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Abstract: Active control techniques aimed at reducing helicopter vibrations have been
extensively studied in the last few decades. The most studied control law is the so-called T -
matrix algorithm; its implementation requires knowledge of the frequency response relating the
control input to the output measurements at the disturbance frequency, which is very hard
to characterise analytically. Adaptive schemes have been employed in literature to handle this
problem. Surprisingly, however, very little effort has been devoted to the analysis of the T -
matrix algorithm and in particular to the trade-off between robustness and adaptation in its
deployment. In this paper an H∞ approach to the design of a robust T -matrix algorithm is
proposed, with the aim of developing a systematic approach to the design of active vibration
control laws for helicopters.

1. INTRODUCTION

Among the main problems affecting modern helicopters,
vibrations generated by the main rotor are possibly the
most important one. Higher Harmonic Control (HHC) has
been considered for many years as a valid approach for
the design and implementation of control laws aimed at
rotor vibration attenuation and the improvement of rotor
performance. Its basic idea is to attenuate the vibratory
components at the blade-passing frequency in the fuselage
accelerations or in the rotor hub loads (N/rev, N being
the number of rotor blades) by adding suitably phased
harmonic components to the rotor controls. Several studies
have been carried out to determine the feasibility of HHC
both from the theoretical and the experimental point of
view, see, e.g., the survey papers Friedmann and Millott
(1995); Kessler (2011b,a) where the used actuation tech-
nologies, the considered performance criteria (e.g., noise,
vibrations, power, loads etc.) and the achieved perfor-
mance are reviewed. As for the control implementation, a
discrete-time adaptive algorithm known in the rotorcraft
literature as the T -matrix algorithm (see Shaw and Albion
(1981), where this approach was originally proposed) is
typically used by defining the problem in the frequency-
domain and tuning the controller using an LQ-like cost
function. Surprisingly, however, very little effort has been
placed to its analysis and in particular to the trade-off
between robustness and adaptation in its deployment.
Moreover, besides the robustness analysis of the T -matrix
algorithm carried out in Chandrasekar et al. (2006), to the
best knowledge of the Authors the problem has never been
tackled in a robust control framework. In view of this, the
aim of this paper (see also the preliminary results in Mura
et al. (2014)) is to propose an approach to the design of
robust HHC control laws which can be useful to reduce
the need of adaptation and guarantee, more specifically:

• nominal stability of the closed-loop system;
• robustness to model uncertainty due to, e.g., changes

in the flight condition, configuration etc;

• guaranteed performance for the closed-loop system,
i.e., a guaranteed level of vibration attenuation.

Besides allowing to account for model uncertainty in the
control design problem (which is already a significant
advantage with respect to the LQ-like approach), the H∞
formulation of the HHC problem provides an additional
benefit when dealing with the tuning problem. Indeed,
vibrations are typically measured on the fuselage in a large
number of locations, so the control problem is strongly
multivariable, with different performance requirements
associated to the vibration attenuation on the individual
outputs. From this point of view, the tuning of an LQ-like,
possibly adaptive, algorithm, can turn out to be extremely
challenging. Requirement specifications in terms of steady
state attenuation levels and desired transient performance,
on the other hand, can be immediately ”encoded” in an
H∞ problem statement and the properties of the optimal
solution can provide information about the actual distance
between the desired and the achievable performance level.

The paper is organized as follows: in Section 2 an brief
overview of HHC in terms of architecture, capabilities and
limitations is provided. The following Section 3 deals with
the approach from the point of view of control algorithms,
with specific reference to the classical T -matrix algorithm.
In Section 4 the problem of robust stability analysis and
design for HHC control loops is discussed. Finally in
Section 5 simulation results are shown and discussed.

