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Abstract: In the building climate control area, the linear model predictive control (LMPC)—
nowadays considered a mature technique—benefits from the fact that the resulting optimization
task is convex (thus easily and quickly solvable). On the other hand, while nonlinear model
predictive control (NMPC) using a more detailed nonlinear model of a building takes advantage
of its more accurate predictions and the fact that it attacks the optimization task more directly,
it requires more involved ways of solving the non-convex optimization problem. In this paper,
the gap between LMPC and NMPC is bridged by introducing several variants of linear time-
varying model predictive controller (LTVMPC). Making use of linear time-varying model of the
controlled building, LTVMPC obtains predictions which are closer to reality than those of linear
time invariant model while still keeping the optimization task convex and less computationally
demanding than in the case of NMPC. The concept of LTVMPC is verified on a set of numerical
experiments performed using a high fidelity model created in a building simulation environment
and compared to the previously mentioned alternatives (LMPC and NMPC) looking at both
the control performance and the computational requirements.

Keywords: Predictive control; adaptive control; recursive identification.

1. INTRODUCTION

Energy savings in buildings and reduction of their energy
consumption are some of the most emerging challenges
for society today. The reason is simple and the numbers
speak for themselves—up to 40 % of the total energy
consumption can be owed to the building sector [1]. Out
of this amount, more than half is consumed by various
building heating/cooling systems. Therefore, the recent
emphasis on the energy savings in this area is right on
target. With the clearly evident need for savings in the
area of the building climate control, improvements can be
found when considering the latest control techniques.
Model Predictive Control (MPC) stands as one of the
most promising candidates for the energetically efficient
control strategy. This was demonstrated also within the
framework of the Opticontrol project where one research
team at ETH Zurich (Switzerland) showed on numerous
simulations that using MPC instead of the classical control
strategies, more than 16 % savings can be achieved [2,3]
depending on the building type. Under real-operational
conditions, these savings can be even higher than con-
sidering the simulation environment due to the software
simplifications compared to the real building. Handling the
real-life challenges properly, the improvement achieved by
the MPC compared to the classical controller is usually
more impressive. This was shown by teams from Prague
[4,5] and UC Berkeley [6] where the actual cost savings
were even better than the theoretical expectations.
However, MPC suffers from several drawbacks. Besides the
need for a reliable mathematical model of the building
which should be both simple enough (so that it can be
handled effectively) and able to predict the building be-
havior with sufficient accuracy for several hours ahead, one
very severe bottleneck is the complexity of the optimization
routine. In order to be feasible and computable, simplified
formulations are often considered. Moreover, linear mod-
els are usually assumed and exploited by the optimizer.
Therefore, in the majority of the MPC applications, the

overall task is formulated as a linear/convex optimization
problem easily solvable by the commonly available solvers
for quadratic or semidefinite programming [4,7]. Although
being computationally favorable and able to find the global
minimum in case of the convex formulation of the optimiza-
tion task, their disadvantage is that they do not enable
minimization of the nonlinear/nonconvex cost criteria and
therefore, only certain approximation of the real cost paid
for the control is optimized. Moreover, they resort to the
optimization of either the setpoints or the energy delivered
to the heating/cooling system while leaving all its distribu-
tion to the suboptimal low-level controllers which can lead
to a significant loss of the optimality gained by the MPC.
In several recent works, the effort to introduce the nonlin-
earities (caused either by the dynamical behavior of the
building or by the control requirements formulation) into
the optimization task can be found [6,8]. In this paper, we
discuss both possibilities for the zone temperature control
(the linear and the nonlinear MPC) and moreover, we
bridge the two banks of the gap between the nonlinear and
the linear variant of the MPC by introducing linear models
that change in time. Such models can describe the building
dynamics in a more reliable and flexible way while they still
keep the low complexity of the optimization task (since
the linear model remains convex). Two ways of obtaining
a time-varying model are described and the results of the
modified controllers are compared with the results of the
original (linear and nonlinear) MPCs.
The paper is organized as follows: Sec. 2 illustrates the
problem of the building climate control on a simple exam-
ple. Both the building and the heat delivery system de-
scription are provided. Furthermore, control performance
criterion, comfort requirements and restrictions are intro-
duced. In Sec. 3, the models supplying predictions to the
model based controllers are described. The nonlinear model
is derived based on the thermodynamics while for the
linear model, the assumed simplifications are presented.
For the linear time-varying models, two ways of obtaining
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them are explained. All four models are verified and their
results are discussed. Sec. 4 brings a description of the
controllers including the low level re-calculation (for the
linear MPC) and the nonlinear optimization routine (for
the nonlinear MPC). In Sec. 5, the control behavior of
the LMPC, NMPC and LMPC with time-varying models
(LTVMPC) is investigated and their results are presented
and examined. Sec. 6 draws conclusion of the paper.

