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Abstract: When a cylindrical probe vibrates laterally in a fluid at a Reynolds number of order
10, a circulatory pattern of flow is established in the fluid near the probe. In a plane transverse
to the probe, a symmetric arrangement of four streaming cells is maintained by the probe’s
vibration. A computational model has shown that inertial particles introduced to such a flow
will be attracted to the centers of the streaming cells. We present preliminary experimental
data supporting this prediction and outline a strategy whereby particles captured in this way
can be transported from place to place as a result of periodic variations in the excitation of a
fluid containing two independent probes. Specifically, we model the time-averaged flow around
two probes by superposing two copies of a velocity field obtained analytically for the single-
probe case and demonstrate that a cyclic change in the two-probe flow can engender acyclic
variations in the positions and character of fixed points. A fixed point that’s initially attractive
to inertial particles can be moved from the vicinity of one probe to the vicinity of another and
then annihilated or altered via bifurcation so that it will surrender the particles it carries. If
parametric variations in such a flow are slow relative to the dynamics of particles migrating
to attracting points, then the net displacement of inertial particles from one trapping point to
another as a result of a cyclic change in the flow exhibits certain features of a geometric phase.

Keywords: nonlinear systems, di↵erential geometric methods, flow control, parametric
excitation, biomedical systems

1. INTRODUCTION

The ability to manipulate particles suspended in fluids
on a micrometer scale has a variety of applications, some
of which prohibit individual mechanical particle handling.
The particles in question may be cells from a biological
sample, to be separated according to cell type and tallied
for cancer diagnosis (de Bono et al. (2008)), for instance,
or they may be abrasive particles to be circulated in
proximity to a brittle surface for precision machining
(Nowakowski et al. (2009); Howard et al. (2013)). The first
of these applications illustrates the need for contact-free
technology to manipulate fragile particles without risking
damage to them. Both examples illustrate the need for
high-throughput technology that can direct the sustained
transport of particles without feedback control at the level
of individual particle position.
?

Support for this work was provided in part by the National Science

Foundation grant CMMI-1000656.

To collect nutrients from their surroundings, sessile aquatic
protozoa like Vorticella use vibrating cilia to drive stream-
ing flows that transport nearby food particles to their
mouths (Vogel (2003)). Although a single such organism
may possess many cilia, it’s common for the cilia of a single
organism to beat synchronously to drive a flow that can be
characterized with relatively few parameters. Circulatory
patterns like those observed near the mouth of a solitary
feeding protozoan can even be established by exciting a
fluid with a single vibrating probe. 1 If a fluid is excited
by several probes vibrating independently in proximity to
each other, complex patterns of material transport can
be created and manipulated by varying the amplitudes,
frequencies, and directions of the probes’ motion. The
authors believe that this suggests a practicable approach
for particle manipulation in engineered environments.

1
Video footage of such an experiment, conducted by the third

author, is visible at http://kellyfish.net/insitutec.mov. The

probe in the video is roughly 6 µm thick.
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Fig. 1. Left: The time-averaged trajectory of a small iner-
tial particle against the backdrop of time-averaged La-
grangian streamlines in a flow with Reynolds number
40, described in detail in Chong et al. (2013). Right:
A portion of the particle’s actual trajectory (in red)
with periodic samples exhibiting net motion (in blue).

2. PARTICLE CAPTURE IN STREAMING FLOWS
DRIVEN BY VIBRATING CYLINDERS

To better understand particle transport near a single lat-
erally vibrating cylinder at Reynolds numbers of order
10, the authors recently developed a model based on an
analytical representation (from Holtsmark et al. (1954))
of the flow near such a cylinder in the absence of particles.
While the addition of particles of arbitrary size may per-
turb such a flow significantly, su�ciently small particles
represent a negligible perturbation. This is the premise of
theMaxey-Riley equations (fromMaxey and Riley (1983)),
which model the behavior of a small particle driven by
a background flow by assuming that the flow dynamics
are independent of the particle dynamics. In Chong et al.
(2013), the authors and a collaborator used the Maxey-
Riley equations to demonstrate that small particles sus-
pended in the fluid near a single vibrating cylinder will be
attracted to the centers of four streaming cells that persist
at locations arranged symmetrically around the cylinder’s
average position.

