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Abstract: This paper proposes a framework for a navigation system of electric vehicles (EVs)
that minimizes the expectation of the energy consumption of the entire users while enhancing
the Quality of Life (QoL), i.e., reducing the travel time and cost in our context, of individual
users. To this end, we provide users optional flexibility of selecting a preferable route based on
the individual travel time and cost among the multiple candidates indicated by the system, while
use an incentive approach to make users select a route that requires as low energy consumption
as possible. We show by numerical simulations on Chukyo Area in Japan that the proposed
method is effective.

Keywords: Electric vehicles, Incentive, Smart charge, Navigation, Quality of Life, Dijkstra
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1. INTRODUCTION

Motivated by recent remarkable advancement of informa-
tion technology such as cloud computing and of rapid
penetration of new infrastructure such as renewable energy
and EVs, much attention has been most recently attracted
on the developments of new generation energy manage-
ment systems, which manage energy of the entire society
effectively in a gross while raising its quality of life (QoL).
The paper focuses on a navigation system of EVs and aims
at developing the system that appropriately optimizes the
profit of the entire society such as the minimization of its
electricity consumption, in addition to the profit of the
units such as individual travel time and cost.

In the energy basic plan of Japan, it is assumed that
the ratio of next-generation cars mainly on EVs among
unit sales of new cars is increased by approximately 50%
by 2020. In addition, the number of battery chargers is
also planned to be increased to 2 million from 20,000 for
the standard-charging type, and to 5,000 from 160 for
the quick-charging type [Ministry of Environment, 2010,
GoGoEV, 2013]. However, the mileage of EVs is still
shorter than that of a gasoline car, and its charging time at
the charging place is consequently longer. As an example,
the mileage in one charge is around 180 km to 220 km
even for the latest EV, and is further shortened by the
use of highways and air conditioners. In addition, we need
approximately 30 minutes for full charge even in the case
of quick-charging. Thus, for the long-distance run of EVs
to need battery charging on the way, the optimal route

planning methods including the charging plan such as an
optimal charging place and an minimum charge quantity
have been intensively studied [Kato, 2010, Artmeier,
Haselmayr, and Sachenbacher, 2010, Eisner, Funke, and
Storandt, 2011, Siddiqi, Shiraichi, and Sit, 2011, Storandt,
2012]. These methods provide a route that is optimal
from the individual user point of view. Thus when many
individual users utilize the route calculated in such a way,
the traffic jam and/or the congestion at the charging place
may occur from the global point of view. On the other
hand, if the route is calculated from the viewpoint of the
environmental aspects of the entire society, the profit of the
individual users may be ignored. Hence, it is indispensable
to build a platform where benefits for individual users and
the entire society are nicely balanced in an appropriate
way.

In this paper, we propose a multi-objective optimization
framework of navigation systems for EVs minimizing the
expectation of the total electricity consumption of the
users while enhancing the QoL of users by giving flexibility
of selecting a preferable route based on the individual
travel time and cost among the multiple candidate routes
suggested by the system. Specifically, the proposed system
is assumed to be built for a user to choose a route with
as small electricity consumption as possible by controlling
the travel cost, which is one of the QoL parameters, using
incentive. It is expected that this system can reduce the
electricity consumption of EVs of the entire users without
decreasing the QoL of individual users. The system is sup-
posed to be implemented on the cloud-type central com-
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puting system, which provides high-speed communication
among the system and cars, aggregates global information,
and performs efficient optimal computation. We show that
the proposed system is effective by conducting numerical
simulations in the Chyukyo (greater Nagoya) area in Japan
with traffic information for each section and information
on the battery charging points currently set up on the road
network.

Notable results related to this paper are given in Kanazawa
et al. [2009, 2013]. Specifically, Kanazawa et al. [2009] in-
troduces subsidy and capitation tax, which correspond to
positive and negative incentive, in the context of replicator
dynamics and investigates how the incentive can be used to
bring the population state to a desirable state. This idea is
further extended in Kanazawa et al. [2013] to characterize
minimum latency flow in the Braess graph using the game
theory. Our work, however, is distinct from those results
in that Kanazawa et al. [2009, 2013] focus on stability
analysis of the unique equilibrium flow and do not discuss
the flexibility of users’ choice of routes.