2. PROBLEM FORMULATION

In this section, the description of the building, constraints
and the evaluative performance criterion are formulated.

2.1 Building of interest

The building under our investigation is a simple medium
weight one-zone building modeled in the TRNSYS16 [9]
environment, which is a high fidelity simulation software
package widely accepted by the civil engineering commu-
nity as a reliable tool for simulating the building behavior.
The Heating, Ventilation and Air Conditioning (HVAC)
system used in the building is of the so called active layer
type. The pipes in the ceiling distribute supply water which
then performs thermal exchange with the concrete core of
the building consequently heating the air in the room.
Fig. 1 shows a sketch of the considered building. We consid-
ered four directly measured outputs: zone temperature TZ ,
ceiling temperature TC , temperature of the return water
TR and temperature of the south-oriented wall TS . The
supply water temperature TSW and the mass flow rate
of the supply water ṁ are the controlled inputs while
predictions of disturbances (solar radiation Q̇S and outside-
air temperature TO) are considered to be available.
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Fig. 1. A scheme of the modeled building

The last step is to describe the heat distribution system.
In our application, we consider the configuration of the
heating system as shown in Fig. 2. Clearly, the storage tank
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Fig. 2. A scheme of heat distribution system

plays a key role as the sole heat supplier in this system.
In fact, having obtained the requirements for the supply
water temperature TSW and the supply water mass flow
rate ṁ, these two values are “mixed” using the return water
with the temperature TR flowing into the building inlet
pipe through the side-pipe at the mass flow rate ṁs and
the water from the storage tank which is kept at certain
constant value TSt (in this paper, TSt = 60◦ C is considered)
and can be withdrawn from the tank at mass flow rate ṁSt .
Based on this, the following set of equations can be written
for the upper three-way valve:

ṁTSW = ṁStTSt + ṁSTR

ṁ = ṁSt + ṁS . (1)
which can be further rewritten into an expression for the
calculation of the storage water mass flow rate, ṁSt =
ṁ(TSW − TR)/(TSt − TR). Having the return water tem-
perature measurement at our disposal and extracting the
storage water with the temperature of TSt at this mass flow
rate, both the supply water temperature and supply water
mass flow rate related to the heating requirements can be
achieved. Last of all, let us note a situation which requires
a value of TSW to be lower than the return water tempera-
ture TR would mean negative storage water mass flow rate
ṁSt , which is practically unrealizable. On the other hand,
it is also obvious that such TSW requirement really can not
be satisfied as only the hot water storage is considered in
this configuration. With no cold water storage provided,
the temperature of the supply water can not be decreased
below the return water temperature which means that the
active cooling mode is neither allowed nor realizable.

2.2 Control performance requirements

Besides the building description, it is important to specify
the performance requirements, constraints and the crite-
rion according to which the control strategy is evaluated.
Considering the building climate control, one of the most
important tasks is to ensure the required thermal comfort
which is specified by a pre-defined admissible range of
temperatures related to the way of use of the building
(office building, factory, residential building, . . . ). Under
the weather conditions of middle Europe with quite low av-
erage temperatures where heating is required for more than
half of year, the thermal comfort satisfaction requirement
can be further simplified such that the zone temperature is
bounded only from below. As we consider an office building
with regular time schedule, the lowest admissible zone
temperature Tmin

Z (t) whose violation will be penalized is
defined as a function of working hours as

Tmin
Z (t) =

{
22◦ C from 8 a.m. to 6 p.m.,
20◦ C otherwise.

