS 

In this paper, a three-degrees-of-freedom cabin ride model of 

a commercial truck was developed for an active/semi-active 

suspension application. A simplified bounce model of the 

truck is used to relate the road excitations at the wheels to the 

derived from to the accelerometer readings of the chassis at the 

cabin suspension attachment points can be obtained by using. 

Then, the multi-objective suspension control problem was 

formulated as a non-convex and non-smooth optimization 

problem with the controller order constrained to be less than 

the vehicle model order. Controllers of various orders were 

synthesized by using the recently developed optimization 

algorithms in the HIFOO toolbox. Performance enhancement 

better than that of an LQG design was obtained with a third 

order HIFOO controllers. Based on this study, multi-objective 

control of the truck-cabin suspensions via the fixed-order 

optimization as implemented by the HIFOO toolbox presents 

a promising alternative to the LQG control methodologies. The 

experimental test on real trucks remains a future work. 
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