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Abstract: Discovery of undesirable hidden oscillations, which cannot be found by the standard
simulation, in phase-locked loop (PLL) showed the importance of consideration of nonlinear
models and development of rigorous analytical methods for their analysis. In this paper for vari-
ous signal waveforms, analytical computation of multiplier/mixer phase-detector characteristics
is demonstrated, and nonlinear dynamical model of classical analog PLL is derived. Approaches
to the rigorous nonlinear analysis of classical analog PLL are discussed.
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1. INTRODUCTION

The Phase locked-loop (PLL) circuits were invented in
the first half of the twentieth century and nowadays are
widely used in modern telecommunications and comput-
ers. A PLL-based circuit behaves as a nonlinear control
system and its physical model in the signal space can
be described by nonlinear nonautonomous difference or
differential equations. In practice, numerical simulation is
widely used for the analysis of PLL-based circuit nonlinear
model (see, e.g., [Best, 2007, Bianchi, 2005, Goldman,
2007, Klapper, 2012, Razavi, 2003, Tranter et al., 2010]
and others) since the rigorous analysis of nonlinear nonau-
tonomous equations is often a very difficult task. However
for the high-frequency signals, the explicit numerical sim-
ulation of the physical model of PLL-based circuit in the
signal space is very complicated since one has to consider
simultaneously both the very fast time scale of the signals
and the slow time scale of phase difference between the
signals. To analyze the high frequency signals accurately, a
very high sampling rate is required, which makes it difficult
to perform a simulation in a reasonable time.

To overcome these difficulties, instead of consideration of
physical model in the signal space one can derive a math-
ematical model of PLL-based circuit in the signal’s phase
space, which is described by nonlinear autonomous differ-
ence or differential equations, and in which only the slow
time scale of signal’s phases difference is considered (the
ideas behind this are traced back to the famous works by
F. Gardner and A. Viterbi). Such a consideration requires
the computation of phase detector characteristic, which
depends on PD physical realization and the waveforms of
considered signals [Leonov et al., 2011, 2012]. Note that the
derivation of a mathematical model and the use of results
of its analysis to draw conclusions about the behavior of
physical model need for a rigorous foundation.

Although PLL is inherently a nonlinear system, in modern
literature, devoted to the analysis of PLL-based circuit

mathematical models, the main direction [Abramovitch,
2002] is simplified linear models, the methods of linear
analysis, empirical rules, and numerical simulation 1. Note
that the linearization without justification and the analysis
of linearized models of nonlinear control systems may
result in incorrect conclusions 2. At the same time the at-
tempts to justify analytically the reliability of conclusions,
based on such engineering approaches, and to study the
nonlinear models of PLL-based circuits are rare [Chicone
and Heitzman, 2013, Gelig et al., 1978, Kudrewicz and
Wasowicz, 2007, Kuznetsov, 2008, Leonov, 2006, Leonov
and Kuznetsov, 2014, Margaris, 2004, Piqueira and Mon-
teiro, 2003, Sarkar et al., 2014, Stensby, 1997, Suarez and
Quere, 2003].

Further, in this paper the ideas of F. Gardner and
A. Viterbi on nonlinear analysis and design of PLL-based
circuits are developed and rigorously justified, a general
effective approach to analytical computation of phase de-
tector characteristics is discussed, and nonlinear dynam-
ical models of classical PLL are derived for various non-
sinusoidal waveforms.

2. CLASSICAL PLL IN SIGNAL SPACE

Consider classical PLL on the level of electronic realization
(Fig. 1). Here f1(t) = f1(θ1(t)) is an input [reference

