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Abstract: A new guidance law utilizing variable structure control with finite time sliding sector is 

proposed. First, a finite time sliding sector is defined. The finite time sliding sector is a subset of state 

space in which the Lyapunov function candidate satisfies the finite time stability condition, in contrast to 

the commonly used notion of asymptotic stability in conventional sliding sector. Then, based on the finite 

time sliding sector, a sliding sector control law is designed to move the system state in to the sector in 

finite time. The target acceleration is considered as an uncertainty. The proposed sliding sector guidance 

law is derived by supposing the target acceleration upper bound can be estimated as a priori. Simulation 

results show that the new guidance law is highly effective. 
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

1. INTRODUCTION 

A large number of design methods have been applied to 

missile guidance problems, ranging from proportional 

navigation (PN) to robust control algorithms. The PN 

guidance law has been widely used due to its advantages such 

as simple form and easy implementation (Guelman, 1971; 

Zarchan, 2012). If the target does not maneuver, the PN 

guidance law can achieve high precision. When the targets 

acceleration information can be obtained, the augmented 

proportional navigation (APN) and the predictive guidance 

law (PGL) are proposed to intercept maneuvering targets (Ha 

et al., 1990; Talole & Ravi, 1998). However, the target 

acceleration is hard to be estimated precisely in practical 

applications. Therefore, some robust control algorithms have 

been applied to guidance problems such as the H∞ guidance 

law (Yang & Chen, 1998; Chen et al., 2002; Shieh, 2007), the 

L2 gain guidance law (Zhou et al., 2001), the Lyapunov 

nonlinear guidance law (Lechevin & Rabbath, 2004) and the 

variable structure guidance law (Zhou et al., 1999; Moon et 

al., 2001; Zhou et al., 2009; Babu et al., 1994; Zhou et al., 

2013).  

The variable structure control is well known for its 

robustness properties, but it is suffering the chatting 

phenomena. To deal with the chatting phenomena existing in 

a VSC system, a sliding sector (Furuta & Pan, 2000) for a 

linear time invariant (LTI) system has been proposed instead 

of sliding mode. The sector is designed by the algebraic 

Riccati equation (ARE). For the nonlinear time varying 

(NTV) system with a matched uncertainty, the forward 

integration of state dependent differential Riccati equation 

(SDDRE) is used to design an NTV sliding sector (Pan et al., 

2009). It has been show that the Lyapunov function decreases 

with a VSC law inside the sector. And outside the sector, a 

sliding sector control (SSC) law is designed to move the 

system state into the sector in finite time. But it can’t ensure 

the finite time stability while inside the sector. 

In recent years, the finite time stability (Hong, 2002; Huang 

et al., 2002) for feedback control systems has gained 

increased attention. It was demonstrated that finite time 

stable systems might enjoy not only faster convergence but 

also better robustness and disturbance rejection properties 

(Huang et al., 2002; Bhat & Bernstein, 1997; Bhat & 

Bernstein, 1998; Bhat & Bernstein, 2000). In this paper, the 

relative motion equations between the missile and the target 

are represented in a state dependent linear time variant 

(SDLTV) form. The finite time sliding sector is designed in 

which the Lyapunov function candidate satisfies the finite 

time stability condition. A SSC guidance law using the finite 

time sliding sector is proposed based on the solution of 

SDDRE.  

The paper is organized as follows. In Sec. 2, the missile-

target engagement problem is formulated. In Sec. 3, the finite 

time sliding sector is defined and the new guidance law is 

proposed utilizing the VSC with finite time sliding sector. 

Numerical simulation results are shown in Sec. 4, and 

conclusions are reported in Sec. 5. 

2. PROBLEM FORMULATION 

Considering the spherical line of sight (LOS) coordinates 

 , ,r   with origin fixed at the missile’s gravity center. Let 

r
e , e


and e


be the unit vectors along the coordinate axes. 

Fig.1 is the three-dimensional pursuit-evasion geometry 

between the missile and the target.  
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Fig.1. Three-dimensional interception geometry. 

In Fig.1, the missile M is attempting to intercept a target T. In 

the guidance process, the missile and the target are assumed 

as two point masses. By virtue of the principles of kinematics, 

the relative motion can be expressed by the following set of 

second-order nonlinear differential equations (Chen et al., 

2002; Shieh, 2007): 

 2 2 2
cos

Tr M r
r r r a a        

                     
(1) 

cos 2 cos 2 sin
T M

r r r a a
 

                  
 
(2) 

   
2

2 sin cos
T M

r r r a a
 

                
        

(3) 

where r is the relative distance between missile and target,   

and are LOS angles in elevation loop and the azimuth loop, 

respectively. 