(2)

Then, the thermal comfort violation is expressed as

CV (t) = max(0, Tmin
Z (t)− TZ(t)). (3)

Besides the comfort violation CV (t), the price paid for the
operation of the building is penalized in the cost criterion
as well. Coming out of the considered structure of the
building and its energy supply system, the monetary cost
includes the price for the consumed hot water and the
electricity needed to operate the two water pumps. While
the hot water price PW is considered constant (see Tab. 1),
the electricity price PE(t) which applies to the operation of
the supply and storage water pumps is piece-wise constant
and similarly to the lowest admissible zone temperature
profile, it depends on the working hours as follows:

PE(t) =

{
HT from 8 a.m. to 6 p.m.,
LT otherwise. (4)

In order to bring our case study closer to reality, the values
of high and low tariff (HT and LT) have been chosen in
accordance with the real prices approved by the Regulatory
Office for Network Industries of Slovak Republic [10].The
exact values of HT and LT in e/kWh are listed in Tab. 1.
Thus, the overall performance criterion over a time interval
〈t1, t2〉 is formulated as

J =

t2∫
t1

ωCV dt+

t2∫
t1

(PE(t)(PC (ṁ)+PC (ṁSt ))+PW ṁSt ) dt. (5)

Here, ω is the virtual price for the comfort violation CV (t)
which is defined by (3) and PW ṁSt represents the cost
paid for the consumed hot water. Time-varying electricity
price is expressed as a function of time by (4) and the
power consumptions of the water pumps corresponding to
ṁ and ṁSt can be calculated as a quadratic function of
the particular mass flow rate, PC(ṁ) = α0 + α1ṁ + α2ṁ

2,
PC(ṁSt) = α0 + α1ṁSt + α2ṁ

2
St. The parameters α0,1,2 are

listed in Tab. 1.
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Table 1. List of the specific parameters

Tmin
Z (◦C) 22/20 PW (–) 2.6199

HT (e/kWh) 0.1168 α0 (–) 9
LT (e/kWh) 0.0502 α1 (–) 9.25× 10−3

TSt (◦C) 60 α2 (–) 1.875× 10−6

Let us note that as the criterion (5) specifies the satisfac-
tion of the control requirements for the control of a building
in a very compact form, all the considered controllers will
be evaluated and compared according to the reached values
of this criterion.

3. MODELING AND IDENTIFICATION

In this section, the derivation of models for the particular
variants of the MPC is described and explained.

3.1 Nonlinear model (NM)

Based on the data gathered from the controlled building
and following the methodology provided by the available
literature [11], a nonlinear mathematical model has been
derived serving as the predictor for the optimization rou-
tine within the NMPC. From the control engineering point
of view, the most crucial phenomena effecting the dynam-
ical behavior of the zone temperature are 1) convection
from both the heated and unheated wall, 2) effects of
ambient environment (solar radiation and ambient tem-
perature), 3) mutual interaction of the walls and 4) heat
supplied by the supply water. These phenomena are cap-
tured in the following set of differential equations:

ẋ1 = p1|x2−x1|(x2−x1)
1
3 +p2|x3−x1|(x3−x1)

1
3 +p3(d1−x1)

+p4d2

ẋ2 = −p5|x2−x1|(x2−x1)
1
3 +p6(x3−x2)+p7(x4−x2)

ẋ3 = −p8|x3−x1|(x3−x1)
1
3 −p9(x3−x2)+p10(d1−x3)+p11d2

ẋ4 = −p12(x4−x2)+p13u2(u1−x4), (6)

where x = [TZ , TC , TS , TR] represent state variables, u =
[TSW , ṁ] stand for the control inputs and d = [TO , Q̇]
correspond to the predictable disturbances.
Parameters p of the model have been estimated by predic-
tion error method implemented in MATLAB environment
[12]. More details on the theoretical background of the
identification procedure can be found in [13].