1 Remark that the application of standard numerical analysis can-
not guarantee to find undesired multiple steady-state solutions in
nonlinear control systems: see, e.g., examples of hidden oscillations
and coexisting attractors in two-dimensional PLL model, electrical
Chua circuits, aircraft control systems, and drilling systems [An-
drievsky et al., 2013, Kuznetsov et al., 2013, 2011a, 2010, Leonov
and Kuznetsov, 2013]), the presence of which can lead to crashes.
2 See, e.g., counterexamples to the filter hypothesis, hidden oscil-
lations in counterexamples to Aizerman’s and Kalman’s conjectures
on the absolute stability of nonlinear control systems [Bragin et al.,
2011], and the Perron effects of the largest Lyapunov exponent sign
reversal for a nonlinear system and its linearization [Kuznetsov and
Leonov, 2005, Leonov and Kuznetsov, 2007].
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oscillator] signal with phase θ1(t), and VCO is a tunable
voltage-control oscillator [slave oscillator], which generates
signal f2(t) = f2(θ2(t)) with θ2(t) as phase. The block

⊗
is a multiplier (used as PD) of oscillations f1(t) and f2(t),
and the signal f1(θ1(t))f2(θ(t)) is its output.

g(t)
VCO

Fig. 1. PLL in the signal space (electronic realization)

The relation between the input ξ(t) and the output σ(t)
of linear filter is as follows

σ(t) = α0(t) + hξ(t) +
∫ t

0
γ(t− τ)ξ(τ) dτ, (1)

where γ(t) is an impulse response function of filter and
α0(t) is an exponentially damped function depending on
the initial data of filter, h is a constant. By assumption,
γ(t) is a differentiable function with bounded derivative
(this is true for the most considered filters [Best, 2007]).

Suppose that the waveforms f1,2(θ) are bounded 2π-
periodic piecewise differentiable functions 3 . Consider
Fourier series representation of such functions

fp(θ) =
∞∑
i=1

(
api sin(iθ) + bpi cos(iθ)

)
, p = 1, 2,

api =
1

π

π∫
−π

fp(θ) sin(iθ)dθ, bpi =
1

π

π∫
−π

fp(θ) cos(iθ)dθ.

A high-frequency property of signals can be reformulated
in the following way. By assumption, the phases θp(t)
are smooth functions (this means that frequencies are
changing continuously, what corresponds to classical PLL
analysis [Best, 2007]). Suppose also that there exists a
sufficiently large number ωmin such that the following
conditions are satisfied on the fixed time interval [0, T ]:

θ̇p(τ) ≥ ωmin > 0, p = 1, 2 (2)

where T is independent of ωmin and θ̇p(t) denotes frequen-
cies of signals. The frequencies difference is assumed to be
uniformly bounded∣∣θ̇1(τ)− θ̇2(τ)

∣∣ ≤ ∆ω, ∀τ ∈ [0, T ], (3)

where ∆ω is a constant. Requirements (2) and (3) are
obviously satisfied for the tuning of two high-frequency
oscillators with close frequencies [Best, 2007]. Let us in-

troduce δ = ω
− 1

2
min. Consider the relations

|θ̇p(τ)− θ̇p(t)| ≤ ∆Ω, p = 1, 2,

|t− τ | ≤ δ, ∀τ, t ∈ [0, T ],
(4)

where ∆Ω is independent of δ and t.

3. PHASE-DETECTOR CHARACTERISTIC

Consider two block-diagrams shown in Fig. 2.

3 Consideration of analog PLL with sinusoidal signals and some
special phase detectors [Rosenkranz, 1982] may also be reduced to
such a consideration.

g(t)

G(t)
PD

φ -

Fig. 2. Phase detector and filter

Here PD is a nonlinear block with characteristic ϕ(θ).
The phases θp(t) are PD block inputs and the output is
a function ϕ(θ1(t) − θ2(t)). The PD characteristic ϕ(θ)
depends on the waveforms of input signals. The signal
f1(θ1(t))f2(θ2(t)) and the function ϕ(θ1(t)−θ2(t)) are the
inputs of the same filters with the same impulse response
function γ(t) and with the same initial state. The outputs
of filters are functions g(t) and G(t), respectively. By (1),
one can obtain g(t) and G(t)

g(t)=α0(t) + hf1
(
θ1(τ)

)
f2
(
θ2(τ)

)
+∫ t

0

γ(t− τ)f1
(
θ1(τ)

)
f2
(
θ2(τ)

)
dτ,

G(t)=α0(t) + hϕ(θ1(t)− θ2(t))+∫ t

0

γ(t− τ)ϕ(θ1(τ)− θ2(τ)
)
dτ.