Fig. 1 illustrates this trapping of particles. The left panel
depicts the flow in one quadrant adjacent to the cylinder,
which is shown in grey. The cylinder vibrates from left
to right, and the flow shown is mirrored in the three
omitted quadrants. Although the flow is unsteady, the
time-averaged trajectories of fluid particles — the time-
averaged Lagrangian streamlines — are closed. Some such
streamlines are shown in light grey. Fluid particles com-
plete excursions around these streamlines slowly; each os-
cillation in the cylinder’s position advances a fluid particle
a small distance (in the net) along one of these streamlines.
The small material displacement of the fluid by each cyclic
variation in its boundary is known as Stokes drift, having
first been analyzed (in the context of a di↵erent physical
problem) in Stokes (1847).

The right panel in Fig. 1 depicts (in red) a portion of
the trajectory of an inertial particle driven by the back-
ground flow. This trajectory was computed by integrating
the Maxey-Riley equations numerically. Since the fluid
oscillates with the cylinder, so too does the particle, and
the trajectory shown exhibits a significant high-frequency
component. The net displacement of the particle after each

oscillation is nonzero, however, and periodic sampling of
the particle’s position (in blue) reveals a distinct average
trajectory. The blue spiral in the left panel represents a
more extensive set of periodic samples from the particle’s
trajectory. The point on the blue spiral that’s farthest from
the cylinder is the particle’s initial location; vibration of
the cylinder induces the particle to migrate to the center
of the innermost Lagrangian streamline.

3. PHYSICAL MODEL VALIDATION

Fig. 2 depicts an experimental apparatus that’s been
developed to verify the phenomenon of particle capture
shown in Fig. 1. A cylindrical probe half a millimeter thick
protrudes downward from an aluminum flexure (Smith
(2000)) into a petri dish containing water seeded with
silvered glass beads. The flexure is driven piezoelectrically
to cause the probe to vibrate laterally at a frequency
adjustable up to 10 kHz. A horizontal plane containing
a cross section of the probe away from its tip is imaged
with a high-speed video camera.

The left side of Fig. 3 depicts still frames from footage
captured using the system in Fig. 2. Each of the four
frames in the top row represents the superposition of its
predecessors (from left to right) with a subsequent still
image. Each of the four frames in the bottom row is a close-
up of the top left corner of the frame above, as indicated by
the yellow box. The vibrating probe is seen in the center of
each frame in the top row and in the corner of each frame
in the bottom row. The blue circular disk overlapping the
bottom right frame indicates the position and scale of the
probe and its direction of motion.

The experiment depicted in Fig. 3 is preliminary, but
the images clearly show that glass beads in proximity to
the probe, visible as light pixels, spiral inward toward
the centers of the four surrounding streaming cells. The
leftmost frame in the bottom row depicts beads distributed
around a cell with an unpopulated center. Each subsequent
frame indicates increased migration of beads into this
center, highlighted by the yellow arrow in the third panel.

The right side of Fig. 3 reconstructs the time-averaged
velocity field representing the beads’ motion around one
streaming cell via particle image velocimetry, inferring ve-
locity vectors from comparisons of sequential still images.
Again, the blue circular disk indicates the probe’s scale
and direction of motion. Because the beads used in this
experiment are small and neutrally dense, their velocities
resemble the velocities of fluid particles and their time-
averaged trajectories diverge only gradually from time-
averaged Lagrangian streamlines. Because the probe vi-
brates thousands of times per second, however, beads are
captured in the centers of streaming cells within seconds.

4. CONTROL VIA GEOMETRIC PHASE

The concept of geometric phase applies when a cyclic
change in some of the variables specifying a system’s con-
figuration engenders a net change in other such variables
in a manner that’s independent of time parametrization.
Typically, the context is that of a system with a config-
uration manifold exhibiting a physically meaningful bun-
dle structure. The configuration of a robotic vehicle that
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Fig. 2. Apparatus for imaging particle transport near a solitary vibrating probe.

Fig. 3. Left: Superposed frames from video captured using the apparatus from Fig. 2, indicating particle capture
consistent with Fig. 1. Right: Velocity field data reconstructed from comparisons of particle positions in successive
frames. The blue probe is positioned to fit both sides of the figure.

changes its internal shape to propel itself, for instance,
corresponds to a point in a bundle over the manifold of
points representing internal shapes. Fibers of this bundle
are copies of the Lie group of translations and/or rotations
of the vehicle in ambient space; the net translation and/or
rotation associated with a cyclic shape change — in other
words, the net resulting fiberwise displacement — repre-
sents a geometric phase if it’s independent of the rate at
which this change is executed. Robotic locomotion based
on geometric phase was discussed in detail in Kelly and
Murray (1995).