2. ROBUST VIBRATION CONTROL - PROBLEM
STATEMENT

The main rotor of a helicopter generates the thrust and
the moments necessary to fly the aircraft. The main rotor,
however, is also responsible for a number of side effects,
mainly mechanical vibrations which are transmitted to
the fuselage (and passengers). More precisely, the effect
on the fuselage of vibratory loads generated by the main
rotor is essentially periodic (as long as the rotor angular
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rate is constant; this is the case for most present day he-
licopters, even though variable speed rotors are becoming
increasingly widespread), with angular frequency equal to
NΩ, where N is the number of blades and Ω is the rotor
angular frequency. Furthermore, the main goal in terms of
vibration attenuation is the first harmonic (NΩ), denoted
in the following as N/rev. To deal with this problem, in
the last few years the research has focused on improving
the characteristics of the helicopter through the addition
of (suitably scaled and phased) higher harmonics to the
collective and cyclic controls of the main rotor. In view of
this, the problem can be formulated as the one of com-
pensating a periodic disturbance of frequency NΩ acting
at the output of an uncertain (possibly time-periodic)
linear system. HHC algorithms are developed on basis of
a representation of the coupled rotor-fuselage as a linear
quasi-static model constructed in the frequency domain,
which is applicable during steady-state flight conditions.
Feedback is based on the measurements provided by sen-
sors located across the fuselage or on the main rotor hub.
The T -matrix algorithm, described in greater detail in the
following Section, is basically a discrete, frequency-domain
technique aimed at using estimates of the disturbance from
the previous cycle (rotor revolution) to cancel it during the
current revolution, assuming that the frequency response
relating the control inputs to the measured outputs at the
frequency of interest is either known exactly or estimated
online. Obviously uncertainty in the elements of the T -
matrix, due to varying flight condition and changing con-
figuration, has to be considered. Typically offline or online
estimation is used in the literature to this purpose (see
Figure 1), and least-squares error methods like the RLS
algorithm seem the natural choice for this task, given the
linear nature of the model.

𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡
𝐻𝐻𝐶

𝑂𝑓𝑓𝑙𝑖𝑛𝑒 𝐼𝐷

𝑅𝐿𝑆
𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒
𝐻𝐻𝐶

𝐹𝐹𝑇 𝑜𝑓
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑅𝑜𝑏𝑢𝑠𝑡
𝐻𝐻𝐶

Fig. 1. Overview of possible HHC architectures for baseline
vibration attenuation.

From the experimental results available in the literature,
however, the need for adaptive control does not appear
to be a strong requirement for the successful deployment
of the control system (particularly so when control of the
structural response, rather than rotor control, is consid-
ered, see the discussion of this point in Kessler (2011b,a)).
To the contrary, vibration control systems based on the
T -matrix approach seem to exhibit a fair degree of robust-
ness. In this respect, it is surprising that the problem of
robustness of active rotor control systems has received very
little attention and deserves to be investigated in greater
depth.

3. THE T-MATRIX ALGORITHM

Let u ∈ Rm be the vector of control inputs and y ∈ Rp
the vector of measured outputs; assume also that u is a
vector of piece-wise periodic functions of period T = 2π

Ω
(where Ω is the rotor’s angular frequency), let be ψ = Ωt,
and define

y
(i)
Nc =

2

T

∫ T

0

y(i)(ψ) cos(Nψ)dψ (1)

y
(i)
Ns =

2

T

∫ T

0

y(i)(ψ) sin(Nψ)dψ (2)

yN =


y

(1)
Nc

y
(1)
Ns
...

y
(p)
Nc

y
(p)
Ns

 (3)

and similarly for uN . Assume now that under steady state
conditions the above defined N/rev harmonics of uN and
yN are related by the linear equation

yN = TN,NuN + w (4)

where TN,N is a 2p×2m constant coefficient matrix and w
represents the N/rev component of the vibration affecting
the system. Notice that if the dynamics relating u to y
can be assumed to be linear time-invariant (which is a
reasonable assumption if one considers a fixed steady flight
condition and a configuration for the vibration control
system with actuators and sensors located in the fuselage),
then it can be described by the frequency response matrix
G(jω) defined as

G(jω) =

G
(1,1)(jω) · · · G(1,m)(jω)

...
...

G(p,1)(jω) · · · G(p,m)(jω)

 . (5)

TN,N is clearly related to G(jNΩ), as

T
(i,j)
N,N =

[
Real(G(i,j)(jNΩ)) Imag(G(i,j)(jNΩ))

−Imag(G(i,j)(jNΩ)) Real(G(i,j)(jNΩ)

]
(6)

and, consequently,

TN,N =


T

(1,1)
N,N · · · T

(1,m)
N,N

...
...