2. PROPOSED FRAMEWORK

2.1 Change of Tendency in Selecting a Route by Incentive

When the current position and the destination are given,
it is natural that the drivers are likely to choose a route
which is less time-consuming and less expensive. Consider
the situation where there are m relevant routes to the des-
tination. In this paper we assume that an important prop-
erty of these routes is characterized by energy (electricity)
consumption (E), travel time (T ), and monetary cost, or
simply “cost” in short, (C) so that we denote these m
routes by Routei(Ei, Ti, Ci), i = 1, . . . ,m. (We also inter-
changeably use Route i to denote Routei(Ei, Ti, Ci) in this
paper.)

These routes can be plotted on the T -C plane with the
amount of E represented by a circle of corresponding size.
Figure 1 shows a representative example where there are
three possible routes plotted. The lower left region (densely
colored region) is more preferable for the drivers. Route 1
is the most time effective but most costly and Route 3
holds the opposite. Route 2 is plotted in the most densely
colored region among the three routes and it should be
the most chosen route by the drivers. For the three routes,
our aim is to make Route 2, which is the most energy
efficient, more attractive by giving incentive so that more
drivers take Route 2. Note that giving positive incentive
to a certain route corresponds to the fact the circle plotted
on the T -C plane is shifted downward so that the circle
comes into the denser area.

When there are several possible routes to take, however,
the drivers may choose different routes. These routes may
differ individually or may be different depending on the
situation that the driver is facing to. For example, in the
morning the drivers may want to rush to their workplace
so that the cost may be less important than the travel
time to the destination. On the other hand, on holidays
the drivers may choose rather less costly routes for their
destinations. In general, the decision is made based on the
tradeoff between total travel time that they take and the
cost for electricity consumption and highway toll.

C

T

Route 1

Route 3

Route 2

Fig. 1. C-T diagram. The lower left region (densely colored
region) is more preferable for the drivers.
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Fig. 2. Grand scheme of the proposed framework.

2.2 Grand Scheme and Objectives

To present more specific problem formulation, we make
the following assumptions in this paper.

Controller Platform In Fig. 2, the proposed grand
scheme is described. Specifically, a cloud-type computing
system is assumed to be available for calculating the incen-
tive. In the future car navigation service platform, the use
of the cloud systems is assumed to be standard thereby all
the information necessary for calculating a right incentive
can be collected in a central way.

Controlled Plant (EVs) and the Surrounding Environ-
ments In this study we assume that only relatively low
percentage of the entire vehicles have installed this route
navigation system such that change of tendency of route
selection by user j of this system does not affect the choice
of routes Routei(Ei, Ti, Ci), i 6= j. This assumption makes
the incentive calculation extremely simple.

Calculation of Candidate Routes The cloud system
presents to each user several routes with different charac-
teristics. Specifically, for the entire benefit, it is desirable
to designate all the users to take the most energy efficient
route. As explained in the Introduction, however, the non-
selective way of offering the route does not maintain the
user’s QoL. Hence, in the proposed framework we relax
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the above problem and, instead, consider the optimization
problem

minE[Ek], (1)

where E[ · ] denotes the expectation, so that we attempt
to minimize the total energy consumption in a statistical
sense. Specifically, the idea of optimizing the expectation
is predicated on the presumption that both the interper-
sonal and the intrapersonal preference difference in route
selection should be evaluated as a long-run average for the
incentive calculation as discussed in the following section.

3. INCENTIVE-BASED MULTI-OBJECTIVE
OPTIMIZATION

In order to develop the above-mentioned framework, in
this section we formulate the way of deriving the relevant
route candidates and its corresponding appropriate incen-
tive.

3.1 General Framework and Flow of Incentive Calculation

To begin with formulating the general framework, we list
the flow of calculating appropriate incentive for having
better prospect as shown below:

(1) The user designates the departure point, the depar-
ture time, and the destination.