(5)

For the loop filter we additionally assume that

|γ(τ)− γ(t)| = O(δ), |t− τ | ≤ δ, ∀τ, t ∈ [0, T ]. (6)

The VCO acts as an integrator of its input. Therefore,
to prove the equivalence of block-diagrams, it is sufficient
to show that the integrals of the filters outputs are close.
Then, using the approaches outlined in [Kuznetsov et al.,
2011b, Leonov et al., 2011, 2012] the following result can
be proved.

Theorem 1. Let conditions (2)–(6) be satisfied and

ϕ(θ)=
1

2

∞∑
l=1

(
(a1
l a

2
l + b1l b

2
l ) cos(lθ) + (a1

l b
2
l − b1l a2

l ) sin(lθ)

)
.

(7)
Then the following relation:∣∣∣∣∫ t

0

g(τ)dτ −
∫ t

0

G(τ)dτ

∣∣∣∣ = O(δ), ∀t ∈ [0, T ]

is valid.

3.1 Proof idea

Consider the difference∫ t

0

(
g(τ)−G(τ)

)
dτ =

t∫
0

(
h(f1(θ1(τ))f2(θ2(τ))− ϕ(θ2(τ)− θ1(τ)))+

τ∫
0

γ(τ − s)
[
f1
(
θ1(s)

)
f2
(
θ2(s)

)
− ϕ

(
θ1(s)− θ2(s)

)]
ds

)
dτ.
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Let γ2(t− s) = h+
∫ τ

0
γ(τ − s)ds. Then∫ t

0

(
g(τ)−G(τ)

)
dτ =

t∫
0

γ2(t− s)
[
f1
(
θ1(s)

)
f2
(
θ2(s)

)
− ϕ

(
θ1(s)− θ2(s)

)]
ds.

Since property (6) holds for γ2, then by the theorem from
[Leonov et al., 2012] one gets∣∣∣∣∫ t

0

g(τ)dτ −
∫ t

0

G(τ)dτ

∣∣∣∣ = O(δ) (8)

�

Roughly speaking, Theorem 1 separates a low-frequency
error-correcting signal from parasitic high-frequency oscil-
lations. This result for sinusoidal signals was known to
engineers without rigorous justification.

Remark 1. For the most considered waveforms (e.g. si-
nusoidal, squarewave, sawtooth, polyharmonic), infinite
series (7) can be truncated up to the first

√
ωmin terms.

A remainder R[ 1
δ ]

of series (7) can be estimated as

|R[ 1
δ ]

(x)| ≤
∞∑

l=[ 1
δ ]+1

(|a1
l a

2
l + b1l b

2
l |+ |a1

l b
2
l − b1l a2

l |) ≤

≤
∞∑

l=[ 1
δ ]+1

(|a1
l a

2
l |+ |b1l b2l |+ |a1

l b
2
l |+ |b1l a2

l |).

Since a1,2
l = O( 1

l ) and b1,2l = O( 1
l ), then

|R[ 1
δ ]

(x)| ≤ O
( ∞∑
l=[ 1

δ ]+1

1

l2

)
, (9)

the sum is bounded by corresponding integral of function
1
x2 . Then |R[ 1

δ

](x)| ≤ O(δ), what can be easily proved by

integration.

4. PLL EQUATIONS IN THE SIGNAL’S PHASE
SPACE

From the mathematical point of view, a linear filter can
be described [Best, 2007] by a system of linear differential
equations

ẋ = Ax+ bξ(t), σ = c∗x+ hξ(t). (10)

Here ξ(t) is an input of the filter, σ(t) is an output of
the filter, A is a constant matrix, x(t) is a state vector of
filter, b, h, and c are constant vectors. A solution of this
system takes the form (1), where γ(t− τ) = c∗eA(t−τ)b is
an impulse response function of filter and α0(t) = c∗eAtx0

is an exponentially damped function depending on the
initial data of filter. By assumption, γ(t) is a differentiable
function with bounded derivative (this is true for the most
considered filters).