T
(p,1)
N,N · · · T

(p,m)
N,N

 . (7)

Then, the discrete time algorithm for the attenuation of
the effect of w on yN , known in the rotorcraft literature
as the T -matrix algorithm, can be derived by minimizing
at each discrete-time step k the LQ-like cost function

J(k) = yN
T (k)QyN (k) + uN

T (k)RuN (k) (8)

where Q = QT ≥ 0, Q ∈ R2p×2p and R = RT > 0,
R ∈ R2m×2m.

The optimal control law is thus found by differentiating
(8) with respect to uN (k)

∂J(k)

∂uN (k)
= 0, (9)

leading to the open-loop control algorithm

uN (k + 1) = −D−1
(
TTN,NQ

)
w(k), (10)
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where

D = TTN,NQTN,N +R.

As for the implementation of the above discrete control
algorithm, the following operation need to be carried out:

(1) the determination of the N/rev component of yN ,
namely the computation of the modulated integrals
(1) and (2) of the output;

(2) the update of the N/rev component of uN using
equation (10);

(3) the determination of the time domain value of the
control input u via a modulation of the N/rev sine
and cosine components.

The control law (10) can be written in closed-loop form as

uN (k + 1) = KMuN (k) +KNyN (k), (11)

where

KM = −KNTN,N . (12)

In this respect it is interesting to point out that the struc-
ture of matrix TN,N (see (7)) implies a similar structure of
matrices KM and KN . In particular, it can be shown that

the structure of every submatrix T
(i,j)
N,N , being of the form

T
(i,j)
N,N =

[
a(i,j) b(i,j)

−b(i,j) a(i,j)

]
, (13)

is extended to matrix KN (its submatrices) by means of
equation (10) and consequently also KM inherits the same
type of structure. This means that, in the face of 2m·(2m+
2p) entries in the matrices defining the control law, only 2p
free parameters are exploited in the LQ control law. In the
following Sections a different approach will be presented
and a control law based on full parametrized matrices will
be discussed.

The main drawback of the control law in the introduced
form (10) is based on the assumption that exact knowledge
of matrix TN,N is available. Clearly, an erroneous model
of it can result in degraded performance and possible
instability. To deal with model uncertainty, a posteriori
analysis can be carried out to prove robustness qualities.
An interesting derivation from Chandrasekar et al. (2006)
provides upper bounds on the maximum singular value of
the additive uncertainty for which robust stability is guar-
anteed by using the above described LQ-like control law.
While such an analysis is of course informative, its main
limitation lies in the difficulty in relating back bounds
on the uncertainty on matrix TN,N to the actual model
uncertainty in the dynamics of the helicopter. Based on
these considerations, a robust framework could be used to
design a control law by incorporating all the uncertainties
during the synthesis process. Conventional HHC control
deals with performance degradation in presence of model
uncertainty by introducing adaptation, which takes into
account the variation of the matrix TN,N between the
different flight conditions. Many different algorithms have
been developed in this sense in the last few years, mainly
based on the estimation of TN,N at specific time steps
during the flight operations. In this respect, the interest in
investigating a robust control design approach is motivated
by the possibility to relax the need for continuous update
of the T -matrix.

4. H∞ ROBUST VIBRATION CONTROL DESIGN

In this section an H∞ approach to the design of the robust
MIMO-HHC control law is presented. In the formulation of
the robust H∞ control synthesis, we choose the following
output multiplicative representation of uncertainty in the
T -matrix (see Figure 2)

TN,N =
(
I2p +Wm∆

)
T̄N,N , ‖∆‖ < 1, (14)

where I2p is the identity matrix of dimension 2p, ∆
is a normalized representation of the uncertainty and
Wm represents the matrix of the uncertainty ellipsoids
affecting the frequency responses G(i,j)(jNΩ), i = 1...p,
j = 1...m, at the disturbance frequency. Note that matrix
Wm has a block diagonal structure due to the collection

of uncertainties related to each of the matrices T
(i)
N,N ,

i = 1...p,

Wm = blkdiag
(
W (1)
m W (2)

m · · · W (p)
m

)
(15)

where

W (i)
m = r(i)

[
α(i) β(i)

−β(i) α(i)

]
, i = 1, ..., p (16)

with ri a scalar scale factor and α, β the parameters relat-
ing to the considered uncertainty of the specific output.