(2) The cloud system calculates (Ti, Ci, Ei) for Route i,
i = 1, . . . ,m.

(3) The cloud system calculates incentive for Route i,
i = 1, . . . ,m.

(4) Eliminate irrelevant routes from the route candidates.
(See Sections 3.3 and 3.5 for details.)

(5) Repeat the procedures (3) and (4) until the relevant
number of route candidates are determined.

3.2 Estimation of Travel Time and Cost for Candidate
Routes

Using the Dijkstra algorithm (considering the case where
the vehicle has to stop by a charge station), the cloud
computing system calculates the estimated travel time,
cost, and energy consumed for the set of possible routes
to the destination. This result can be plotted on the T -C
plane as in Fig. 1.

Note that the set of routes may include the routes which
is both time consuming and costly and hence are not
relevant. Furthermore, there may be two or more routes
which are almost the same such that one of the routes
should be left selective for the users and the others
should be eliminated from the candidates. The procedure
of selecting relevant routes is presented in the following
sections.

3.3 Selection of Route Candidates by Clustering

Step 1. Consider the most energy efficient route on the
T -C plane. If some of the routes are very close to the
most energy efficient route, then they are identified as the
most energy efficient route and eliminated from the T -C
plane. We call this the clustering procedure. For example,
if Route i and Route j are plotted close to each other and
if Ei < Ej , then Route j is identified as Route i so that if

Specified route

Clustered routes

Fig. 3. Relationship between the selected path and the
eliminated paths in the clustering procedure

C

T

Fig. 4. Typical tendency of route properties shifted by the
incentive. Energy-efficient routes indicated by smaller
circles shift downward and vice versa.

|Ti − Tj | ≤ TDi, (2)

|Ci − Cj | ≤CDi, (3)

where TDi and CDi denote the time difference and the
cost difference threshold, respectively, of Route j from
Route i. Note that TDi and CDi can be treated as design
parameters. Figure 3 shows the set of clustered routes.

Step 2. If the time-optimal route and the cost-optimal
route are clustered, then stop the clustering procedure.
Otherwise go back to Step 1 and recalculate incentive
with the fewer number of route candidates.

3.4 Determination of Incentive by Solving an Optimization
Problem

Once the departure point, the departure time, and the
destination are designated by a user, the cloud system
calculates (Ti, Ci, Ei) of the possible routes. Suppose that
there are m possible routes from the departure point
to the destination. For those routes, the likelihood ψi,
i = 1, . . . ,m, of choosing Route i by the user can be
determined from the data on the T -C plane indicated by
the color intensity as in Fig. 1. Our main idea is to shift the
point (Ti, Ci) by giving (adverse) incentive and changing
the cost for Route i so that energy efficient routes are more
likely to be chosen by the user. Figure 4 shows the typical
tendency of routes shifted by the incentive depending on
the energy consumption of each route.

In order to derive an appropriate incentive for each route,
we reformulate the minimization of energy consumption
of each individual user as the minimization of average en-
ergy consumption. Specifically, we solve the optimization
problem (1) or, equivalently,
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min
ψ̃

m∑

i=1

Eiψ̃i, (4)

subject to

m∑

i=1

ψi = 1,
m∑

i=1

ψ̃i = 1, (5)

ψ̃i ≥ 0, C̃i ≥ ǫi,

m∑

i=1

∆Ciψ̃i ≤ κ, (6)

for i = 1, . . . ,m, where m is the number of candidate
routes, ψ̃i , ψi + α∆Ci, C̃i (, Ci − ∆Ci) is the cost
including incentive, ψi is the likelihood of choice by the
users, ǫi is the minimum cost that the user has to pay when
he/she takes Route i, α is the sensitivity for ψi associated
with the incentive ∆Ci, and κ denotes the net incentive
funded by an organization such as the government or the
institution running this navigation system. The role of this
organization is to collect the funds from the society and
to redistribute it in such a way that the society receives
the benefit of the reduction of the amount of energy
consumption.

