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Abstract: In this paper experiment design for identification of ill-conditioned systems is studied. A short 

overview of recently proposed techniques is presented. These are mainly based on a singular value 

decomposition (SVD) of an estimated gain matrix. A summary of this approach with some extensions is 

given. Another approach is to find a D-optimal solution; the result is essentially the same as found by 

SVD methods. A result is that it is very important properly to excite the so-called low-gain direction of 

the system. The methods are motivated by the desire to guarantee integral controllability in model based 

control designs such as model predictive control (MPC). The dynamics of the process have not been a 

consideration in these works. However, it is well known from practical studies and simple models that 

high gains tend to be associated with slow dynamics and low gains with fast dynamics. For experiment 

design, it is useful to know how general this behaviour is. In this paper it is shown analytically that this 

indeed is a general property. Simple examples from the literature are used to support the result. Some 

possible modifications to existing design methods are given for situations, where the dynamics are not 

aligned with the gain directions. 
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1. INTRODUCTION 

A successful system identification requires data that are truly 

representative of the system to be identified. To obtain such 

data, the experiment design for the identification is of utmost 

importance. In this respect, multiple-input multiple-output 

(MIMO) systems are much more challenging than single-

input single-output (SISO) systems. In the major textbooks 

on system identification, surprisingly little is said on the 

subject of experiment design for MIMO system identifi-

cation.  

1.1 Multi-SIMO, Multi-MISO, and MIMO Identification 

Isermann and Münchhoff (2011, p. 429) mention that one 

approach is to perturb one input after another and to identify 

each input-output dynamics separately as a set of SISO 

models. However, Andersen et al. (1989) have shown that 

such a multi-SIMO (single-input multiple-output) approach 

yields a poor description of the so-called low-gain direction 

of a 2×2 model for a binary distillation column. Isermann and 

Münchhoff also note that it is beneficial to perturb all inputs 

simultaneously because it saves time and yields coherent 

models. The input signals should then be uncorrelated, e.g., 

uncorrelated PRBS (pseudo-random binary sequence) sig-

nals. According to Isermann and Münchhoff (2011, p. 443) 

one can in such a case use SISO parameter estimation 

methods by treating each output separately. 

If the model is to be used for simulation, the above approach 

is probably adequate, but for prediction and control appli-

cations, all outputs should be treated simultaneously (Ljung, 

1999, p. 525). The reason is that correlations between the 

outputs (i.e., “directionality”) are not accounted for by a 

multi-MISO (multiple-input single-output) approach (Koung 

and MacGregor, 1993; Dayal and MacGregor, 1997). Thus, a 

MIMO system should be identified as a full MIMO system 

with all inputs perturbed simultaneously. The general view is 

that the inputs should then be uncorrelated to ensure identifia-

bility. In practice, it suffices that they are not completely 

interdependent. 

1.2 Ill-Conditioned Systems 

An ill-conditioned system is a MIMO system whose gain 

matrix has a large condition number (Skogestad et al., 1988). 

This means that the gain matrix is almost singular, which is 

caused by almost linearly interdependent matrix rows and 

columns. A consequence of this is that a certain combination 

of the inputs will be strongly amplified, whereas another, 

orthogonal, combination will be only weakly amplified. The 

strongest amplification occurs in the so-called high-gain 

direction, the weakest in the low-gain direction. For this 

reason, an ill-conditioned system is said to possess a strong 

directionality. These properties make identification and 

control difficult tasks. 

Consider a system with the steady-state gain matrix K . For 

internal model control (IMC) based on a model with the gain 

matrix K̂ , Garcia and Morari (1985) have shown that the 

closed-loop system is robustly stably detunable if and only if 
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1ˆRe[ ( )] 0i KK   , i , where ( )i   is the ith eigenvalue of 

( ) . This can be extended to apply for any multivariable 

controller with integral action based on K̂  (Koung and Mac-

Gregor, 1993). For an ill-conditioned system, even small 

errors in K̂  can have a strong effect on 1K̂  , thus causing 

the integral controllability condition to be violated. However, 

if the errors in K̂  are mostly aligned with the gain directions 

so that the directions are essentially unaffected, or if the gain 

directionality is reduced, larger errors can be tolerated. 

