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Abstract: The availability of accurate models for helicopter aeromechanics is becoming more and more
important, as rotorcraft flight control systems have to meet progressively more stringent performance
requirements: as the required control bandwidth increases, model accuracy becomes a vital part of
the design problem. In this paper, the results of a joint industry-academia research project aimed at
developing a novel time/frequency domain approach to rotorcraft model identification will be presented
and discussed. The proposed approach will be illustrated by means of a case study based on data collected
during piloted simulations of a state-of-the-art flight dynamics code.

1. INTRODUCTION

Model identification has been exploited extensively in the rotor-
craft community (see for example the recent books Tischler and
Remple [2006], Jategaonkar [2006] and the references therein),
to overcome the difficulties associated with the accurate de-
scription of the most sensitive issues in helicopter dynamics,
i.e., the complexity of the interaction between dynamics and
aerodynamics. In particular, from a control perspective accurate
dynamic models for helicopter aeromechanics are becoming
more and more important, as the requirements for rotorcraft
control systems become more and more stringent. The iden-
tification of rotorcraft flight dynamics poses many challenges,
which lead to specific requirements in the choice of a suitable
method. First of all, it is customary to work with continuous-
time models rather than with discrete-time ones, mainly be-
cause they are more intuitive, so that identification methods
for continuous-time models are needed. In addition, rotorcraft
systems are often open-loop unstable, so that identification ex-
periments have to be carried out in closed-loop, either under
pilot feedback or under automatic control. As a consequence,
model identification methods capable of coping with this sit-
uation would be preferable. Furthermore, in view of both the
open-loop instability and the complexity of some piloting tasks,
data for identification are frequently collected in separate exper-
iments in which each input channel is excited separately. The
capability to handle easily such separate datasets in a single
identification procedure is therefore desirable. The rotorcraft
system identification literature appears to be characterised by a
strong dichotomy opposing frequency-domain methods on one
hand and time-domain methods on the other hand. The former
assume that identification-oriented flight testing consists in the
execution of (manual or automatic) frequency sweeps, through
which reliable estimates of the frequency response functions
associated with the flight dynamics of the helicopter can be
reconstructed. The latter, on the other hand, rely on excitation
inputs such as, e.g., the 3211 sequence, developed at the Ger-
man Aerospace Center DLR for flight dynamics testing (see
Hamel and Kaletka [1997] for details), which excites a wide
frequency band within a short time period.

Both approaches have advantages and disadvantages, but sur-
prisingly enough no significant effort has been made so far
to combine the two viewpoint to develop a unified approach
allowing the refinement of parametric models using informa-
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tion coming from the two domains (see for example Pan-
zani and Lovera [2012] for a preliminary discussion of joint
time/frequency domain approaches to parameter estimation).
In view of the above discussion, in this paper the results of a
joint industry-academia research project aimed at developing
a novel time/frequency domain approach to rotorcraft model
identification will be presented and discussed. The proposed
approach consists of a multi-step procedure exploiting the best
features of a number of existing methods and tools to achieve
identified models of improved accuracy.

The paper is organized as follows. A discussion of the state of
the art in rotorcraft model identification is presented in Section
2. Then, the proposed approach to handle such requirements,
based on the integration of time-domain and frequency-domain
ideas to make the most, in terms of model quality, of the avail-
able methods for rotorcraft flight testing (see also Bergamasco
and Lovera [2011a]) is illustrated in Section 3. Finally, results
obtained in the analysis of data collected during piloted simu-
lations are presented and discussed in Section 4, with specific
emphasis on the achieved performance with respect to state of
the art methods and tools from the rotorcraft community.

2. ROTORCRAFT SYSTEM IDENTIFICATION

In rotorcraft engineering system identification (both in time
and frequency domain) has emerged as a useful complement
to first principle modelling because physical models for ro-
torcraft dynamics include a number of uncertain parameters
which are hard to determine analytically (see, e.g., Tischler and
Kaletka [1987]). Rotorcraft dynamics usually involves multi-
ple inputs and multiple outputs (MIMO) models, indeed it is
described by the interaction of inertial and aerodynamic forces
as well as control forces acting on the rotor and the airframe.
The interactions and interferences between these forces and
their effects on the dynamic response of the helicopter change
both with flight condition and configuration. Wind-tunnel data
can provide only limited insight in the dynamics because of
aerodynamic scale effects, model deficiencies and constrained
free flight capabilities. Therefore, flight tests are necessary to
overcome such limitations and reduce uncertainty in models
of rotorcraft aeromechanics (see the discussion in Hamel and
Kaletka [1997]).