The model of VCO generator is usually assumed to be
linear [Best, 2007]:

θ̇2(t) = ω2
free + LG(t), t ∈ [0, T ]. (11)

Here ω2
free is a free-running frequency of tunable genera-

tor, L is an oscillator gain, and G(t) is an input of VCO.

Here it is also possible to use various nonlinear models of
VCO.

Suppose that the frequency of master generator is constant
θ̇1(t) ≡ ω1. Equation of tunable generator (11) and
equations of filter (10) yield

θ̇1(t) = ω1,

ẋ = Ax+ bf1(θ1(t))f2(θ2(t)),

θ̇2 = ω2
free + Lc∗x+ Lhf1(θ1(t))f2(θ2(t)).

(12)

System (12) is nonautonomous and slow-fast, therefore its
analytical and numerical analysis is often a very difficult
task. Theorem 1 allows one to compute the phase detector
characteristic ϕ and to derive the equations of PLL in the
signal’s phase space

ż = Az + bϕ(θ),

θ̇ = ω2
free − ω1 + Lc∗z + Lhϕ(θ),

θ = θ2 − θ1.

(13)

The averaging method allows one to prove that the solu-
tions of PLL equations in the signal space are close to the
solutions of averaged equations in the signal’s phase space.
For the application of the averaging method consider the
following notations

τ = ω1t, ε =
1

ω1
, y(τ) =

(
x( τ

ω1 )
θ( τ
ω1 )

)
,

F (y, τ) =(
Ax( τ

ω1 ) + bf1(τ)f2(θ( τ
ω1 ) + τ),

ω2
free − ω1 + Lc∗x( τ

ω1 ) + hf1(τ)f2(θ( τ
ω1 ) + τ).

)
and transform system (12) to the following form

dy

dτ
= εF (y, τ), y(0) = y0, (14)

where F is T -periodic on τ . For the simplicity assume
that F is Lipschitz continuous. Suppose that D is an
bounded open set, containing x0, and choose ε0 such that
0 < ε ≤ ε0. Introduce averaged equation

dz

dτ
= εF̄ (z), z(0) = y0, (15)

where

F̄ (z) = lim
T→∞

1

T

t0+T∫
t0

F (z, τ)dτ (16)

where the limit in (16) is assumed uniform in t0 ≥ 0. If
this limit exists, then one looks for non-negative numbers
∆(ε) and η(ε) with the property

1

∆(ε)

∣∣∣∣∣∣∣
s0+∆(ε)∫
s0

(
F (y,

s

ε
)− F̄ (y)

)
ds

∣∣∣∣∣∣∣ ≤ η(ε),

∀y, 0 ≤ s0 ≤ 1−∆(ε),

(17)

where s0 = t0ε. Pair (∆(ε), η(ε)) is called a rate of
averaging.

Theorem 2. [Mitropolsky and Bogolubov, 1961] Assume
that the function F (y, t) is K-Lipschitz in y and bounded
by a constant r. Suppose that the equation has a time-
independent average F̄ (z) and (∆(ε), η(ε)) is the rate of
averaging. Then

|y(t)− z(t)| ≤ Te2KT ((K + 2)r∆(ε) + η(ε))

It is of order max(∆(ε), η(ε)).
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Theorem 1 gives a time-independent average function ϕ(θ)
such that∣∣∣∣∣∣

s0+1∫
s0

(
f1(ω1t)f2(ω1t+ θ)− ϕ(θ)

)
dt

∣∣∣∣∣∣ = O
(√
ε
)
,

∀s0, 1 ≤ s0 + 1 ≤ T

function that satisfies Theorem 2. Thus the solutions of
PLL equations in the signal space (12) are close to the
solutions of PLL equations in the signal’s phase space (13).