The integral controllability condition can also illustrated 

geometrically. Assume that the signs of the inputs and the 

outputs are chosen to make all gains of K  positive. This is 

usually possible when the rows (or columns) of K  are nearly 

linearly dependent. Figure 1 illustrates the column vectors of 

such a system. The closer the vectors are to each other, the 

stronger is the directionality of the system. If the errors in K̂  

are uncorrelated, the corresponding vectors of the model, 1k̂  

and 2k̂ , end within the dashed circles. If it is possible to draw 

a straight “singularity line” between the vectors such that 

both uncertainty regions are intersected, integral control-

lability cannot be guaranteed (Koung and MacGregor, 1993). 

This also means that there is a possibility that det K  and 

ˆdet K  have different signs. Figure 1 illustrates this situation. 

However, if the uncertainties tend to be correlated such that 

they are more aligned with the gain vectors, as illustrated by 

Fig. 2, larger ellipsoidal uncertainties can be tolerated 

without violation of the integral controllability condition. 

1.3 Experiment Design for Ill-Conditioned Systems 

Koung and MacGregor (1993) have shown that the model 

uncertainty for an ill-conditioned 2×2 system can be shaped 

in the desired way if the low- and high-gain directions are 

explicitly excited. To arrive at this result, they employed a 

singular value decomposition (SVD) of the steady-state gain 

matrix. The SVD also showed that the strength of the 

directional excitations (e.g., the amplitudes of the “rotated” 

PRBS signals) should be inversely proportional to the 

respective singular values to make the outputs equally 

informative. This design yields linearly dependent input 

signals in each orthogonal gain direction. These signals, with 

different amplitudes, can be combined to excite both direc-

tions simultaneously in such a way that the overall sample 

correlations between the inputs are negligible, which is 

necessary for identifiability. 

A potential problem with the combination of input signals is 

that they might yield output variations larger than intended. 

Of course, this has to be taken into account in the choice of 

input amplitudes by scaling them properly (Conner and 

Seborg, 1994). This consideration has been taken further by 

explicit inclusion of linear constraints on input and output 

variables (Bruwer and MacGregor, 1996; Zhan et al., 2006). 

The solution is obtained by minimization of a D-optimality 

criterion subject to the constraints.  

Another problem is that the designs by necessity are based on 

an approximate gain matrix. If the directionality of the gain 

matrix is different from that of the true system, the intended 

strong excitation in the low-gain direction may, in fact, excite 

the high-gain direction to a significant degree. Therefore, it is 

advisable to detune the excitation(s) in the low-gain direc-

tion(s). For a 2×2 system with the condition number 141.4, 

Bruwer and MacGregor (1996) suggested a detuning factor as 

low as 0.1c   for the low-gain excitation. Using quite 

advanced theoretical considerations, Darby and Nikolaou 

(2009) derived the detuning factor 2/3
1

ˆ ˆ( / )i ic    for the ith 

gain direction. Here, ˆ
i  is the ith singular value of K̂ . 

1.4 Design Modifications 

A slight modification to the basic experiment design of 

Koung and MacGregor (1993) has been suggested by Zhu 

and Stec (2006) and later used by Vaillant et al. (2013). The 

low-gain direction is still excited by correlated high-ampli-

tude input signals, but the high-gain direction is not explicitly 

excited. Instead, low-amplitude uncorrelated signals are 

added to the low-gain signals. In practice, this will excite the 

high-gain direction.         

In the above methods, PRBS-type signals are used as pertur-

bation signals. Rivera et al. (2007) have suggested the use of 

more plant-friendly multi-sine signals as perturbations in the 

various gain directions. 

 

Fig. 1.  Illustration of uncorrelated uncertainties. 
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Fig. 2.  Illustration of correlated uncertainties. 
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1.5 Applications 

In the research mentioned above, simple linear models, 

mainly 2nd order 2×2 systems, have been used for illustration. 

Similar methods have been applied to the identification of a 

pilot-scale two-product distillation column by Häggblom and 

Böling (1998, 2013). The general conclusion is that explicit 

excitation of the gain directions is superior to other types of 

excitations (Häggblom and Böling, 2013). Even gain-

directional step signals outperform uncorrelated PRBS 

signals. For distillation columns it is easy to find the gain 

directions because they are very accurately given by the 

product flow gains, which are easy to determine, in the so-

called LV-structure (Häggblom, 1995). 

1.6 Contribution of This Paper 

The main motivation behind the mentioned design methods is 

to shape the uncertainty of the steady-state gain matrix so as 

to maximize the range for integral controllability when using, 

e.g., model predictive control (MPC). The dynamics of the 

system has not been a consideration in the experiment design. 