3.2 Linear model (LM)

In order to simplify the model (6), let us adopt the as-
sumption that the cubic roots of the temperature differ-
ences related to the heat convection are constant over the
whole range of the operating points of the building. This
simplifies the nonlinear terms as follows:

p|xi − xj |(xi − xj)
1
3 ≈ p̄(xi − xj). (7)

Furthermore, Q̇ = cṁ(TSW−TR) is assumed to be the control
input instead of the pair ṁ and TSW . Based on these
assumptions, the linear version of the model (6) can be
summarized as a discrete-time state space model as follows:

xk+1 = Axk +Buk +Bddk (8)

with the state matrices having the following structure:

A =

a1 a2 a3 0
a5 a6 a8 a7
a9 a10 a11 0
0 a12 0 a13

, B =

0
0
0
b

, Bd =

bd1 bd2
0 0
bd3 bd4
0 0

 . (9)

In this model, state and disturbance variables correspond
to the previously mentioned ones and u = Q̇ refers to the
optimized input. The sampling period of the system has
been chosen as ts = 15 min. The model parameters a, b,
bd have been estimated by a multistep prediction error
minimization procedure (MRI). For further details on this
method, the readers are referred to [5].

3.3 Recursively identified linear model (RIL)

Although considering the same linear model structure as
the off-line identified time invariant model described in
the previous section, the recursively identified linear model
makes use of the recursive identification technique. At the
beginning of the operation, an off-line identified model is
used. However, as the new data are gathered during the
operation of the controller, they are used to update the
model with the latest information about the building be-
havior and the model is therefore re-identified after certain
pre-defined amount of time. In our case, the linear model
with the structure corresponding to (8) is re-identified once
per 5 days using the last five-day-long data set. For the
initialization of the identification procedure estimating the
parameters of the k-th model, the parameters of the (k−1)-
st one are used. This is done in order to provide the best
available initial guess for the non-convex MRI identifica-
tion task [5] which depends strongly on the (sub)optimality
of the initial values. Moreover, initializing the model iden-
tification with the previous parameters, recursive nature
of this approach is ensured as the information from the
previous data (captured in the previous parameter values)
is incorporated. In this way, part of the problems of the
linear models can be solved. With the original off-line
identified linear model, part of the dynamics of the building
is neglected and under these simplifying assumptions, the
linear model is identified at certain operating point. In
case that the building is shifted away from that operating
point (which can be caused either by change of the weather
or by excitation of the neglected dynamics), the one-shot
identified models can fail to provide accurate predictions
for the controller which can lead to the performance degra-
dation. The recursively identified model, on the other hand,
can adapt to these changes and therefore it is still able
to provide accurate predictions over much larger range of
the operating conditions than the one-shot identified linear
model.

3.4 Switched linearly approximated models (SLAM)

The main idea of this approach is that for a combination of
inputs u, disturbances d and state variables x, a linear time-
varying approximation of model (6) can be found by re-
placing particular nonlinearities with time-varying terms.
In case of a building, this approach is even more natural
and expected as the nonlinear mathematical description of
the building contains terms depending on the differences
between two state variables, namely p|xi − xj |(xi − xj)

1
3

which are likely to vary much less than the temperatures
themselves. As an opposite to the linear models described
earlier where the nonlinear terms are linearized “before the
identification” and having the gathered data at disposal,
parameters of linear time invariant model are estimated
considering the purely linear character of the model, in this
case, the nonlinear model is identified off-line and using its
parameters, the nonlinearity is continuously approximated
on-line depending on the actual values of the chosen auxil-
iary variables which leads to a time-varying linear model.
In order to get rid of the nonlinear terms coupling the
states, let us propose an approximation procedure based
on the auxiliary variables as follows.
Let us introduce two auxiliary variables, δx1,2,t and δx1,3,t
defined such that