Equations of PLL in phase frequency space correspond to
the following block-diagram (Fig. 3).

PD
φ -

VCO

g(t)
REF

Fig. 3. Phase-locked loop in the signal’s phase space

In Fig. 3 PD has the corresponding characteristics. Thus,
using asymptotic analysis of high-frequency oscillations,
the characteristics of PD can be computed.

By assumption (4), frequency of the signal ϕ(θ(t)) is much
smaller than frequency of f1(θ1(t))f2(θ1(t)). Typically,

the loop bandwidth (maximum frequency difference, θ̇ =

θ̇2 − θ̇1) is several orders of magnitude smaller than sig-
nal’s frequency. Therefore, according to Nyquist-Shannon
sampling theorem, it is possible to choose much larger
discretization time step for signal’s phase model, speeding
up the simulation.

The most frequently used in practice filters for the PLL
are passive and active lead-lag filters having one pole and
one zero [Best, 2007, Pederson and Mayaram, 2008]. Its
transfer function F (s) is given by

F (s) =
as+ β

s+ α
, α > 0, β > 0, a ≥ 0. (18)

For the case a = 0 this filter is commonly referred to as
a PI filter. Denoting τ = t√

β
, z =

√
βz, α̂ = α

√
β, â =

a
√
β, γ = − ω2

free−ω
1

La+L 1
α (β−aα)

, we get the following equations

for PLL with lead-lag filter

ż = −α̂z − (1− âα̂)(ϕ(θ)− γ),

θ̇ = Lz + Lâ(ϕ(θ)− γ).
(19)

5. SIMULATION

Since in block-diagram in Fig. 3 and system (13) for
the signal’s phase space only the slow time change of
signal’s phases and frequencies is considered, they can be
effectively studied numerically.

Theoretical results are illustrated by simulation of PLL
model in Matlab/Simulink for the signal’s phase space (see
Fig. 4-5)

100

frequency_master

phase_shift

In1

freq

Out1

phase_shift

VCO1

Clock

phase1

phase2
Out1

PD

99

frequency_vco1

filter_output1

s+1

s+2

Filter1

Fig. 4. Simulink models of PLL in the signal’s phase space:
ωfree = 99 Hz, ω1 = 100 Hz, filter transfer functions
s+1
s+2

1

Out1

10

Gain

2

freq

1

In1

2

phase_shift

1
s

Integrator1

1
s

Integrator

Fig. 5. Simulink models of VCO in the signal’s phase space.
VCO gain L = 10

and the signal space (see Fig. 6-7).

99

frequency_vco

In1

freq

signal

phase_shift

VCO

Product

Interpreted
MATLAB Fcn

triangle
wave filter_output

100

frequency_master1

Clock

phase_shift1

s+1

s+2

Filter

Fig. 6. Simulink models of PLL in the signal space (with
triangle waveform)

1

signal

10

Gain

2

freq

Interpreted
MATLAB Fcn

triangular

1

In1

2

phase_shift

1
s

Integrator1

1
s

Integrator2

Fig. 7. Simulink models of VCO in the signal space (with
triangle waveform)

Here triangle waveform is implemented by standard Mat-
lab function “-sawtooth(u,0.5)”, and PD characteristic (7)
is implemented by

1 function y = tritri_char(u)
2 y = 0;
3 for i=1:100
4 y = y + cos((2*i-1)*u)/(2*i-1)ˆ4;
5 end
6 y = 32*y/piˆ4;
7 end

Unlike the filter output for signal’s phase model, the
output of filter in the signal space contains additional high-
frequency oscillations (see Fig. 8), which interfere with
qualitative analysis and efficient simulation of PLL. The
analysis of autonomous dynamical model of PLL (in place
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−0.2

0.2

0.6

1

 

 

VCO control in the signal space

VCO conrol in the signal’s phase space

Fig. 8. VCO phase shift output and VCO control signals.
ωfree = 99 Hz, ω1 = 100 Hz

of the nonautonomous one) allows one to overcome the
aforementioned difficulties, related with modeling PLL in
time domain for hight frequencies, very high sampling rate
is required, which makes it difficult to perform a simulation
in a reasonable time (see Fig. 9).