However, there is also a dynamic directionality as exempli-

fied by distillation columns, for which it has been noted that 

the dynamics of the high-gain direction are significantly 

slower than the dynamics of the low-gain direction. (Skoge-

stad and Morari, 1988a; Andersen et al., 1989). For many 

simplified linear models given in the literature, these 

directions coincide exactly because of the way they have 

been derived. But how general is this property? 

In this paper it is shown that there is a general connection 

between high gains and slow dynamics, and vice versa. This 

is shown by examples from the literature, but a theoretical 

explanation is also provided. However, the gain and dynamic 

directions coincide exactly only in special cases. Based on 

this, a modified experiment design, aimed at providing better 

information about dynamics than the steady-state gain-based 

designs, is considered. As a prelude to this, a summary of the 

author’s interpretation/development of the experiment design 

principles for identification of ill-conditioned systems based 

on the steady-state gain matrix is given. 

2. EXPERIMENT DESIGN FOR OPEN-LOOP MIMO 

IDENTIFICATION 

2.1 Singular Value Decomposition 

Consider a system with an input vector u , an output vector 

y , denoted y  at steady state, and a non-singular steady-state 

gain matrix K  of size m m . A singular value decompo-

sition of K  yields 

 Ty Ku W V u   , (1) 

where V  and W  are orthogonal matrices and   is a 

diagonal matrix of singular values, i , 1,2, ,i m , 

1 2 0m     . The orthogonality means that 
TV V I  

and TW W I  (Golub and Van Loan, 2013). 

2.2 A Variable Transformation 

A new input   is defined by   

 TV u   . (2) 

The steady-state output is then given by 

 y W . (3) 

By using m  linearly independent vectors   as inputs, W  

can conceptually be identified instead of K . Of course,   

cannot be applied directly, but it can be realized in the true 

system by the input 

 1ˆ ˆu V   , (4) 

where V̂  and ̂  are estimates of V  and  , respectively. 

This use of variable transformations is analogous to the use 

of variable transformation for synthesizing control structures 

with desired properties (Häggblom and Waller, 1988, 1990). 

2.3 Integral Controllability 

Because W  is orthogonal with all eigenvalues and singular 

values equal to 1, the hypothetical identification of W  is a 

very easy task. The fact that the columns of W  are ortho-

gonal means that even comparatively large identification 

errors will not compromise the integral controllability 

condition based on W , i.e., 1ˆRe[ ( )] 0i WW   . This is also 

illustrated in Fig. 3. Hence, it is not required to know ̂  and 

V̂  accurately in (4). In fact, the accuracy of ̂  is quite 

unimportant, since it only affects the size of the perturbations 

in each direction and not the actual directions. 

2.4 Design Options 

One way of forming m  linearly independent vectors of   is 

to use 0i   and 0j  , j i , for 1, ,i m . If the ith 

column of W  is denoted iw , this yields the output i iy w  

with the 2-norm 
2 iy  . Hence, 1 2 m      

makes all excitations equally “informative.” By choosing i  

differently, certain directions can be detuned (or amplified). 

 

Fig. 3.  Illustration of vectors in orthogonal system. 
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Note that 1  excites the highest gain direction and m  

excites the lowest gain direction because of the order of the 

singular values in (1). 

Assume that an amplitude 0ia   is selected for the pertur-

bation i . The 2-norm of the outputs produced by i  is then 

proportional to ia . This amplitude should be selected with 

possible detuning in mind. The perturbation i  can be a 

(series of) step change(s), a PRBS, a multisine signal, or any 

other type of perturbation considered adequate. The direc-

tions i can be excited separately (in sequence), or all together 

provided that all i , 1, ,i m , are mutually independent 

(i.e., uncorrelated). It is even possible to mix different types 

of signals. In all situations, the input to the true system is 

calculated by (4). Examples of excitations calculated in this 

way are given in Häggblom and Böling (2013). 

3. CONNECTIONS BETWEEN STEADY-STATE GAINS 

AND DYNAMICS 

3.1 From State-Space Model to Transfer Function 

To show the connection between steady-state gains and 

dynamics, a state-space description, 

 
T( ) ( ) ( )

( ) ( ) ,

x t Ax t B u t

y t Cx t

 


 (5) 

is used. Here the input matrix is denoted by the transpose TB  

to streamline the notation in the following development. The 

transfer function for this system is given by 

 1 T( ) ( )G s C s A B  . (6) 

Assume that the system matrix is diagonalizable. This is 

always true for a system with distinct real poles, but some-

times also with repeated real poles. Thus, it assumed that 

 

1

2

0 0

0

0

0 0 n

A







 
 

  
 
  

, (7) 

where  , 1,2, ,n , are the eigenvalues of A . Denote 

the th column of B  and C  by b  and c , respectively. 