Stokes drift provides another example of geometric phase.
The deliberate displacement of fluid particles as a result
of cyclic displacements in the position of a cylindrical
probe was treated as a control problem in Or et al. (2009).
The objective therein was the design of trajectories in the
manifold of probe positions to generate desired fiberwise
displacements in a symplectic bundle over this manifold.
The evolution of a fluid surrounding a moving probe
consists exclusively of geometric phase in the driftless
Reynolds-number extremes of ideal flow and Stokes flow;
the mathematical parallelism between these physically
diverse settings was discussed in Kelly and Murray (1996).

In the present paper, we invoke the concept of geometric
phase in the context of inertial particle transport near
a pair of parallel probes like the probes in Figs. 1 and
3 vibrating independently in proximity to one another.
The motion of each probe is parametrized by its axis,

amplitude, and frequency of vibration. Each choice of these
parameters determines a periodic flow characterized by a
time-averaged Lagrangian streamline pattern akin to, but
topologically more complex than, that in the left panel
of Fig. 1. Inertial particles released into this flow will,
over time, accumulate at trapping points corresponding
to centers — or, presumably, to su�ciently stable spirals
— in the averaged Lagrangian velocity field.

In general, if the parameters specifying the motion of the
probes are varied gradually, trapping points in the flow
will be displaced gradually, transporting trapped particles
with them in a reversible manner. If flow parameters attain
certain combinations of values, however, bifurcations in
the averaged flow field may occur that cause trapping
points to alter their character as fixed points or to vanish
entirely. When a trapping point ceases to be attractive to
inertial particles, the particles it carries will be released
to converge to other trapping points. This process is
irreversible; restoring a trapping point that’s surrendered
its particles won’t recover these particles if they’ve been
given time to settle at another trapping point.

Suppose that the parameters specifying the motion of the
probes are varied in a cyclic manner, but that particles
in the flow are given time at every step to converge
to trapping points. If a cyclic excursion in parameter
space induces no bifurcation in the time-averaged flow,
then trapped particles will exhibit no net displacement
at the end of each cycle. If a cycle involves one or more
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bifurcations, however, particles trapped at a certain point
at the beginning of the cycle may be trapped elsewhere
at the end of the cycle, even though the original flow field
has been restored. As long as the flow is deformed slowly
relative to the migratory dynamics of untrapped particles,
furthermore, the net transport of particles throughout
the flow associated with a particular cyclic variation in
parameters will depend only on the geometry of the
loop executed in parameter space and not on its time
parametrization.

In this last regard, the net transport of inertial particles
associated with a slow cyclic deformation of the flow
resembles the geometric phase associated with a closed
path in a manifold on which coordinates correspond to
directions, amplitudes, and frequencies of probe vibration.
This phase corresponds to fiberwise motion within a bun-
dle over the aforementioned manifold; points in each fiber
correspond to arrangements of trapped particles within the
flow. We defer a deeper analysis of this interpretation for
another paper, but we demonstrate explicitly in Section
5 that cyclic parametric variations can indeed produce
bifurcations of the kind required for net particle transport.

5. TRANSPORT OF CAPTURED PARTICLES VIA
PERIODIC FLOW DEFORMATION

The Lagrangian streamline pattern depicted in the left
panel of Fig. 1 is based on an analytical expression
obtained in Holtsmark et al. (1954). A simplified model
for the same time-averaged flow field, limited in scope
to the flow outside a thin boundary layer surrounding
the cylinder, was developed in Schlichting (1932), where
versions of the velocity field were obtained for the case in
which no outer boundary is present and for the case in
which a circular outer boundary is present.

In the present paper, we model the flow transverse to
a pair of vibrating probes by superposing two copies of
the bounded velocity field from Schlichting (1932), each
parametrized to match the excitation due to one of the
probes. This model is clearly an approximation, since the
velocity field associated with either probe will fail to satisfy
the boundary conditions on the other probe, and since the
outer circular boundaries observed by the two individual
fields will be misaligned. Su�ciently far from boundaries,
however, we believe our model to represent the correct
averaged velocity field with su�cient fidelity to warrant
analysis.

