
An extremum seeking approach to
parameterised loop-shaping control design

Chih Feng Lee ∗ Sei Zhen Khong ∗∗ Erik Frisk ∗

Mattias Krysander ∗

∗Division of Vehicular Systems, Department of Electrical Engineering,
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Abstract: An approach to loop-shaping feedback control design in the frequency domain via
extremum seeking is proposed. Both plants and controllers are linear time-invariant systems of
possibly infinite dimension. The controller is assumed to be dependent on a finite number of
parameters. Discrete-time global extremum seeking algorithms are employed to minimise the
difference between the desired loop shape and the estimate of the present loop shape by fine-
tuning the controller parameters within a sampled-data framework. The sampling period plays
an important role in guaranteeing global practical convergence to the optimum. A case study
on PID control tuning is presented to demonstrate the applicability of the proposed method.
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1. INTRODUCTION

Designing a robust controller with good reference tracking
and disturbance rejection performances in the face of mod-
elling mismatch can be a challenging task. One renowned
control synthesis technique for such a task is loop-shaping
which, when properly utilised, achieves robust feedback
stability and performance for a given linear time-invariant
(LTI) plant (Doyle et al., 1992; McFarlane and Glover,
1992; Vinnicombe, 2001). A requirement to applying the
loop-shaping techniques is the availability of plant models.
Nevertheless, useful plant models are often not known
in many practical applications. This paper attempts to
address this issue via the use of extremum seeking con-
trol (Ariyur and Krstić, 2003; Killingsworth and Krstic,
2006; Zhang and Ordóñez, 2011).

It is demonstrated that the global extremum seeking
framework of Khong et al. (2013b) is suited for performing
parameterised loop-shaping controller design for single-
input single-output (SISO) plants. Both the plant and
compensator are allowed to be infinite-dimensional (Cur-
tain and Zwart, 1995) — for example, modelled by partial
differential equations or contain time-delay terms. The
compensator is presumed to be a function of a finite num-
ber of parameters and extremum seeking control is em-
ployed to drive the set of parameters to one that gives rise
to a desired loop shape. By probing the loop or return ratio
with appropriate signals and collecting the corresponding
output measurements, the loop transfer function within
the interested frequency range can be estimated. This can
then be utilised for controller tuning within a periodic
sampled-data framework. In particular, extremum seeking
can be carried out with the cost function to be minimised
being some distance measure between the achieved and

desired loop shape in the frequency domain without ex-
ploiting models of the plant and controller.

In the proposed loop-shaping procedure, the loop transfer
function is estimated via the use of the Fourier transform,
which in turn is approximated using the Fast Fourier
Transform (FFT). This inherently introduces errors to
the estimation process. It is shown that under certain
robustness condition on the extremum seeking algorithm,
global practical convergence to the desired loop shape is
achievable by adjusting the user-designed sampling period.
To illustrate the results, a case study involving the self-
tuning of PID compensator parameters to attain a desired
loop shape is presented.

This paper evolves along the following lines. First, the
general class of systems considered in (Khong et al., 2013b)
is reviewed in Section 2. Extremum seeking algorithms are
discussed in Section 3 and they are established to give
rise to non-local practical convergence to global extrema
within a sampled-data framework from (Khong et al.,
2013b). In Section 4, the loop-shaping control design
problem is examined and established to be special cases
of the class of systems in Section 2, depending on the type
of frequency response estimation methods used. Extremum
seeking methods presented in Section 3 are then shown to
be applicable to the loop-shaping problem. In Section 5,
the theoretical developments are furnished with a case
study in self-tuning PID controller design.

2. DYNAMICAL SYSTEMS

It is demonstrated in Khong et al. (2013b) that the ex-
tremum seeking framework therein can accommodate a
rich class of nonlinear time-invariant systems that are pos-
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sibly distributed-parameter and may admit complicated
attractors. These are briefly reviewed in this section. To
begin with, the following notation is introduced.