The transfer function can then be expressed as 

 1 T

1

( ) ( )
n

G s c s b 



  . (8) 

3.2 Steady-State Gains and Dynamics 

Assume that the system is stable with the time constants T  

defined by 1/ T   , 1, ,n . The steady-state gain 

matrix can then be expressed as 

 
T

1

n

K c T b


 . (9) 

From this expression it is clear that large time constants tend 

to yield gains of large magnitude whereas small time con-

stants hardly affect the gains at all unless b  and c  happen 

to be very counteractive. Excitation of a high-gain direction 

will then tend to have slow dynamics whereas excitation of a 

low-gain direction tends to have faster dynamics. 

3.3 Gain Directions and Dynamics 

Substitution of the time constants into (8) yields 

 
T

1

( )
1

n c T b
G s

T s




 . (10) 

If b  happens to be exactly aligned with some iv  (i.e., the ith 

column of V ), excitation of the ith direction according to the 

steady-state design will also excite the dynamics governed by 

T . Moreover, an excitation orthogonal to this direction, will 

completely suppress T . This happens to the slow dynamics 

when the low-gain direction is excited if the dynamics are 

aligned with the gain directions. 

Of course, there are also situations when the dynamics are not 

aligned with the gain directions. It may even be impossible 

due to the structure of the model. Consider a 2 2  system 

with second-order transfer functions. The transfer functions 

for output 1 can be written 

  
H L
11 11

11
11 12

( )
1 1

k k
g s

T s T s
 

 
, 

H L
12 12

12
11 12

( )
1 1

k k
g s

T s T s
 

 
, (11) 

where 11 12 0T T  . Assume that the input H H H
1 2[ ]u u u  

excites the slower dynamics only. Then 

 L H L H
11 1 12 2 0k u k u  .   (12) 

If the orthogonal input L H H
1 2[ 1/ 1/ ]u u u   excites the 

faster dynamics only, H H H H
11 1 12 2/ / 0k u k u   , or 

 H H H H
11 2 12 1 0k u k u  .   (13) 

Combination of (12) and (13) yields 

 
H L H
11 12 1

H L H
12 11 2

k k u

k k u
      (14) 

as a requirement for the possibility of exciting the dynamics 

separately. A similar expression can be derived for output 2. 

Assume that the transfer functions (11) contain no zeroes. 

This means that 

 L H
11 11 11 12 0k T k T  ,  L H

12 11 12 12 0k T k T  , (15) 

from which it follows that 

 
H H
11 12 11

L L
1211 12

k k T

Tk k
   . (16) 

A similar expression can be derived for output 2. Because 

(16) is incompatible with (14), it means that the dynamics 

cannot be aligned with the gain directions if neither transfer 

function for an output contains a zero. It is possible, if at 

least one transfer function contains a zero. 
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3.4 A Modified Design 

Assume that 1 0nT T   . If 1b  is not orthogonal to any 

gain direction iv , the effect of the slow dynamics cannot be 

suppressed by the steady-state directional design. However, if 

(an estimate of) 1b  is available, an input orthogonal to 1b  can 

be used to suppress the slow dynamics. 

A normal situation is that the system order n  is larger than 

the number of inputs, m . Then some directions will always 

have higher-order dynamics than first order. Also in this case, 

there is a possibility of selecting what dynamics to suppress. 

4. EXAMPLES 

4.1 A Simple Model of a Heat Exchanger 

Jacobsen and Skogestad (1994) have derived a linear model 

of a much simplified heat exchanger. By choosing certain 

parameters equal, a lot of symmetries were introduced. The 

model is described by the transfer function 

21(4.76 1) 2089.243
( )

20 21(4.76 1)(100 +1)(2.439 +1)

s
G s

ss s

  
  

  
.(17) 

The steady-state gain-matrix is 

 
21 20

89.243
20 21

K
 

  
 

. (18) 

A singular value decomposition of K  yields 

 
41 0

89.243
0 1

 
   

 
, (19a) 

 
0.7071 0.7071

0.7071 0.7071
W

  
  

 
, (19b) 

 
0.7071 0.7071

0.7071 0.7071
V

 
  

 
. (19c) 

The symmetries are very apparent from W  and V . 

From (19c) it follows that equal input changes with opposite 

signs will excite the high-gain direction whereas equal 

identical changes will excite the low-gain direction. From 

(17) it follows that the high-gain changes give a slow 

response with the time constant 100 and the low-gain changes 

a fast response with the time constant 2.439. The slight 

discrepancies are due to round-off errors in (17). 