 𝑇𝑁,𝑁

𝑊𝑚 Δ

𝐮𝐍

𝐲Δ

𝐰Δ

𝐲𝐍

𝐰

Fig. 2. Block diagram of the uncertainty representation.

A block diagram of the uncertain feedback system cor-
responding to the model (4), its uncertainty (14) and
the controller (11) is represented in Figure 3, where ∆
is defined as

∆ = blkdiag
(
I2δ

(1) I2δ
(2) · · · I2δ(p)

)
. (17)

Δ

𝐲𝐍 𝑘 =  𝐓𝑁,𝑁𝐮𝐍 𝑘 + 𝐰 +𝐰Δ

𝐾𝑀, 𝐾𝑁

𝐲𝐍 𝑘𝐰

𝐰Δ

𝐮𝐍 𝑘

𝐲Δ

𝐺𝑌𝑌0

Fig. 3. Block diagram of the uncertain feedback system.

With reference to Figure 3, variables w∆ and y∆ can be
defined as

y∆(k) = WmT̄N,NuN (k)
w∆(k) = ∆y∆(k),

(18)

leading to the uncertain closed-loop system

uN (k + 1) = KMuN (k) +KNyN (k)
yN (k) = T̄N,NuN (k) + w(k) + w∆(k)
y∆(k) = WmT̄N,NuN (k)
w∆ = ∆y∆.

(19)
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Letting Y = [yN y∆]T and Y0 = [w w∆]T , the uncertain
system (19) can be represented in input-output form as

Y = GY Y0
(z)Y0 (20)

where GY Y0
(z) is defined in (21). The second step of an

H∞ synthesis problem is the definition of the weighting

functions W
(i)
y , i = 1...p and W

(j)
u , j = 1...m used,

respectively, on the output yN and the control variable uN
according to the block diagram for the augmented plant
model in Figure 4.

𝑇𝑁,𝑁𝐾𝑀, 𝐾𝑁 𝑊𝑦

𝑊𝑢

𝐮𝐍 𝑘

𝐲𝐍 𝑘

𝐰

Fig. 4. Augmented plant model.

In particular the control design should be focused on the
closed-loop steady-state performance, therefore, the shape
of the frequency response of Wy(z) can be intuitively
designed on this basis (see, e.g., Figure 5 where the fre-
quency responses of continuous-time templates suitable to
generate Wy(z) are depicted). Besides the possibility of
taking model uncertainty into account in the formulation
of the control problem (which already represents a sig-
nificant advantage per se with respect to the LQ-like ap-
proach), the H∞ formulation of the HHC problem provides
an additional, significant, benefit when dealing with the
tuning problem. Indeed, the vibration control problem is
a strongly multivariable one, with different performance
requirements associated to vibration attenuation levels in
different locations on the fuselage. From this point of view,
the tuning of an LQ-like, possibly adaptive, algorithm, can
turn out to be extremely time consuming. Requirement
specifications in terms of steady state attenuation levels
and desired transient performance, on the other hand,
can be immediately ”encoded” in the problem statement
through weighting functions, while the properties of the
optimal solution can provide information about the actual
distance between the desired and the achievable perfor-
mance level. More precisely, different options are available:

• one could design the same weighing function for all
the considered outputs, so as to define a uniform
performance bound for the entire system;
• one can define as many functions as the number of

output considered, meaning that it could be possible
to give higher penalties to specific outputs which can
present, for example, more critical characteristics in
terms of vibration (e.g., pilot and co-pilot seats).

