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Abstract: The continuous opinion dynamics with group-based heterogeneous bounded con-
fidences is considered in this paper. Firstly, a slightly modified Hegselmann-Krause model is
proposed, and the agents are divided into open-minded-, moderate-minded-, and close-minded-
subgroups according to the corresponding confidence intervals. Then numerical simulations are
carried out to analyze the influence of the close-minded and open-minded agents, as well as
the population size, on the opinion dynamics. It is observed that (1) for the fixed population
size, the larger proportion of close-minded agents, the more opinion clusters; (2) open-minded
agents cannot contribute to forging different opinions, instead, the existence of them maybe
diversify final opinions; also interestingly the relative size of the largest cluster varies along
concave-parabola-like curve as the proportion of open-minded agents increases; (3)for the same
proportion of the three subgroups, as population size increases, the number of final opinion
clusters will increase at the beginning and then reach a stable level, which is quite different
from the previous studies.

Keywords: opinion dynamics, modified Hegselmann-Krause model, heterogeneous, group-based
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1. INTRODUCTION

Does gene-modified food do harm to our health and will
you eat such food? What kind of fashion style would you
like to follow? When you go to the polls, which candidate
are you going to support? All such things are determined
by our own opinions. It can be even said that almost all
social interactions are shaped by our beliefs and opinions
(Acemoglu et al. (2011)). Thus it is of high value to study
the opinion dynamics, and up to now many researchers
with different background have proposed various models to
analyze the evolution of the opinion dynamics from various
aspects, see, for example Clifford et al. (1973); Holley
et al. (1975); Sznajd-Weron et al. (2000); Hegselmann
et al. (2002); Deffuant et al. (2000); Lorenz (2008); Mar-
tins et al. (2010); Altafini (2012); Ghaderi et al. (2013).
One of the most commonly used models is Hegselmann-
Krause (HK) model proposed by Hegselmann et al. (2002),
which is agent-based and considers the continuous opinion
dynamics under bounded confidence, i.e. agents only in-
teract when they are close in opinion to each other, and
where every agent synchronously updates their opinion by
averaging all the opinions of their neighbours.

HK models can be classified into agent-based and density-
based model (Lorenz (2008)). The stability and conver-
gence of HK model have been studied in Lorenz (2005);
Blondel et al. (2009); Nedic et al. (2012); Mirtabatabaei
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et al. (2011). Previous studies have also investigated the
opinion dynamics based on HK model from various as-
pects. Fortunato (2005) studied the consensus threshold
of the bounded confidence of homogeneous HK model and
revels that the consensus threshold is general for all the
network topology, but it can only take two possible values
ϵc ∼ 0.2 or ∼ 0.5 that depends on the average degree of
the graph when the number of agents approaches infinity.
Liang et al. (2013) considered the impact of both the
bounded confidence and influence radius of agents on the
opinion dynamics, and they found that heterogeneity did
not always promote consensus and there is an optimal
heterogeneity under which the relative size of the largest
opinion cluster reaches its peak point. Kou et al. (2012)
studied the opinion dynamics of HK model with multi-
level confidences by dividing the agents into three sub-
groups: close-minded, moderate-minded and open-minded
respectively based on social differentiation theory, which is
similar to Weisbuch et al. (2002) and analyze the influence
of the fractions of each subgroup as well as the population
size on opinion formation. However, all the agents in the
same subgroup share the same bounded confidence.

In this paper, we consider the continuous opinions dynam-
ics in the space [0 1] in the population level. Firstly, we
slightly modify HK model based on non-Bayesian learning
rule (Jadbabaie et al. (2012)) so that every agent can
take into account their own opinion independently with
different weight rather than the same weight as their
neighbors’. Inspired by the work Kou et al. (2012), we
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also divide the agents into three subgroups according to
their confidence levels and investigate the impact of each
subgroups on the opinion dynamics. But unlike the work
by Kou et al. (2012), we assume the confidence levels of
the individuals in the same subgroup is heterogeneous, i.e.
uniformly distributed in the corresponding interval. An-
other important aspect of our work we want to stress here
is that the influence of the population size on the number
of final opinion clusters through numerous simulations is
not the same as is stated in the previous study(Kou et al.
(2012)).