4.2 A Simplified Model of a High-Purity Distillation Column 

Skogestad and Morari (1988a, b) have developed a simple 

linear distillation model based on the observed response of a 

simulated binary distillation column to certain changes in the 

internal flows (reflux and boilup) and the product flows. A 

significant idealization is that constant molar flows were 

assumed in the column sections. This model has been used in 

many MIMO identification studies. 

To highlight some properties of the model, its transfer 

function is expressed in the form 

 

87.8 87.8 1.4

1 194 1 194 1 15
( )

108.2 108.2 1.4

1 194 1 194 1 15

s s s
G s

s s s

 
    

  
  
    

. (20) 

The steady-state gain matrix is 

 
87.8 86.4

108.2 109.6
K

 
  

 
. (21) 

A singular value decomposition of K  yields 

 
197.21 0

0 1.3914

 
   

 
, (22a) 

 
0.6246 0.7809

0.7809 0.6246
W

  
  

 
, (22b) 

 
0.7066 0.7077

0.7077 0.7066
V

  
  

 
. (22c)  

The model has the condition number 197.21/1.3914   

142 . The scaled high- and low-gain input directions Hu  

and Lu , respectively, are 

  
TH 0.7066 0.7077 /197.21u   , (23a) 

  
TL 0.7077 0.7066 /1.3914u    . (23b) 

Step changes of size Hu  and Lu  yield steady-state outputs 

  
TH 0.6246 0.7809y   , (24a) 

  
TL 0.7809 0.6246y   . (24b) 

Consider now the dynamics. It is easy to see that a step 

change Lu  in the low-gain direction does almost, but not 

completely, cancel out the slow dynamics in (20). Likewise, a 

step change Hu  in the high-gain direction mostly excites the 

slow dynamics, but some fast dynamics also remain. The fact 

that the dynamics are not exactly cancelled out is not due to 

calculation inaccuracy. The form of (20) reveals that the slow 

dynamics could be cancelled out by equal changes in the two 

inputs, but the fast dynamics can never be cancelled out by a 

change orthogonal to this. In practice, however, the dynamics 

are excellently separated. 

A state-space representation of (20) in the form of (5) is 

defined by 

   
T

1 87.8 1.4
0

1 1194 194 15
, ,

1 0 1 108.2 1.4
0

15 194 15

A B C

   
    

      
     
      

. (25) 

It is now obvious that the slow dynamics are cancelled out by 

two equal changes in the inputs whereas the fast dynamics 

are cancelled by a change in the first input only with the 

second input unchanged. These were, in fact, the assumptions 

when the model was derived (Skogestad and Morari, 1988a). 
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4.3 A Detailed Model of a High-Purity Distillation Column 

A more detailed model of the distillation column studied by 

Skogestad and Morari (1988a, b) is the state-space model 

(Sadabadi and Poshtan, 2009) of the form (5) with 

 

0.0051 0 0 0 0

0 0.0737 0 0 0

0 0 0.1829 0 0

0 0 0 0.4620 0.9895

0 0 0 0.9895 0.4620

A

 
 


 
  
 

 
   

 (26a) 

      
0.624 0.172 0.108 0.139 0.056

0.629 0.055 0.030 0.186 1.230
B

    
  

   
      (26b) 

   
0.7223 0.5170 0.3386 0.0163 0.1121

0.8913 0.4728 0.9876 0.8425 0.2186
C

   
  

 
   (26c) 

The time constants of this model are 1 194T  , 2 13.6T  , 

3 5.47T  , 4,5 0.387 0.830 1T     (min). 

According to (22c), the low-gain direction is excited by 

(almost exactly) equal input changes. The column vector 1b  

in (26b) shows that the same input suppresses the slow 

dynamics 1 194T  min. To some degree, 2T  and 3T  are also 

suppressed because of different element signs in 2b  and 3b . 

The very fast (and oscillatory) dynamics are excited by the 

input in the high-gain direction. In this case, the dynamics are 

very accurately aligned with the gain directions although this 

hardly was an issue when the model was developed. 

5. CONCLUSIONS 

Existing experiment design principles for identification of ill-

conditioned systems have been reviewed and summarized 

with some extensions. It was shown analytically as well as by 

examples that the process dynamics tend to be aligned with 

the so-called gain directions. This is of theoretical interest, 

but also practically useful in the design of identification 

experiments. A possible modification to existing methods 

was proposed for situations where the dynamics are mis-

aligned with the gain directions. 
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