δx2,1,t = 3
√
|x2,tm − x1,tm |

δx3,1,t = 3
√
|x3,tm − x1,tm |, (10)

where t ≥ tm refers to continuous time and tm indicates the
time instant when the last measurements of the state vari-
ables arrived. The derived model shall predict the behavior
of the building over certain prediction horizon during which
no current measurements of the state variables are avail-
able. Therefore, at each “measurement” time instant, the
values of δx1,2,t and δx1,3,t are calculated and they are used
by the optimizer over the whole prediction horizon. The
necessity of realizing the difference between the real-life
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time (in which the model is time-varying) and the internal
time of the optimizer (in which the model stays constant
over the prediction horizon) is obvious.
Then, the nonlinear terms appearing in the model (6) can
be approximated as |x2 − x1| 3

√
(x2 − x1) ≈ δx1,2,t(x(tm))(x2 −

x1), |x3−x1| 3
√

(x3 − x1) ≈ δx1,3,t(x(tm))(x3−x1) for all t ≥ tm.
Here, the expressions δx1,2,t(x(tm)), δx1,3,t(x(tm)) are used
to emphasize the fact that the values of auxiliary variables
depend only on the last available state measurements.
The bilinear term in the last differential equation is (sim-
ilarly to the previous approaches) considered as the new
controlled input Q while the vector of disturbances d re-
mains unchanged. The linearized differential equations can
be now summarized as:

ẋ = Aapp(t)x+Bappu+Bdd, (11)
where

Aapp(t) =

−(̃p1+p̃2+p3) p̃1 p̃2 0
p̃5 −(̃p5+p6+p7) p6 p7
p̃8 p9 −(̃p8+p9+p10) 0
0 p12 0 −p12

 ,
(12)

with
p̃1 = p1δx1,2,t, p̃2 = p2δx1,3,t,

p̃5 = p5δx1,2,t, p̃8 = p8δx1,3,t (13)

and

Bapp =

 0
0
0
p13

 , Bd =

 p3 p4
0 0
p10 p11
0 0

 . (14)

At this point, the whole algorithm of obtaining the linear
approximated model of the building can be summarized.
At each discrete sample k = tm, the values of the state
variables x are measured and the auxiliary variables δx1,2,t,
δx1,3,t, are evaluated according to (10). Making use of the
calculated auxiliary variables, a linear continuous model
(11) of the building is created with the corresponding
matrices. In order to be used with the linear MPC, the
model needs to be discretized [14] and then, a discrete-
time model is obtained as:

xk+1 = Aapp(k)xk +Bappuk +Bddk. (15)

This approximated model is used until the new measure-
ments arrive, which means that at each discrete time
sample, a new model is approximated and used over the
following prediction horizon.

3.5 Comparison

As long as the models are intended to be used with the
MPC, their most important feature is to provide reasonable
predictions over the whole prediction horizon. In this
paper, we consider the prediction horizon TP = 16 h which
corresponds to 64 samples.
Fig. 3 shows 8 weeks of comparison of the models which are
used for the building behavior predictions with the linear
time invariant, linear time varying and nonlinear MPC,
respectively. At each discrete time sample (ts = 15 min),
16-hours predictions are calculated based on the provided
measurement. All the predictions of the models are plotted
together with the real data.
Looking at Fig. 3, it is clear that the two “limit” cases
(linear time invariant and nonlinear model) constrain the
prediction behavior of the models from above and below.
The performance of the time-varying models is somewhere
in the middle between these two while for the recursively
identified model, slightly higher prediction error can be
observed than for the model obtained by piece-wise ap-
proximation of the nonlinear one. The most obvious are
the differences in the behavior when looking at the 4-th and
the 5-th week of the comparison. While the absolute value
of prediction errors for the off-line identified linear model
reach up to 4◦ C, the error obviously decreases through the
recursively identified time-varying and switched linearly
approximated time-varying model down to the nonlinear

Fig. 3. Comparison of TZ predictions (◦C) of the LM
(green), RIL (magenta), SLAM (red) and NM (black)
with the real data (blue).

model which provides the predictions with the least pre-
diction error out of the four compared models.
In order to compare the models in a more complete way, the
statistical comparison of the models is provided in Tab. 2.
Here, LM specifies the linear model, RIL corresponds to the
recursively identified linear model, SLAM stands for the
switched linearly approximated model and NM represents
the nonlinear model. For each model, εav being the average
prediction error over the whole 16-hours prediction horizon
and the maximum prediction error εmax over the prediction
horizon are inspected.