Frequency-domain system identification in helicopter engineer-
ing has been developed during the last three decades, so there
is a number of contributions in the literature describing the
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relevant approaches and case studies (see the recent book Tis-
chler and Remple [2006]). As is common practice in frequency-
domain methods, the procedure starts with the estimation of a
nonparametric model for the frequency response function of
the helicopter. Subsequently, a parametric frequency response
curve is matched with the nonparametric model to compute
estimates of the parameters of interest (stability and control
derivatives, time delays). First applied to lightly coupled, low
bandwidth articulated rotors (Tischler and Kaletka [1987]), this
technique has been applied to more highly coupled, higher
bandwidth rotor systems (Tischler and Cauffman [1992], Tis-
chler and Tomashoski [2002], Lawler et al. [2006]).

Time-domain system identification is another approach to rotor-
craft system identification, which has been intensely developed.
In this technique the model, written in state-space form, is
matched directly with the test data using least squares and/or
maximum likelihood methods (see Hamel and Kaletka [1997],
Jategaonkar [2006]) or, more recently, subspace model identi-
fication (SMI) methods (see Lovera [2003], Bergamasco and
Lovera [2011b]).

3. TIME/FREQUENCY ROTORCRAFT IDENTIFICATION

As already mentioned in the Introduction, with the exception
of the preliminary results presented in Bergamasco and Lovera
[2013], no systematic method for joint time/frequency domain
identification has been considered in the literature. In the fol-
lowing, the proposed approach will be presented.

3.1 Problem statement

Consider the linear, time-invariant continuous-time system

Ms(λ ) :

{

ẋ(t) = A(λ )x(t)+B(λ )u(t)+w(t), x(0) = x0

y(t) =C(λ )x(t)+D(λ )u(t)+ v(t)
(1)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are, respectively, the state,

input and output vectors and w ∈R
n and v ∈R

p are the process
and the measurement noise, respectively, with covariance given
by

E

{

[

w(t1)
v(t1)

][

w(t2)
v(t2)

]T
}

=

[

Q S

ST R

]

δ (t2 − t1).

The system matrices A(λ ), B(λ ), C(λ ), and D(λ ) are de-
pendent on the constant parameter vector λ ∈ R

nλ such that

(A(λ ),C(λ )) is observable and (A(λ ), [B(λ ),Q1/2]) is control-
lable. In the following the model structure Ms(λ ) is considered
globally identifiable. Assume now that a dataset {u(ti),y(ti)},
i ∈ [1,N] of sampled input/output data (possibly associated
with a non equidistant sequence of sampling instants) obtained
from system (1) is available, together with a set of samples of
the frequency response function, G( jωk), k ∈ [1,K]. Then, the
problem is to provide an estimate of the parameter λ on the
basis of the available time and frequency data.

The problem can be faced using a multi-step approach: in the
first step an unstructured black-box model Mns of the form

Mns :

{

ẋ(t) = Âx(t)+ B̂u(t)+ K̂e(t), x(0) = x̂0

y(t) = Ĉx(t)+ D̂u(t)+ e(t)
(2)

is identified using time-domain data only, by means of a
continuous-time SMI method, capable of dealing with data
generated under feedback; in the subsequent step a-priori in-
formation on the model structure and frequency-domain data
are enforced in the model using a frequency-domain model
matching method; finally, an Output-Error (OE) time-domain
step completes the approach.

3.2 Predictor-based subspace model identification

The continuous-time algorithm considered in the present study
is based on the results first presented in Ohta and Kawai
[2004], Ohta [2005], and further expanded in Kinoshita and
Ohta [2010], Ohta [2011], Bergamasco and Lovera [2011a],
which allow to obtain a discrete-time equivalent model starting
from the continuous-time system (1), as briefly outlined in the
following. Let L2(0,∞) denote the space of square integrable
and Lebesgue measurable functions of time 0< t <∞. Consider
the family of Laguerre filters, defined as

Li(s) =
√

2a
(s− a)i

(s+ a)i+1
, i = 0,1, . . . (3)

and denote with ℓi(t) the impulse response of the i-th Laguerre
filter. Then, it can be shown that the set {ℓ0, ℓ1, . . . , ℓi, . . .} is
an orthonormal basis of L2(0,∞), i.e., all signals in L2(0,∞)
can be represented by means of the set of their projections on
the Laguerre basis. Under the assumptions stated in Section
3.1, a discrete-time model equivalent to (2) can be defined by
considering the sequence of sampling instants ti, i = 1, . . . ,N
and applying to the input u, the output y and the innovation e of
(2) the the transformations

ũi(k) =

∫ ∞

0
(Λk

wℓ0(τ))u(ti + τ)dτ

ẽi(k) =

∫ ∞

0
(Λk

wℓ0(τ))de(ti + τ) (4)