Given that, the robust synthesis problem can be formu-
lated as

Find KM , KN

s.t.∥∥∥∥GY Y0
Wy

Guy0Wu

∥∥∥∥
∞
≤ γ,

(22)
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Fig. 5. Frequency response of possible Wy(s) weighting
functions.

where Guy0 is the control sensitivity function, obtained by
re-opening the closed-loop from the disturbance w to the
control variable uN in the nominal case:

Guy0 = (zI − (KM +KN T̄N,N ))−1KN . (23)

Problem (22) is a structured H∞ problem, which is known
to be both non-convex and non-smooth. This means that
on one hand the convergence of the algorithm may de-
pend on the initial controller and global optimality of
the computed solution cannot be guaranteed, and on
the other hand, for example, gradient-based descent al-
gorithms could fail to converge. In view of this, a ran-
domized method can be used to solve the optimization
problem: the key point is that a control law is optimal if
in its neighborhood a better control law cannot be found
(or, equivalently, can be found with null probability, see
Zanchettin et al. (2013)). To this purpose, assume that
an initial stabilizing controller, based on the classical LQ
T -matrix algorithm, is available. To compute a new con-
troller K(i+1) the basic idea is to test randomly sampled
controllers in a neighborhood of K(i) and select the best
one in terms of minimization of the cost function in (22).
When it is no longer possible to find better controllers,
the algorithm stops and the (locally) optimal controller is
obtained. The obtained controller is actually a pair (KM ,
KN ) of random matrices, and to check convergence the
procedure has been iterated as many times as the standard
deviation in the cost function becomes below a threshold
small enough to guarantee a very small tolerance on the
minimality of the cost function.

Remark 1. As mentioned in the previous sections, the
gains of an LQ T -matrix controller are not fully parame-
terized matrices, but inherit the structure of the T -matrix
itself. This structure of the control law can be either
retained in the design of the robust controller, or, on the
contrary, can be relaxed leading to a fully parameterized
control law. Both possibilities have been considered, but
particular attention has been given to the second case, the
results of which are reported in the following Section.
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[
y
y∆

]
=

[
T̄N,N (zI − (KM + KN T̄N,N ))−1KN + I2p T̄N,N (zI − (KM + KN T̄N,N ))−1KN + I2p

WmT̄N,N (zI − (KM + KN T̄N,N ))−1KN WmT̄N,N (zI − (KM + KN T̄N,N ))−1KN

][
w
w∆

]
(21)

5. SIMULATION RESULTS

In this Section a numerical example is used to illustrate the
main properties of the proposed robust HHC scheme. The
T -matrix considered in this example is based on numer-
ical values extracted from a simplified single rotor blade
model of the Agusta A109 helicopter (the parameters of
which are given in Table 1). Although very simple, the
model describes the out-of-plane bending dynamics of a
helicopter rotor blade, as derived in Johnson (1980) and
retains the main characteristics of the full blade dynamics
(refer to Bittanti and Lovera (1996) for more details).
The considered T -matrix is characterised by 2 inputs and

Table 1. Characteristics of the rotor of the
Agusta A109 helicopter.

Number of blades 4

Rotor angular frequency 40.32 rad
s

Rotor radius 5.5 m

Mass per unit 48.8

Stiffness 1.8 · 103 N

Lift curve slope 5.7 rad−1

Lock number 7.8

Blade chord 0.3 m

3 outputs and is therefore composed by six submatrices
relating each input to each output. The nominal matrix
T̄N,N , obtained by evaluating the model for a given flight
condition, is given by

T̄N,N =


0.3476 0.0378 0.2206 0.0240
−0.0378 0.3476 −0.0240 0.2206
0.2318 0.0252 0.3389 0.0368
−0.0252 0.2318 −0.0368 0.3389
0.1738 0.0189 0.3323 0.0361
−0.0189 0.1738 −0.0361 0.3323

 ,
and the relative uncertainty associated with the system
and defined consistently with the definition in equation
(15) is

Wm =


0.1025 0.0278 0 0 0 0
−0.0278 0.1025 0 0 0 0

0 0 0.0683 0.0185 0 0
0 0 −0.0185 0.0683 0 0
0 0 0 0 0.0512 0.0139
0 0 0 0 −0.0139 0.0512

 .