Table 2. Statistical comparison of the models.

LM RIL SLAM NM
εav(◦C) 0.81 0.75 0.49 0.40
εmax(◦C) 4.76 3.84 1.72 1.36

The table clearly demonstrates that the most reliable
predictions are provided by the NM model. However, this
is not a surprise as that model takes the whole dynamics
of the building into account including the nonlinearities.
On the other hand, it can be seen that considering the
linear time-varying models, the quality of the predictions
fairly improves compared to the linear time invariant
model. Considering RIL model, 8% reduction of εav and
20% reduction of εmax is achieved while with SLAM model,
the reduction of εav is almost 40% and the reduction of
εmax is nearly 74%.

4. MODEL PREDICTIVE CONTROL

This section briefly describes the compared MPC variants.

4.1 Linear MPC

The control requirements which have been chosen for the
linear MPC to be satisfied (minimization of both the
thermal comfort violation and the energy consumption)
can be mathematically summarized as follows:

JMPC ,k =

P∑
i=1

W1,p(k + i)‖Q̇k+i‖p +

P∑
i=1

W2,p‖CVk+i‖p

(16)

s.t. : linear dynamics (8)
0 ≤ Q̇k+i ≤ Q̇max

k+i , i = 1, . . . , P

T̂Z,k+i|k ≥ T
min
Z,k+i − CVk+i.

This formulation considers a combination of linear and
quadratic penalization indicated by the index p ∈ {1, 2}
which enables to shape the penalization criterion conve-
niently. Time varying weighting matrices W reflecting the
time dependence of the electricity tariffs and prediction
horizon P stand for the tuning parameters of the controller.
Comfort violation is calculated as the difference between
the zone temperature prediction T̂Z and its lowest accept-
able bound Tmin

Z and the hard constraints are relaxed
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employing an auxiliary variable CV . Exact values of the
optimization problem settings can be found in Tab. 3.
As the linear version of MPC optimizes supplied heat Q̇, a
postprocessing procedure is needed to obtain the particular
values of TSW and ṁ which correspond to the true control
inputs of the thermally activated building system (TABS).
This straightforward postprocessing holds the mass flow
rate fixed ṁ = ṁpp and it calculates the supply water
command as TSW = Q̇/ṁcw + TR. If the heating effort is
lower than a threshold value Q̇tr, the TABS manipulated
variables are set to TSW = TR and ṁ = 0. The settings of
the postprocessing procedure are listed in Tab. 3.

Table 3. Table of settings

W1,1 (high tariff) 0.01 W1,2 (high tariff) 1.6
W1,1 (low tariff) 0.005 W1,2 (low tariff) 0.8
W2,1 2× 106 Q̇max 90× 104

W2,2 104 Q̇tr 700
Tmin
SW 20 ṁmin 0
Tmax
SW 50 ṁmax 2150
P 48 ṁpp 1250

4.2 Nonlinear MPC

Using the model (6) and being able to perform a nonlinear
optimization, the nonlinear MPC minimizes directly the
performance criterion (5). To find the solution, gradient
optimization method with enhanced choice of the search
step is used. The main idea of this approach is that the cost
functional J(x, u, t) can be minimized iteratively starting
from the initial guess of the optimal input profile u0
following the direction of the gradient of the corresponding
hamiltonian H constructed as follows:

H = L+ λTf. (17)

The information about the integral term of the criterion
J is incorporated through L being the integrand of the
integral term. The terminal term φ of the criterion J
is related to the so-called costate vector λ through the
terminal condition λ(TP ) = ∂φ/∂x|t=TP