Note that the objective function
∑m

i=1
Eiψ̃i in (4) is

equivalent to the expectation of energy consumption after
assigning the incentive. As such, the optimization problem
reduces to finding the optimal incentive to each of the
candidate routes. In particular, the optimization problem
(4)–(6) is equivalently reformulated as

min
{∆Ci}

m∑

i=1

Ei(ψi + α∆Ci),

subject to

m∑

i=1

∆Ci = 0, (7)

−
ψi

α
≤ ∆Ci ≤ γCi, (8)

m∑

i=1

(ψi + α∆Ci)∆Ci ≤ κ, (9)

along with (5), where γ > 0 is such that γCi = Ci −
ǫi. Since Ei, ψi, i = 1, . . . ,m, are constants, it is now
obvious that the optimization problem is the problem of
finding the optimal incentive. Finally, it is important to
note that this optimization problem reduces to a nonlinear
programming problem such that some techniques in semi-
definite programming (SDP) is extremely useful.

3.5 Recalculation of Route Candidates

As the final step, it is necessary to eliminate routes which
are both time-consuming and costly relative to another
route. Specifically, if Routei(Ti, Ci, Ei) and Routej(Tj , Cj , Ej)
have the relationship

Ti < Tj, Ci < Cj ,

then Routej(Tj , Cj , Ej) has no advantage to leave as a
candidate. On the T -C plane, these meaningless routes
appear upper right of another route candidate as shown in
Fig. 5.

T

C

route i
route j

route k

meaningless route

Fig. 5. Meaningless path. Route j in red appears upper
right of Route i in red.

Fig. 6. Road map of Chukyo area in Japan. Magenta lines
indicate tolled highway and blue lines indicate regular
roads. Green marks indicate the charge points.

Table 1. Parameter settings

Battery capacity 24 [kWh]

Initial residual
24 [kWh]

battery amount

Desirable residual
16 [kWh]

battery amount

Charging speed 0.64 [kWh/min]

Charging price 100 yen per 30 min

Highway tolls
(150+distance [km]×24.6)
×1.05 [yen]

4. NUMERICAL SIMULATION

In this section, we provide a numerical simulation where
we apply the proposed framework for Chukyo (greater
Nagoya) area in Japan. Specifically, we extract major
roads (including tolled roads) and intersections in the area
mapped as a graph of 130 nodes and 223 edges (Fig. 6).

For the simulation, we use the physical parameters listed
in Table 1 and the design parameters α = 1.0 × 10−4,
γ = 0.8, and κ = 30. Furthermore, we set Kami-Ouchi as
the departure point and Fuji-3chome as the destination.

We assume that the likelihood distribution of users repre-
senting the route selection tendency is given as follows. Let
Tmin denote the minimum travel time and Cmin denote the
minimum cost, which are obtained by the Dijkstra algo-
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Fig. 7. Simulation result visualized on the graph shown
in Fig. 6. The nodes S and G denote the start node
and the goal (destination) node, respectively, and
C indicates the charge points that the vehicle is to
stop by on its way. Black route is the top-priority
candidate. Green and red routes are the second and
the third ones, respectively.

rithm. Now we consider the following curve as a reference
line given by

(T − ξTmin)(C − ηCmin) = σ, (10)

where ξ = 0.8, η = 0.8, σ = TminCmin, and assume that
every route on this reference line is selected with the same
probability by the users. Then it is supposed that the
probability to select the Route i is given as

ψi =

Ci

C′

i

Σmj=1

Cj

C′

j

, (11)

where C′
i denotes the cost obtained by projecting the

traveling time and the cost of the route i onto the reference
line along the cost (vertical) axis. (It is important to note
that this characterization is contrived for representing the
color distribution of the C-T diagram (Fig. 1) for the
incentive calculation. The actual distribution of individual
preferences should be obtained via questionnaire investi-
gation and/or collecting data through real operation.)