Let
r

V r , cosV r


  ,V r


 , the relative velocity in the 

LOS coordinates can be expressed as  
T

m t r
V V V

 
   V                              (4) 

In the terminal guidance phase, the relative speed and 

distance satisfy the following condition: 

 0, 0 0
r

V r r                                (5) 

The purpose of design a guidance law is to make sure that 

the tangential relative velocities V


andV


converge to zero. 

It means that the missile and target are in head-on condition. 

To design such a guidance law, (2)-(3) can be rewritten as 

tan
r

M T

V VV V
V a a

r r

 

  


                       (6) 

2
tanr

M T

V V V
V a a

r r

 

  


                        (7) 

The missile’s acceleration
M

a


and
M

a


are chosen as a form 

of an extension PN guidance law, that is 

r

M M

NV V
a u

r



 
                                  (8) 

r

M M

N V V
a u

r



 
                                  (9) 

where N is a navigation constant, 1N  .
M

u


and
M

u


will be 

designed in the sequel. Substituting (8)-(9) into (6)-(7), the 

nonlinear system can be represent in the SDLTV form 

     , ,t t  x Α x x B x u w                    (10) 

where, 

V

V





 
  
 

x ,  

 1 tan

,
tan ( 1)

r

r

N V V

r r
t

V N V

r r









  

 

 
 

 
 

A x , 

 , t  B x I ,
M

M

u

u





 
  
 

u , 
T

T

a

a





 
  

 

w  

In practical applications, the target acceleration w is unknown 

and is usually difficult to estimate, but its upper bound can be 

estimated as a priori. Suppose the target acceleration is 

bounded as 

f

w                                (11) 

with a positive constant f , where


w denotes infinity norm 

of w . 

3. GUIDANCE LAW DESIGN 

3.1  Finite time sliding sector 

An LTI sliding sector (Furuta & Pan, 2000) and an NTV 

sliding sector (Pan et al., 2009) are defined for the LTI 

system and the SDLTV system respectively. Considering the 

parameter uncertainties or external disturbances, a VSC law 

is implemented to ensure the decrease of the Lyapunov 

function candidate inside the sliding sector (Pan et al., 2009). 

In recent years, finite time stability of nonlinear systems has 

gained increased attention. The finite time stability theory for 

time-invariant nonlinear systems (Hong, 2002) is extended to 

time-varying nonlinear systems (Zhou, 2009) in the following 

lemma. 

Lemma 1 (Zhou, 2009): Consider the nonlinear system 

described as 

 ,x f x t ,  0, 0f t  , n
x R  

Suppose that there is a continuously differentiable 

function  ,V x t defined in the neighborhood
n

U R of the 

origin, and that there are real numbers 0  and 0 1  , 

such that  ,V x t is positive definite on U and that 

   , , 0V x t V x t


  onU . Then, the zero solution of the 

nonlinear system is finite time stable. The settling time, 

depending on initial state
0

x , is given by 

 

 

1

0
, 0

1
r

V x
T



 






. 

In this paper, based on the above lemma, a finite time sliding 

sector is defined as follows. 

Definition 1: A finite time sliding sector for the SDLTV 

system (10) is defined as 

      , , , 0,t t t t R


   x x σ x δ xS        (12) 

inside which a Lyapunov function candidate satisfies the 

finite time stability condition 

(1)  ,V tx is positive define; 
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(2)    , , 0V t cV t


 x x . 

where the real numbers 0c  and 0 1  .  

In the case of the conventional sliding sector, it requires 

only  ,V tx be positive definite and  ,V tx be negative 

definite for all ( ) ( , )t tx xS . On contrary, the finite time 

sliding sector above requires a much stronger condition. The 

control input u and the sliding sector (12) can be determined 

by the following SDDRE 

           

       

T
, , , , , ,

, , , ,

t t x t t t t

t t t t

   



P x A x P P x A x Q x

P x B x B x P x
   (13) 

Since (10) is an NTV system, the closed form solution 

 , tP x cannot be obtained easily. Here, the matrix  , tQ x is 

chosen as a special form 

          

 
2

1 2 1 1 1

1

r r
br r N V ar br a b rV

r ar

      



Q I (14) 

where the real numbers 0 a b  . Since the navigation 

constant 1N  ,  0 0r r  and 0
r

V  , it follows that 

 , 0t Q x . Then, fortunately,  , tP x can be solved as 

 
1+

, =
1

br
t

ar
P x I                          (15) 

It can be adjusted off-line to achieve desired performance, 

and the time-consuming online computation is avoid when 

solving the SDDRE (13). Thus,  , tσ x and  , tδ x are 

obtained as 

   , ,t tσ x S x x                              (16) 

   
T

, ,t x t δ x x x                         (17) 

where      
T

, , ,t t tS x B x P x ,      , , , 0t t t   x Q x R x  

and  , 0t R x .The VSC law used inside the sliding sector is 

designed as 

     
2 1

1 2
, sgn ,k k t t

 

  u σ x σ x            (18) 

The parameter
1

k and satisfy 

0 . 1const                                    (19) 

1
k f                                         (20) 

  

    
m ax

2 T

m in

,
, . 0

2 , ,

c t
k c const

t t





  
P x

S x S x

    (21) 

where  min
 and  m ax

 denote the minimum and maximum 

singular value of matrix respectively. 