On the basis of the above uncertain model, two control
scenarios are considered. The first one aims at attenuating
vibrations on the whole set of outputs to more than 95%,
while the second one separates the required performance
between outputs y1 and y2 (again 95% attenuation re-
quired) and y3 (only 90% attenuation required), in order
to mostly penalize specific outputs because considered
more critical in terms of vibration. Thus, two weighting
functions have been introduced,

W (low)
y (z) =

0.99z − 0.968

z − 0.7797
W (high)
y (z) =

0.95z − 0.949

z − 0.8875
,

(24)
for which continuous-time equivalent frequency responses
are represented in Figure 5. As for Wu(z), no weight

on the control action has been included in the problem.
Finally, in order to compare the resulting performance, a
second LQ tuning is obtained guaranteeing a similar level
of nominal attenuation, in both the considered scenarios.
With reference to Figure 6, Figure 7 and Table 2, LQ
weight matrices Q and R are defined, for the first and
second scenario respectively, as

Q = blkdiag(5.23 · I2, 2.28 · I2, 3.16 · I2) R = 0.1 · I4
Q = blkdiag(4.22 · I2, 2.31 · I2, 5.49 · I2) R = 0.1 · I4 .

(25)
For the feedback system (subject to a unit norm distur-
bance) a Monte Carlo study was carried out by randomly
choosing 500 values for the normalized uncertainty ∆. In
the following, results of this Monte Carlo procedure in
terms of steady-state attenuation are depicted. Figure 6
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Fig. 6. Closed-loop performance comparison in the first
scenario.

and Figure 7 show the steady-state attenuation level for
each output. The same figures show also the difference
between the two control laws in terms of settling time Ts to
reach the steady-state (calculated in terms of discrete time
steps), and clear evidence is posed upon the conservative
property of the H∞ regulation in this sense. In both
scenarios a comparable level of attenuation is obtained
with both controllers, but it is also apparent that the LQ-
like controller fails to find a correct tradeoff to get similar
levels of attenuation for each of the measured outputs.
The robust design proposed in this paper shows another
substantial advantage over a classical LQ-based synthe-
sis: considering a general ”large” MIMO system, defining
weighting functions Wy that resume specific control ob-
jectives seems to be much more convenient than iterating
different Q and R matrices until control requirements are
being satisfied. Table 2 confirms these considerations, and
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Fig. 7. Closed-loop performance comparison in the second
scenario.

moreover shows how the cost of increased robustness is a
slightly slower response in dynamic terms. As mentioned
in the previous Section, the comparison has been extended
also to a structured version of the H∞ controller. To this
purpose, the synthesis procedure has been modified on
the basis of the structure constraint, meaning that the
cost function is optimized with respect to 20 independent
parameters instead of 40, as in the fully parameterized
formulation. Table 3 summarizes the results obtained in
the first scenario.

Based on these results, the H∞ approach could be ben-
eficial in the sense of reducing the need for adaptation
in the operation of the HHC system, which would make
the system itself easier to implement and operate, while
allowing a more predictable closed-loop behavior both in
terms of stability and performance.

Table 2. Simulation results. LQ vs H∞.

Scenario 1 Scenario 2

LQ H∞ LQ H∞
mean y1 0.088 0.043 0.052 0.034
max y1 0.149 0.099 0.105 0.095

mean y2 0.041 0.037 0.058 0.049
max y2 0.068 0.082 0.125 0.113

mean y3 0.017 0.033 0.096 0.106
max y3 0.054 0.069 0.135 0.152

Ts 3.30 7.98 2.48 7.61

Table 3. Simulation results. Structured vs Un-
structured H∞.

struct unstruct

mean y1 0.075 0.043
max y1 0.151 0.099

mean y2 0.044 0.037
max y2 0.087 0.082

mean y3 0.023 0.033
max y3 0.075 0.069

Ts 9.31 7.98

6. CONCLUSION

In this paper the problem of robust design of HHC control
laws has been considered and an H∞ approach to the
problem has been proposed and compared to the classical
LQ solution. Simulation results show that a closed-loop
performance similar to the LQ one can be achieved with
the additional benefit of a reduced sensitivity of the
feedback system to uncertainty in the knowledge of the
T -matrix. This property can be exploited to reduce the
need for adaptation in the actual implementation of HHC
systems.
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