The obtained results based on the above setting are shown
in Figs. 7–10 and Tables 2 and 3. Figure 7 shows the
three candidate routes obtained by the extended Dijkstra
algorithm, where the black line denotes the top-priority
candidate, the green line the second-priority candidate,
and the red line the third-priority candidate. In this
example, these solutions are obtained after 3 repetitions
of Step 1 and Step 2 in Section 3.3. Figs. 8–10 show the
results of three rounds of recalculation of route candidates.
Specifically, in Figs. 8 and 9, which correspond to the first
and the second rounds, respectively, we see that there exist
meaningless routes as candidates in the sense that they
need both higher cost and longer travel time compared
with either of the other routes. On the other hand, in the
third round shown in Fig. 10, such meaningless routes
are eliminated. Figure 10 also shows that the cost of
the route having larger energy consumption is relatively
increased. As a result, as shown in Table 2, the probability
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Fig. 8. C-T plane (after 1st optimization)
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Fig. 9. C-T plane (after 2nd optimization)
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Fig. 10. C-T plane (after 3rd optimization)

Table 2. Change of likelihood that the users
take possible routes

1st route 2nd route 3rd route

Without incentive 0.4107 0.3860 0.2033

With incentive 0.4156 0.3952 0.1892

to select the top-priority candidate and the second-priority
candidate is increased, while the probability to choose
the third-priority candidate is decreased, by appropriately
adding incentive to the expense that it costs for each route.

Next, we compare the above results with the case of
the route associated with the minimum traveling time,
which is usually suggested as one of the candidates in the
current navigation system. Table 3 shows that the expec-
tation of energy consumption for the proposed approach
reduces 22% in comparison with the case of the route with
the minimum travel time by sacrificing the travel time
which increased by 7.20%.

Third, we discuss the effectiveness of the proposed ap-
proach in a statistical way. We randomly select 110 pairs
of the departure point and the destination whose distance
in a straight line is more than 65 [km]. The average values
of 110 results obtained under the same situation as the
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Table 3. Expected values of energy consump-
tion, total travel time, and cost for the
minimum-time route and the route with incen-

tive

Minimum-time route With incentive

Energy consumption [kWh] Reduction rate

28.24 22.24 21.53%

Travel time [min] Increasing rate

107.79 116.15 7.20%

Cost [yen] Reduction rate

1313.46 744.91 56.71%

Table 4. Aggregate expected values of energy
consumption, total travel time, and cost for
the minimum-time route and the route with

incentive

Minimum-time route With incentive

Energy consumption [kWh] Reduction rate

25.40 19.65 22.66%

Travel time [min] Increasing rate

116.36 141.89 18.00%

Cost [yen] Reduction rate

1361.92 334.37 24.55%
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Fig. 11. Energy consumption versus κ
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Fig. 12. Travel time versus κ

previous one as in Table 1 are shown in Table 4. It turns
out that the energy consumption reduces about 22% in this
case compared to the case of the minimum-time route.

Finally, Figs. 11 and 12 show the relation between κ
and energy consumption and between κ and travel time,
respectively. Recall that κ is the net incentive funded
by the operating organization of this incentive based
navigation system. As shown in Fig. 11 and 12, total
energy consumption reduces and total travel time increases
as κ increases. This result implies that there is a trade-

off relationship between the total energy consumption and
the total travel time by changing the total fund supplied
into the framework. In other words, if we increase the
amount of fund κ available in the framework so that more
discount is possible for the users, the users are more likely
to choose more energy efficient routes even though travel
time increases.

5. CONCLUSION

This paper proposed an incentive based multi-objective
optimization method for the use of EV navigation systems
including battery charging, which changes tendency of
users in selecting a route by an incentive approach to
achieve suitable trade-off between global optimization and
local optimization, namely, the entire energy consumption
of EVs of all users and the QoL on travel time and cost of
individual users simultaneously. Since the problem to be
studied here involves uncertainty of human behavior, we
assume that each user has a kind of probabilistic distri-
bution in selecting a route. As pointed out in Section 4,
one of the next important issues is to construct the C-
T diagram describing the tendency of users’ preferences in
terms of travel time and cost. Furthermore, the framework
we proposed in this paper can be made useful by modifying
how to treat the likelihood distribution that the users have
in an appropriate way.
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