The rest of this paper is organized as follows. Section 2
reviews HK model briefly and then proposes modified HK
(MHK) model; main results are presented in section 3,
devoted to the study of the opinion dynamics according to
MHK with respect to different proportion of subgroups
and population size by numerous simulations. Finally
summaries and conclusions are given in section 4.

2. MODEL FORMULATION

We will review the original HK model first, and then
propose our model by slight modification.

2.1 Introduction of Hegselmann-Krause (HK) Model

Consider a system of n agents, whose opinions are lo-
cated in one-dimensional Euclidean space R and can be
expressed by a real number. Denote the set of n agents as
V = {1, 2, . . . , n} and for agent i ∈ V , its opinion at time t
is represented by xi(t) ∈ R. Given the bounded confidence
set ϵ = {ϵ1, ϵ2, · · · , ϵn}, each agent i only interacts with
his neighbors whose opinions differ from his own not more
than the certain confidence level ϵi, then the discrete-time
HK model (Lorenz (2008)) can be described by Eq.(1):

xi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

(xj(t)− xi(t)) (1)

where Ni(t) = {j ∈ V | |xi(t)−xj(t)| ≤ ϵi} is the neighbor
set of agent i at time t and |Ni(t)| is the cardinality
of Ni(t). When ϵ1 = ϵ2 = · · · = ϵn, the HK model is
homogeneous, otherwise, it is heterogeneous.

Obviously, Eq.(1) inherently indicates that agent i is
always his own neighbor and updates his opinion by simply
averaging all the opinions of his neighbors with the same
weights 1

|Ni(t)| .

2.2 Modified HK (MHK) Model

As mentioned above, the agent i considers his own opinion
and his neighbors’ equally, and this may be not very
practical in the real world. We thus claim it would be
more reasonable to consider his own opinion independently
when agent i updates his opinion. To this end, we redefine
agent i’s neighbor set as N̄i(t) = {j ∈ V ∩ j ̸= i | |xi(t)−
xj(t)| ≤ ϵi} and based on non-Bayesian updating rule, we
propose MHK model as Eq.(2):

if N̄i(t) ̸= ∅
xi(t+ 1) = αixi(t) + (1− αi)

1

|N̄i(t)|
∑

j∈N̄i(t)

xj(t)

otherwise
xi(t+ 1) = xi(t)

(2)
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Fig. 1. Convergence time of MHK (2) with with different
α. The result refers to n = 100 and ϵ = 0.5 and is
an average over 50 realizations with the same initial
opinion.

where αi ∈ [0 1] is the weight that agent i assigns to his
own opinion, which we can refer to as the measure of self-
belief and here without loss of generality, we assume α1 =
α2 = · · · = αn = α. We can also refer α to convergence
parameter, and usually the convergence time of MHK with
large α is much longer than that with small α. As is shown
in Fig.1, where we consider the number of agents n = 100
and assume the homogeneous confidence level ϵ = 0.5,
and which is the result by averaging over 50 realizations
with the same computer configuration and initial opinion
profile, it can be observed that the larger α, the longer
convergence time. When the bounded confidences are
heterogeneous, it displays qualitatively similar trend, thus
we omit its result here.

Obviously when αi = 1
|N̄i(t)|+1

, MHK model is equal to

HK model. Furthermore, when αi = 1, it means agent
i will never consider other people’s opinion and we can
treat it as stubborn agent. All throughout the paper, we
will choose α = 0.5.

Fig.2 shows the time evolution of 100 agents’ opinion
dynamics according to MHK (2), where the initial opinion
is uniformly distributed in the opinion space, and confi-
dence levels ϵi are uniformly distributed in the intervals
[0.01 0.05], [0.2 0.3], [0.4 0.9], respectively. Since the initial
opinion can also influence the dynamics of the final opinion
(see Lorenz (2008)), we also realize the result under dif-
ferent initial profiles. In Fig.2, the left three (a), (b) and
(c) have the same initial opinion, and so do the right three
(d),(e) and (f). It can observed from Fig.2 that opinion
consensus, polarization and fragmentation emerges respec-
tively under different confidence levels. Moreover, under
different initial profiles, some of the results would remain
similar while some would be quite different from each
other, for example, Fig.2(b) and Fig.2(e). The reason lies
in both initial opinion profile and confidence level. Since
the initial opinion is generated randomly, it will always
occur that the difference of the opinions among several
agents happens randomly to be very small or very large.
If confidence level of these agents is large enough, even
though the difference of the initial opinion among several
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Fig. 2. Time evolution of 100 agent opinions according
to MHK model Eq.(2) with different bounded confi-
dence. ϵi are uniformly distributed in the correspond-
ing interval. (a), (b), (c) have the same initial opinion,
while (d),(e),(f) have another same initial opinion.