Schlichting (1932) considered the flow around a trans-
versely vibrating cylinder of radius r

1

enclosed by a circu-
lar boundary of radius R. The stream function  is given
in polar coordinates (r,�) by
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We can use (2) to plot the average streamlines that result
from the vibrations of the cylinder; such a plot is shown in
Fig. 4. The stream plot shows four symmetric streaming
cells. The four fixed points are linear centers, which implies
that (according to Chong et al. (2013)) particles would be
attracted to these locations. The positions of these fixed
points depend only on the radii r

1

and R. The coordinates
of the fixed points are (x

c

, y
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), with
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The model with two vibrating cylinders is constructed by
superposing the vector fields induced by two independent
cylinders. To each cylinder we assign a parameter ✓ repre-
senting the angle between the direction of oscillation and
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Fig. 4. Streamlines generated by a solitary vibrating cylin-
der. Motion of the cylinder is parallel to the x-axis.
The cylinder is indicated by the tiny grey disk in
the center of the figure; the outer boundary of the
region has a much larger radius than the cylinder in
order to approximate the conditions of experiments
like that shown in Fig 3. The four red dots represent
the positions of fixed points in the velocity field. The
parameters used to generate this plot were s = 0.009,
! = 3.1, r

1

= 0.01, and R = 1.

the x-axis and an additional pair of parameters represent-
ing the cylinder’s displacement from the origin.

The procedure to rotate and translate a cylinder (and the
velocity field it generates) is as follows. If

ẋ = f(x, y), ẏ = g(x, y)

denote the velocity field given by (2) andR(✓) is a rotation
matrix
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ẋ

ẏ

�
=


f̃(x� h, y � k, ✓)
g̃(x� h, y � k, ✓)

�
. (3)

We now consider the specific case of two cylinders, sep-
arated symmetrically along the x axis by a distance 0.3,
with angles ✓

1

and ✓

2

. This vector field can be obtained
by the direct addition of two vector fields of the form (3),
yielding
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Fig. 5. Superposition of two velocity fields created by the
vibration of two cylinders with spacing of 0.3. Only
the intersection of the two circular regions with radius
R centered around the two cylinders is shown. (Axis
labels will be omitted in further plots.)
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2

= 0.15, and k

1

= k

2

= 0. A stream
plot for this field with ✓

1

= ✓

2

= 0 can be seen in Fig. 5.

We next apply a cyclic variation to the control parameters
✓

1

and ✓

2

, parametrized in degrees as

✓

1

(t) =

8
><
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0 0  t  90
t� 90 90  t  180
90 180  t  270
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(4)

These functions are plotted against time in Fig. 6. In Fig.
7 we show a sequence of snapshots of the velocity field
generated by the vibrating cylinders as ✓

1

and ✓

2

vary. For
✓

1

= ✓

2

= 0, the velocity field is the same as that shown in
Fig. 5. We track the trajectory of one fixed point, shown
as a dot in the top left panel of Fig. 7, in pink.
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From t = 0 to t = 180, this fixed point moves smoothly
from right to left, interacting closely with no other fixed
point. At t = 90, the fixed point is clearly a center. From
t = 180 to t = 268, the fixed point and a saddle point
approach each other. Right after t = 268, approximately
when ✓

1

= 1.7� and ✓

2

= 90�, a collision occurs in which
the fixed point we’ve been tracking is annihilated.

Another bifurcation occurs shortly thereafter, when t ⇡
276, and a new saddle point and spiral emerge nearby.
These are seen as dots in the third panel in the middle
row of Fig. 7; we now track their trajectories in pink. The
spiral follows a trajectory thereafter that leads it to collide
with another saddle and vanish shortly after t = 312. The
saddle point survives the completion of the cyclic variation
in ✓

1

and ✓

2

, migrating to the location of one of the saddles
that were visible at the beginning of the cycle.

This example represents only one of many cyclic variations
that can be applied to the excitation of a pair of vibrating
cylindrical probes, but it illustrates that such a cyclic
variation can induce a fixed point that’s initially attractive
to inertial particles to migrate significantly from its initial
location in the flow and then to vanish, releasing whatever
particles it carried with it into the basin of attraction of
a di↵erent fixed point. Though inducing no net change in
the fluid velocity field, a cyclic change in flow parameters
can thus result in the net redistribution of trapped inertial
particles in the neighborhood of a pair of probes.
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Fig. 7. Sequence of stream plots generated as ✓

1

and ✓

2

vary through one cycle according to (4). The sequence goes
from left to right, then from top to bottom.
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