For clarity, from now on, we omit the arguments x and t to 

simplify the notation. For all x S , the derivative of the 

Lyapunov function T
V  x Px along the trajectory of system 

(10) satisfies 

   

   

 

 

T T T

T T T

2 2 T T

T

2

2

2

2

V     

   

    

 

x P A P PA x σ u w

x PBB P Q x σ u w

σ δ x Rx σ u w

σ u w

          (22) 

Substituting (18) into (22), we have 

    
2 1T

1 2

2

2

2 sgn sgn

2

V k k

k







   

 

σ σ σ σ w

σ

  (23) 

where we used the inequality  sgn σ σ σ . 

According to the property of singular value, we have 

 
2 2T

min
σ S S x                         (24) 

 
2

m ax
V  P x                            (25) 

Combining (24) and (25) produces 

 

 

T

m in2

m ax

V





S S
σ

P
                        (26) 

Substitute (26) into (23) yields 

 
 

 

 

T

min

2

max

, 2

,

V t k V

cV t








 

 

S S
x

P

x

                  (27) 

Therefore, the sector defined by (12) is a finite time sliding 

sector. 

Remark 1. According to Lemma 1, if the state keeps inside 

the sector, the settling time, depending on the initial state 

is given by 

 

 

1

0

1

, 0

1
r

V
T

c










x
                                 

It is shown that the convergent time relates to the 

parameters c and , so we can control the convergent rate 

by adjusting these parameters. 

3.2  Guidance law with finite time sliding sector 

Based on the finite time sliding sector just given, the 

guidance law with finite time sliding sector is designed via 

finite stability theory in the following theorem. 

Theorem 1. For the guidance system (10), if the guidance law 

is designed as an extension of traditional PN guidance law 

   

    

2 1

1 2

2 11

3 4

sgn

sgn

r

r

N V
k k

r

N V
k k

r










    

 

     


x σ σ x

a

x h g h σ σ x

S

S

  (28) 

where
T

M M
a a

 
   a ,  T T

 g B P B PA x , T
h B PB , 

the parameter 0 . 1const   ,
3

k f ,and 
4

. 0k const  . 

Then, for all x S , the system states (i.e., tangential relative 

velocities) satisfy finite time convergence, and for all x S , 

the tangential relative velocities move into the sliding sector 

S in finite time. 

Proof: 

Case 1. For all x S , from (27), we obtain that the derivative 

Lyapunov function T
V  x Px  along the trajectory of system 
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(10) satisfies 0V cV


  , which implies satisfaction of the 

finite time stability condition. 

Case 2. Outside the sliding sector, since  B I and P is 

symmetric positive definite, h is invertible and 0h . The 

control input u is designed as 

    
2 11

3 4
sgnk k

 
   u h g h σ σ  

The derivation of the function  , tσ x is obtained as 

   

   

 

T

T T

T T T

d d

dt dt
 

 

   

  

σ Sx B Px

B Px B Px

B P B PA x B PB u w

g h u w

             (29) 

Defining    
T

, ,V t t σ x σ x , it follows that 

 

    
 

T 1

3

2 1

4

2 1 T

4

2 sgn

sgn

2 sgn

V k

k

k











   

 

 

σ g h h g h σ

σ σ w

σ σ σ

 

4
2k V


                                              (30) 

which implies the system state will move into the sliding 

sector in finite time.□ 

Remark 2. From (30), the settling time can also be obtained 

as 

 

 

1

0

2

4

, 0

2 1
r

V
T

k










x
                                      

Remark 3. In the guidance law (28), it does not need the time-

consuming online computations to solve the SDDRE (13), 

such that the guidance law can be implemented easily in 

practical applications. The closed form solution can be 

obtained by choosing proper parameters N and Q . These 

parameters can be adjusted off-line to achieve desired 

performance. 

4. SIMULATION RESULTS 

In this section, a space interception problem is investigated. 