agents is large, they are more likely to exchange their opin-
ions in next time step; on the contrary, if confidence level
is very small, no matter how similar the initial opinions
among several agents are, the probability that they will
consider each other’s opinion is still very small. Thus in the
case when the confidence level ϵi ∈ [0.01 0.05] or [0.4 0.9],
the results remain the same; But when the confidence level
is neither small nor large enough, as is the case when
ϵi ∈ [0.2 0.3], the result would be influenced by the initial
opinion profile to a large extent.

3. SIMULATION ANALYSIS AND RESULTS

In the real world, there are always some people who are
much more willing to accept the new things or much more
easily influenced by others, while some would be less likely
to be influenced by his friends or other contacts. Thus
similar to Kou et al. (2012), we divide the agents into open-
minded-, moderate-minded-, and close-minded-subgroups
respectively depending on the different confidence levels,
but unlike the work by Kou et al. (2012), where the agents
in the same sub-group share the same confidence level,
we assume the bounded confidence ϵi of each subgroup is
heterogeneous.

By considering the result of Fortunato (2005), which shows
that the consensus threshold for homogeneous HK model is
about ϵc ∼ 0.2 for the complete graph, and the confidence
level that was chosen by Kou et al. (2012), as well as the
result of time evolution of MHK(2) shown in Fig.2, we
suppose the confidences of close-minded agents uniformly
distributed in the interval [0.01 0.05], moderate-minded
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Fig. 3. The number of final opinion clusters with different
proportion of close-minded agents pc. The result refers
to 100 agents, po = 20% and pm = 1− pc − po, and is
an average over 50 realizations which have the same
initial opinion profiles

agents in [0.2 0.3] and open-minded agents in [0.4 0.9],
respectively.

In what follows, we will investigate how the proportion of
close-minded and open-minded agents, as well as the pop-
ulation size, can influence the opinion dynamics according
to MHK (2). We denote the proportion of close-minded-
, moderate-minded- and open-minded-agent as pc, pm, po,
respectively. Obviously, it always holds that pc + pm +
po = 1. Assume that the agents for each subgroup are
chosen randomly; the bounded confidence ϵi follows u-
niform distribution in the corresponding intervals; initial
opinions are generated from the opinion space [0 1] with
uniform distribution and the simulations are carried out
in the complete network. All of the following results are
an average over 50 realizations.

3.1 Proportion of close-minded agents

We consider a population of n = 100 agents and the
proportion of close-minded agents pc varies from 0 to 30%.
The relation between pc and the number of final opinion
clusters when the proportion of open-minded agents po =
20% is shown in Fig.3, from which we can observe that
the number of final opinion clusters is nearly proportional
to the percentage of close-minded agents pc under the
same population size. This is easy to understand. Since the
close-minded agents are less likely to consider other agents’
opinions, more opinion will be kept unchanged with more
close-minded agents, as a result, the number of the final
opinion clusters becomes larger.

3.2 Proportion of open-minded agents

Will a group with more open-minded agents result in less
different opinions, or make an agreement more quickly?
We will investigate such problem in this subsection. We as-
sume the proportion of close-minded agents pc is fixed and
po varying from 0, i.e. only close-minded and moderate-
minded agents are considered, to 1 − pc, i.e. only close-
minded and open-minded agents are considered. We have
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Fig. 4. The number of final opinion clusters with different
proportion of open-minded agents po. The result refers
to n = 100, pc = 10% and pm = 1− pc − po and is an
average over 50 realizations.

done the simulations for pc = 5%, 10%, 20% respectively.
In order to eliminate the influence of initial opinion, the
same initial profile as previous subsection is used. The
three cases have the qualitatively similar results, thus only
the result of pc = 10% is presented here.