t1.6

x10-7

1.20.80.40

0

1

2

3

4

5

6

x10-7

t

x10-8

x10-7

9

2.96

3

3.04

3.08

9.2

phase_shift in the signal space

phase_shift in the signal’s phase space

 

 

t1.6

x10-7

1.20.80.40
-0.2

0

0.2

0.4

0.5

0.8

1

VCO control in the signal space

VCO conrol in the signal’s phase space

Fig. 9. VCO phase shift output and VCO control signals.
ω1 = 109, ωfree = 109 − 1 Hz, discretization step

1
10ωref

6. ANALYTICAL STUDY

In the middle of the last century the investigations of
dynamical models of phase synchronization system were
begun. M. Kapranov [Kapranov, 1956] obtained the con-
ditions of infinite pull-in range for two-dimensional phase-
locked loop model (19). In 1961, N. Gubar’ [Gubar’, 1961]
revealed a gap in the proof of Kapranov’s results and
specified system parameters for which the pull-in range
was limited by a periodic solution.

σ
1
σ
2

130 135 140 145 150 155

1.4

1.2

1

1.2

0

-0.2

0.6

0.4

Z

x

0.8

σ
1
σ
2
σ
1
σ
2
σ
1
σ
2

σ
1
σ
2

130 135 140 145 150 155

1.4

1.2

1

1.2

0

-0.2

0.6

0.4

x

0.8

σ
1 σ

2

σ
1 σ

2

σ
1 σ

2

σ
1 σ

2
σ
1
σ
2

Z

Fig. 10. Coexistence of periodic trajectories and semistable
periodic trajectory in classical PLL with sinusoidal
signals: α̂ = 0.2513, â = 4.6203, γ = 0.716, α =
15.7977, β = 15.7977, a = 0.2922

On the left in Fig. 10 it is shown the coexistence of
unstable (blue) periodic solution and stable (red) periodic
solution 4 for (ω2

free − ω1) = 89.5. Further decreasing of

(ω2
free − ω1) results in the birth of semistable periodic

trajectory (green) (on the right in Fig. 10). Two close
periodic trajectories and semistable trajectory can not be
found numerically by the standard computation proce-
dure, therefore from a computational point of view the
system considered was globally stable (all the trajectories
tend to equilibria), but, in fact, there is a bounded domain
of attraction only. The rigorous analysis and explanation of
the birth of semistable trajectory can be found in [Leonov
and Kuznetsov, 2013].

The phase portrait in Fig. 10 is very sensitive to any
disturbances. Thus any simplifications of the mathemat-
ical model of PLL and approximate methods of analysis
may lead to wrong conclusions about the stability of PLL,
e.g., one can read in [Tranter et al., 2010]: “analysis of
the acquisition behavior cannot be accomplished using the
simple linear models and nonlinear analysis techniques are
necessary”, and in [Lai et al., 2005]: “the use of linear
macromodels can lead to qualitatively incorrect prediction
of important PLL phenomena”.

The from of system (19) with one periodic nonlinearity
(ϕ(θ) − γ) allows one to use for its nonlinear analy-
sis the special modifications of absolute stability criteria
adapted for the cylindrical phase space ([Gelig et al., 1978,
Kuznetsov, 2008, Leonov, 2006, Leonov and Kuznetsov,
2014]).

7. CONCLUSION

The considered approach allows one (mathematically rig-
orously) to compute multiplier PD characteristics and to
proceed from analysis of the slow-fast model of PLL in the
signal space to effective analysis and simulation of a model
of PLL with only slow changing variables in the signal’s
phase space.

To predict such undesired situation as the existence of hid-
den oscillations in PLL models, it is necessary to apply the
special modifications of absolute stability criteria adapted
for the cylindrical phase space since any simplifications of
the mathematical model of PLL and approximate methods
of analysis may lead to wrong conclusions.
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