The interceptor’s initial position coordinates are
0

0m
M

x  , 

0
0m

M
y  and

0
0m

M
z  . Its initial velocity is

0
1600m /s

M
V   

and its initial flight-path and heading angles are
0

30 deg
M

   

and
0

0 deg
M

  , respectively. The target’s initial position 

coordinates are
0

8.8km
T

x  ,
0

12km
T

y  and
0

5.6km
T

z  . Its 

initial velocity is
0

900m/s
T

V  and its initial flight-path and 

heading angels are
0

10 deg
T

   and
0

120 deg
T

  , 

respectively. It is easy to calculate the initial relative distance 

between the interceptor and the target: 15.9kmr  , and the 

initial LOS angles: 36.4 deg  and 20.6 deg  . The 

measurements of LOS angular rates given by the target 

seeker involve a stochastic noise. The target’s maximum 

acceleration in the azimuth loop and the elevation loop both 

are 100 m/s
2
. Thus

1
k and

3
k is set to be

1
100k  and

3
100k  , 

respectively.  

In the guidance law (28), it is required that the navigation 

constant 1N  . N is the parameter of PN guidance law, we 

are quite familiar with it. The effective navigation constant is 

usually 3 5 . We just set it as 4N  .The other parameters of 

the guidance law are chosen as 1a  , 2b  , 1c  ,
4

1k  , 

0.1   , 0.35R Q . , For comparison purposes, we also 

design a guidance law via NTV sliding sector control method. 

If we let
2 4

0k k  , the NTV sliding sector guidance 

(NTVSSG) law is obtained. The finite time sliding sector 

guidance (FTSSG) law is compared with NTVSSG law and 

the adaptive sliding mode guidance (ASMG) law (Zhou et al., 

1999).  

Case 1. Intercept a non-maneuvering target. In the first case, 

we just consider use the guidance law to intercept non-

maneuvering target which moves along a straight line with a 

constant velocity and assume that the missile’s initial position 

and velocity are in the flight plane of the target. 

Table 1. Miss distance for case 1 

Guidance law Miss distance, m 

ASMG 0.312 

NTVSSG 0.145 

FTSSG 0.042 

 

 

Fig. 2. Simulation results for case 1. 

The tangential relative velocity and the missile acceleration 

in the elevation loop and the azimuth loop are plotted in Fig. 
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2a) and Fig. 2b), respectively. The tangential relative velocity 

and the missile acceleration in the azimuth loop are plotted in 

Fig. 2c) and Fig. 2d), respectively. Fig. 2e) is the evolution 

of  , txS . Table 1 summarizes the miss distances resulted. 

Case 2. Intercept a maneuvering target. In the second case, 

the initial position and velocity of the target and the initial 

position and velocity of the missile are the same as those in 

case1. The target acceleration in the elevation loop and the 

azimuth loop are s 100
T

a

  m/s

2
 and 100

T
a


 m/s

2
 , 

respectively. 

The tangential relative velocity and the missile acceleration 

in the elevation loop and the azimuth loop are plotted in Fig. 

3a) and Fig. 3b), respectively. The tangential relative velocity 

and the missile acceleration in the azimuth loop are plotted in 

Fig. 3c) and Fig. 3d), respectively. Fig. 3e) is the evolution 

of  , txS . Table 2 summarizes the miss distances resulted. 

Table 2. Miss distance for case 2 

Guidance law Miss distance, m 

ASMG 0.717 

NTVSSG 0.303 

FTSSG 0.075 

 

 

Fig. 2. Simulation results for case 2. 

From Fig. 2-3, we can see that in three dimensional guidance 

dynamics, the ASMG and the NTVSSG law ensure that the 

tangential relative velocities converge to zero asymptotically. 

The missile translation acceleration converges to the target 

translation acceleration as the tangential relative velocities 

converge to zero. Both of the FTSSG and the NTVSSG send 

the system state into the sliding sector in about 1 s. When 

intercepting a non-maneuvering target, the tangential relative 

velocities converge to zero in 2 s under the FTSSG law in Fig. 

2e). The time is 3.5s when intercept a maneuvering target in 

Fig. 3e). The tangential relative velocities converge faster in 

the finite time sliding sector than in the NTV sliding sector. 

As the tangential relative velocities converge to zero, the 

missile translation acceleration converges to the target 

acceleration. The missile acceleration under the FTSSG law 

ensures the tangential relative velocities enjoy fast 

convergence, resulting in a small miss distance. 

5.  CONCLUSION 

In this paper, a new guidance law is proposed using variable 

structure control with finite time sliding sector. The sliding 

sector is designed base on the finite time stability theory. The 

relations between the finite time sliding sector and the NTV 

sliding sector are discussed. The guidance command is 

derived by regarding the target maneuvers as bounded 

disturbance inputs. Since the closed form solution of the 

SDDRE is obtained by choosing proper parameters, it does 

not need the time-consuming online computations. In 

practical applications, the guidance law can be implemented 

easily. The guidance law is able to provide a high guidance 

precision in intercepting a maneuvering target because it is 

robust against disturbances. For comparison purposes, we 

also designed the NTVSSG law. The proposed FTSSG law is 

compared with NTVSSG law and ASMG law. Numerical 

simulations show that the proposed guidance law offers better 

performance than other guidance laws. 
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