Fig.4 shows the number of final opinion clusters with
different proportion of open-minded agents po. It can be
seen that on one hand, when po = 0, the number of final
opinion clusters is much smaller compared to that when
po > 0; on the other hand, as po increases from certain
level, which is about 15% in this case, to 90%, the number
of final opinion clusters remains almost stable. Thus it can
be conjectured that open-minded agent cannot contribute
to forging different opinions and the existence of open-
mined agent may even diversify the final opinions.

The relative size of the largest cluster with different po are
shown in Fig.5. The relative size is the ratio between the
number of agents in the largest final opinion cluster and
the whole population size. It is interesting to find that
the relative size of the largest cluster varies along concave-
parabola-like curve as po increases. There is a minimum
point of the relative size, which occurs at about pm = po.

Fig.6 demonstrates the convergence time as a function of
the proportion of open-minded agents po, where pc = 0.1.
It can be observed that the convergence time increases
dramatically at the beginning and then decreases gradu-
ally, as po increases from 0 to 90%. Thus it can be drawn
that open-minded agent may accelerate an subgroup agree-
ment in the mixed population, where close-minded, open-
minded, and moderate-minded agents coexist, however,
compared to the population without open-minded agent,
the existence of such agent will result in increasing the
convergence time, especially when po is small.

3.3 Population Size

The effect of the population size on the opinion dynamics
will be investigated in this subsection. We consider the
population size n increasing from 100 to 2500, and assume
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Fig. 5. Relative size of the largest cluster with different po.
The result refers to n = 100, pc = 10% and pm = 1−
pc − po and is an average over 50 realizations
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Fig. 6. Convergence time with different po. The result
refers to n = 100, pc = 10% and pm = 1 − pc − po
and is an average over 50 realizations.

the proportion of each subgroup as pc = 0.1, pm =
0.7, po = 0.2 for all the population size.

The average number of final opinion clusters with different
population size is shown in Fig.7, from which it can be
seen that the average number of final opinion clusters
increases dramatically at the beginning when population
size increases from 100 to about 500 and then it reaches
the stable level even though n continues to increase. This
result is quite different from that in the work (Kou et al.
(2012)), which claimed that when pc is fixed, the number
of final opinion clusters is proportional to the total number
of agents and can be approximated by a linear function.

4. CONCLUSIONS

In this paper, we investigate the continuous opinion dy-
namics in the population level with group-based hetero-
geneous confidences. First, a slightly modified HK model
is proposed based on non-Bayesian rules, and then the
agents are divided into three subgroups: open-minded-,
moderate-minded-, and close-minded-subgroups, respec-
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Fig. 7. The number of final opinion clusters with different
population size. The result refers to pc = 0.1, po =
0.2, pm = 0.7 and is an average over 50 realizations.

tively, according to their corresponding confidence levels.
It is assumed that the confidence level of the agents in the
same subgroup is heterogeneous and follows uniform dis-
tribution in the corresponding intervals, which is different
from Kou et al. (2012) and Weisbuch et al. (2002), where
agents in the same subgroup have the bounded confidence
level. Numerical simulations are given to investigate the
influence of open-minded agents, close-minded agents, and
the population size on the opinion dynamics. The results
can be summarised as follows:
(1) Intuitively, the number of final opinion clusters is
dominated by the proportion of the close-minded agents,
and for the fixed population size, the larger pc, the more
final opinion clusters.
(2) Open-minded agent cannot contribute to forging the
different opinions, instead, the existence of open-minded
agents will diversify the final opinions; it is also inter-
esting to find that the relative size of the largest cluster
varies along concave-parabola-like curve, as po increases.
In addition, open-minded agent may promote an subgroup
agreement in the mixed population, however, when po is
too small, the existence of such agent will increase the
convergence time, compared to the population without
open-minded agent.
(3) For the fixed proportion pc, po, pm, as the population
size n increases, the average number of final opinion clus-
ters increases at the beginning and then reaches the stable
level, which is quite different from that in the work (Kou
et al. (2012)).

However, in this paper, we only carry out the simulations
on the complete network, and the influence of network
topology is still unveiled here. We assume the initial
opinion profiles and the heterogenous bounded confidences
follow uniform distribution in the corresponding intervals,
thus we can analyze the influence by the initial opinion as
well as the confidences with different distribution.Another
aspect we would like to point out is that the confidence
intervals for each subgroup are chosen tentatively and the
reasons behind some of the results are not disclosed as
well.
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