, TP refers to the
optimization horizon. To be consistent with the other vari-
ants of MPC, TP = 16 h has been chosen. In this particular
case, λ(TP ) = [0, 0, 0, 0]T. The dynamics of the costate vector
is defined by the differential equation λ̇ = −∂H/∂x. In (17),
f corresponds to the vector field describing the dynamics
of the controlled system given by (6).
The iterative optimization procedure is expressed as

ui,l+1 = ui,l − αi,l
∂H

∂ui

∣∣
l
, (18)

where i ∈ {1, 2} characterizes the particular input, l stands
for the number of iteration and αi is the corresponding
search step. Instead of constant search steps, we use
steps αi,l which change during the search and reflect the
curvature of the hamiltonian H as follows:

αi,l = βi
|ui,l − ui,l−1|
|Hui,l

−Hui,l−1|
(19)

where Hui,l
= ∂H

∂ui

∣∣
l

refers to the gradient of H calculated at
l-th iteration. βi are adjustable parameters fixed over the
whole iterative procedure. In order to prevent numerical
problems, αi,l are bounded from above and below.
The hamiltonian H and inputs u1,2 are sampled with the
sampling period ts = 15 min. Constraints are handled by
projecting the calculated input sequence on the admissible
input intervals defined by Tmin

SW , Tmax
SW and ṁmin, ṁmax.

The corresponding values are listed in Tab. 3.

5. RESULTS

First of all, visual comparison of the performance of the
considered controllers is presented in the Fig. 4.
Based on Fig. 4 which shows the zone temperature evolu-
tion over a 6-day period for different controllers, it can be
seen that all controllers are tuned well enough so that they
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Fig. 4. Comparison of TZ (◦C) with the controller using LM
(green), RIL (magenta), SLAM (red) and NM (black).

are able to satisfy the room temperature requirements.
This is very crucial since a controller that significantly
violates the room temperature requirements is basically
useless. Besides the superiority of the NMPC resulting
from the combination of the model with the best predic-
tions and the direct minimization of the performance cri-
terion (5), the improvement of the two LTVMPC variants
compared to the LMPC should be noted. Controllers with
time-varying models are much less likely to unnecessarily
overheat the room thanks to more accurate predictions.
Next comparison is brought by Fig. 5 where the supply
water temperatures applied by the predictive controllers
using particular models are shown. The blue areas corre-
spond to the hours when the high tariff is applied.
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Fig. 5. Comparison of TSW (◦C) with the controller using
LM (green), RIL (magenta), SLAM (red) and NM
(black).

It can be observed that the NMPC exploits the low tariff
and heats the room during the night while during the
working hours, it only gently maintains the temperature
within the required zone. As the relation of the used
models to the nonlinear model “fades away”, the input
profiles applied by particular controllers are less and less
economical (higher supply water temperatures are applied
also during the working hours). The statistical comparison
of the energy consumption can be found in Tab. 4. TP
expresses the overall price paid for zone temperature
control. Moreover, the particular energy consumptions
related to the consumption of the linear MPC using the
off-line identified model are expressed.

Table 4. Comparison of the energy consumption and
computational complexity.

LM RIL SLAM NM
TP 583.37 566.09 542.19 475.67
TP/TPLM (%) 100 97 93 81
Tav(s) 0.83 0.89 0.93 13.7
Tmax(s) 1.22 32.4 1.52 22.1