ỹi(k) =

∫ ∞

0
(Λk

wℓ0(τ))y(ti + τ)dτ

where ũi(k) ∈ R
m, ẽi(k) ∈ R

p and ỹi(k) ∈ R
p. Then (see Ohta

and Kawai [2004] for details) the transformed system has the
state space representation

ξi(k+ 1) = Aoξi(k)+Boũi(k)+Koẽi(k), ξi(0) = x(ti)

ỹi(k) =Coξi(k)+Doũi(k)+ ẽi(k) (5)

where the state space matrices are given by

Ao = (Â− aI)−1(Â+ aI)

Bo =
√

2a(Â− aI)−1B̂ (6)

Co =−
√

2aĈ(Â− aI)−1

Do = D̂−C(Â− aI)−1B̂

Ko =
√

2a(I − Ĉ(Â− aI)−1K̂)−1(Â− aI)−1K̂.

By applying to the transformed data a PBSID-like subspace
identification approach, estimates of the state space matrices
Ao, Bo, Co, Do, Ko can be worked out, as discussed in detail
in Bergamasco and Lovera [2011a]. Finally, straightforward
inversion of the bilinear system transformations defined in (6)
allow the recovery of the state space matrices of the original
continuous-time system on the basis of the discrete-time ones.
The identified model Mns corresponds to a full state space
parameterisation, and therefore does not match the model struc-
ture Ms(λ ). This problem, as well as the one of incorporating
frequency-domain data in the identified model, is handled in the
subsequent step.

3.3 From unstructured to structured models

Consider now the model class Ms(λ ) introduced in Section 3.1;
the parameter vector λ should be tuned so as to ensure that Mns

and Ms(λ ) have the same input-output behavior. This problem
can be faced in a computationally effective way by defining the

transfer functions Ĝns(s) and Gs(s;λ ) associated with Mns and
Ms(λ ), respectively, and seeking the values of the parameters
λ corresponding to the solution of the optimization problem

λ ⋆ = argmin
λ

‖Ĝns(s)−Gs(s;λ )‖, (7)
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for a suitable choice of norm. The most straightforward ap-
proach is to formulate the problem in terms of a quadratic
norm penalising deviations, both in magnitude and in phase,

between the frequency responses associated with Ĝns(s) and
Gs(s;λ ) (along the lines of the approach discussed in Tischler
and Remple [2006]). If, on the other hand, the H∞ norm is
considered, then the corresponding optimization problem has
been studied extensively in recent years in the framework of the
fixed-structured robust controller design problem and reliable
tools (see Gahinet and Apkarian [2011]) for the computation
of local solutions are presently available. Note that the open-
loop dynamics of a helicopter is unstable in most flight condi-
tions and so the H∞ norm may be undefined. In this case the
eigenvalues of Ms(λ ) and Mns are shifted on the real axis by a
suitable value µ as follows

G̃s(s;λ ) =C(λ )((s− µ)I−A(λ ))−1B(λ )+D(λ ) (8)

G̃ns(s) = Ĉ((s− µ)I− Â)−1B̂+ D̂, (9)

where µ is chosen such that all eigenvalues of Mns have nega-
tive real part. Then the model matching problem is reformulated
as

λ ⋆ = argmin
λ

‖G̃ns(s)− G̃s(s;λ )‖∞. (10)

It is important to point out that the above outlined approach al-
lows to take into account the available frequency-domain data,
by including them in the model matching problem in exactly
the same way as the frequency response of the unstructured
model Mns. Therefore, the optimal structured model Ms(λ

⋆)
is effectively based on information from the two domains.

3.4 Time-domain output-error refinement

Finally, if the applications of the structured identified model
include time-domain simulation, so that its ability to provide a
satisfactory time-domain fit of measured data, a final refinement
of the model using a time-domain performance criterion is in
order. In the present study, the classical output-error approach
has been considered (see, e.g., Klein and Morelli [2006] for
details).

4. IDENTIFICATION FOR THE AW189 HELICOPTER

In this Section the problem of identifying a six-DOF state-space
model for the dynamics of the AW189 helicopter is considered,
with specific reference to a forward flight condition at 80 knots.
The test data for this case study were generated in piloted
simulations based on a state-of-the-art coupled rotor-fuselage
model (55th order FlightLab model). The input vector for the
model is

u = [ δcol δlat δlon δped ] ,
corresponding to the four pilot controls (collective, lateral and
longitudinal cyclic, pedal). The output vector is

y = [ax ay az p q r φ θ ] , (11)

where ax,ay,az are the body components of the linear acceler-
ation, p,q,r denote the body components of the angular rate of
the aircraft and φ , θ are the roll and pitch angles. Finally, for
the structured models the state vector is given by