The superiority of the NMPC is demonstrated once again.
Moreover, it can be seen that although the comparison of
the identified models was very optimistic in the case of
linear time-varying models versus the linear time-invariant
one, the resulting effect of the good models on the overall
energy consumption is not so attractive. This can be simply
explained by the fact that although the good predictor
is crucial for the proper functioning of the MPC (either
linear or nonlinear), so is the properly chosen optimization
criterion. Based on this observation, in the building climate
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control, the need for the use of nonlinear MPCs which
are able to attack task of the real-life price minimization
in a direct way instead of using certain approximation is
obvious. However, one more aspect needs to be taken into
account when choosing the controller type—its computa-
tional complexity. Tab. 4 shows two factors related to the
computational demands of the particular control strategy:
Tav being the average computational time needed for the
calculation of the optimal input per one sampling instant of
the input profile and Tmax corresponding to the maximum
calculation time needed. Let us mention that this calcula-
tion time includes also the time needed to obtain the model
which (as will be shown) might contribute significantly to
the overall calculation time. The comparison is evaluated
depending on the type of the model which is used by the
optimizer. The simplest controller being the LMPC with
LM needs the shortest time to calculate the optimal input.
As this variant does not consume any time to obtain the
model and the same optimizer is used by the rest of the
family of the linear MPCs (including also controller with
RIL model and SLAM model), one can get a very good
insight into how long does it take to obtain the model
for the predictions. As the SLAM variant performs the
approximation of the nonlinear model at each sampling
instant, the increase of the average computational time
is understandable. Although in case of the LMPC with
SLAM, the average calculation time is the longest, this
is compensated by the best control performance out of
the linear approaches. On the other hand, the RIL variant
needs slightly less time in average but evaluating the Tmax,
the RIL variant can be regarded as the most cumbersome.
The reason is quite simple—as the optimization task which
needs to be solved when performing the identification rou-
tine is a non-convex one, the results and also the compu-
tational time depend heavily on the initial estimate and in
case of inaccurate initial estimate the computational time
can be increased significantly.
Let us summarize the performance of the particular vari-
ants. Regarding the control performance and the energy
consumption, the NMPC is the best candidate for the real-
life application. On the other hand, the LMPC with the
simplest off-line identified model is able to provide the
fastest calculation of the optimal input sequence. Look-
ing for a trade-off between the optimality and the time
complexity, the newly presented time-varying approaches
are able to bridge the gap between these two and there-
fore, they stand for promising candidates for the real-life
application especially in case of large buildings complexes
where it can be expected that the nonlinear optimization
task can take too long to be solved.

6. CONCLUSION

In this paper, several variants of MPC for the building cli-
mate control have been presented and inspected. Two ways
of obtaining a linear time-varying model of the controlled
building have been proposed. The first is based on the
recursive identification with the original linear structure
and the second one performs a linear approximation of
the nonlinear model according to the values of the chosen
auxiliary variables. The models have been compared also
with the off-line identified linear and nonlinear models
showing that quite impressive improvement of the quality
of the predictions can be achieved with the linear time-
varying models. Then, the predictive controllers employing
these models have been compared with respect to a pre-
defined evaluation criterion based on the real-life require-
ments and costs. The results show that although being the
most effective in minimizing those real-life costs, NMPC is
the most time consuming variant and the newly presented
time-varying alternatives (RIL and SLAM) can be more
advantageous in case of huge building complexes where
the complexity of the optimization task can be very high.
The linear time-varying approaches combine the simplicity
and time effectiveness resulting from the use of the convex
optimizer and fair accuracy of the linear models which are
updated according to the available data.
Regarding the future work, it would be interesting to exam-
ine the effect of incorporation of the persistent excitation

condition into the predictive controller procedure. Based
on the available literature, if the persistent excitation
condition is included, more informative data are obtained
which then turns into a better ability to estimate the model
parameters accurately. The suggested procedure should be
compared with the advanced Kalman filtering algorithms
such as Extended or Unscented Kalman filtering. Last but
not least, a procedure for the model parameter update
should be designed for the nonlinear model. Moreover,
based on the performed numerical experiments, we suggest
the strategies be tested on a building in real-operation.
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budovy. Prague, Czech Republic: CTU Prague, 2010.

[12] L. Ljung, MATLAB: System Identification Toolbox:
User’s Guide Version 4. The Mathworks, 1995.

[13] L. Ljung, System identification. Wiley Online Library,
1999.

[14] P. J. Antsaklis and A. N. Michel, Linear systems.
Birkhauser Boston, 1997.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

592