x = [ u v w p q r φ θ ] ,

where u,v,w denote the body components of the aircraft ve-
locity. The identification experiments have been performed in
closed-loop (pilot feedback only) because of the instability of
the aircraft. More precisely, in each experiment the primary
input channel has been manually excited to generate either a
frequency sweep or a 3211 sequence with prescribed charac-
teristics, while the secondary input channels were manually
controlled to maintain the helicopter around the nominal trim
condition. Nonparametric frequency response estimates have

been computed on the basis of the responses to the frequency
sweeps using the FRESPID, MISOSA and COMPOSITE mod-
ules of the CIFER tool (see Tischler and Remple [2006] for
details). The time domain responses to the 3211 sequences and
the nonparametric frequency response estimates then served as
inputs for the time-frequency domain approach outlined in the
previous Section.

The obtained results are illustrated in Figures 1-8 (axis scales
have been removed for confidentiality reasons), which provide
a comparison between the frequency response of the high-order
simulation model (black solid lines in the figures) and the fre-
quency responses of identified parametric models obtained us-
ing the proposed time-frequency domain approach (grey solid
lines in the figures) and using the CIFER DERIVID module for
parametric frequency-domain identification (dashed grey lines

in the figures) 1 . As can be seen from the figures, the agreement
is quite satisfactory. In particular, it is apparent that the inclu-
sion of time-domain data in the identification process leads to
a significant improvement in model accuracy with respect to a
pure frequency-domain approach. A time-domain validation
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Fig. 1. Frequency responses from collective and lateral inputs to
linear accelerations (real: black line; TD/FD model: grey
solid line; CIFER: grey dashed line).

of the identified model has been also carried out, by measuring
the accuracy of the model in response to random inputs applied
on all input channels simultaneously. The time histories for the
outputs are presented in Figures 9-10 (axis scales have been
removed for confidentiality reasons). Again, even though the
open-loop system is unstable, the simulated outputs obtained
from the model identified using the time-frequency domain
approach (dashed lines) match very well the simulator response
(solid lines). Finally, the time-domain performance of the
identified models has been also assessed in terms of the RMS
simulation error on the individual output variables considered
in the study. The result of the comparison is presented in Figure

1 For the initialisation of the DERIVID module of CIFER and of the iterative
optimization procedure outlined in Section 3.3 reduced order linearised models
obtained from FlightLab have been used.
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Fig. 2. Frequency responses from pedal and longitudinal inputs
to linear accelerations (real: black line; TD/FD model:
grey solid line; CIFER: grey dashed line).
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Fig. 3. Frequency responses from collective and lateral inputs
to pitch and roll angles (real: black line; TD/FD model:
grey solid line; CIFER: grey dashed line).

M
a
g
n
it
u
d
e

TET/DLON

P
h
a
s
e

TET/DPED

M
a
g
n
it
u
d
e

PHI/DLON

P
h
a
s
e

Frequency

PHI/DPED

Frequency

Fig. 4. Frequency response from pedal and longitudinal inputs
to pitch and roll angles (real: black line; TD/FD model:
grey solid line; CIFER: grey dashed line).
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Fig. 5. Frequency responses from collective and lateral inputs
to body angular rates (real: black line; TD/FD model: grey
solid line; CIFER: grey dashed line).
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Fig. 6. Frequency response from pedal and longitudinal inputs
to body angular rates (real: black line; TD/FD model: grey
solid line; CIFER: grey dashed line).
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Fig. 7. Frequency responses from collective and lateral inputs
to linear body rates (real: black line; TD/FD model: grey
solid line; CIFER: grey dashed line).
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Fig. 8. Frequency response from pedal and longitudinal inputs
to linear body rates (real: black line; TD/FD model: grey
solid line; CIFER: grey dashed line).
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Fig. 9. Time domain validation: body rates and pitch attitude
(data: solid line; TD/FD model: dashed line).

11. As can be seen from the Figure, both the black-box model
identified using the PBSIDo algorithm and the gray-box one
obtained by means of the entire procedure outlined in Section 3
outperform the model identified using only frequency-domain
data with CIFER.

CONCLUDING REMARKS

The problem of rotorcraft model identification has been consid-
ered and a novel approach combining time and frequency do-
main data has been presented and discussed. Preliminary results
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Fig. 10. Time domain validation: acceleration and roll attitude
(data: solid line; TD/FD model: dashed line).
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Fig. 11. RMS simulation error (normalised to the maximum
value) for the identified models.

based on piloted simulations of a high-order simulation model
show that the proposed approach is viable and can provide both
black-box and grey-box models with improved accuracy with
respect to state-of-the-art tools in the field.
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