A function γ : R≥0 → R≥0 is of class-K (denoted γ ∈ K)
if it is continuous, strictly increasing, and γ(0) = 0. If γ
is also unbounded, then γ ∈ K∞. A continuous function
β : R≥0 × R≥0 → R≥0 is of class-KL if for each fixed t,
β(·, t) ∈ K and for each fixed s, β(s, ·) is decreasing to
zero (Khalil, 2002). The Euclidean norm is denoted | · |.
Given any scalar transfer function X that is continuous on
jR ∪ {∞}, let ‖X‖∞ := supω∈R |X(jω)|.
Let X be a Banach space whose norm is denoted ‖ · ‖.
Given any subset Y of X and a point x ∈ X , define the
distance of x from Y as ‖x‖Y := infa∈Y ‖x− a‖. Also let

Uε(Y) := {x ∈ X | ‖x‖Y < ε}.
Definition 2.1. Let the state of a time-invariant dynamical
system be represented by x : R≥0 → X , where X is a
Banach space with norm ‖ · ‖. The input to and output
of the system are denoted, respectively, by u : R≥0 →
Ω ⊂ Rm and y : R≥0 → R. The set Ω denotes the input
space of interest, and is taken to be a compact subset of
Rm. Compactness is not a stringent assumption given the
ubiquity of control input saturation constraints in physical
systems (Khalil, 2002). Given any u ∈ Ω and x0 ∈ X , let
x(·, x0, u) be the state of the dynamical system starting at
x0 with input u.

Assumption 2.2. Given a system described in Defini-
tion 2.1, the following hold:

(i) There exists a function A mapping from Ω to subsets
of X such that for each constant u ∈ Ω, A(u) is a
nonempty closed set and a global attractor (Ruelle,
1989):
(a) Given any x0 ∈ X and ε > 0, there exists a

sufficiently large t > 0 such that x(t, x0, u) ∈
Uε(A(u));

(b) If x(t0, x0, u) ∈ A(u), then x(t, x0, u) ∈ A(u) for
all t ≥ t0;

(c) There exists no proper subset of A(u) having the
first two properties above.

Furthermore,

sup
u∈Ω

sup
x∈A(u)

‖x‖ <∞. (1)

(ii) For each triplet (ε1, ε2, ∆) of strictly positive real
numbers, there exists a waiting time T > 0 such that
if ‖x0‖A(u) ≤ ∆,

‖x(t, x0, u)‖A(u) ≤ ε1‖x0‖A(u) + ε2 ∀t ≥ T, u ∈ Ω.

(iii) There exists a locally Lipschitz function h : X → R
such that the system output

y(t) = h(x(t, x0, u)) ∀t ≥ 0

for any constant input u ∈ Ω and x0 ∈ X . Moreover,
h(xa) = h(xb) for every xa, xb ∈ A(u). Since A(u) is
a global attractor and h is locally Lipschitz, for any
u ∈ Ω and x0 ∈ X ,

Q(u) := lim
t→∞

h(x(t, x0, u))

= h
(

lim
t→∞

x(t, x0, u)
)

= h(xl), for some xl ∈ A(u)

is a well-defined steady-state input-output map that
is Lipschitz on Ω.

(iv) Q takes its global minimum value in a nonempty,
compact set C ⊂ Ω.

Examples of systems satisfying Assumption 2.2 include
finite-dimensional state-space systems with equilibria or
periodic attractors; see Khong et al. (2013b) for more
details. As it will be shown in Section 4, the parame-
terised loop-shaping controller synthesis is formulated as
an extremum seeking problem involving a plant satisfying
Assumption 2.2.

3. GLOBAL EXTREMUM SEEKING

While traditional extremum seeking methods are often
only able to locate local steady-state optima (Ariyur and
Krstić, 2003; Teel and Popović, 2001) unless the underly-
ing objective function is convex, Khong et al. (2013b) es-
tablishes that within its general extremum-seeking setting,
a wide range of deterministic nonconvex discrete-time opti-
misation algorithms may be employed for global extremum
seeking, including the DIRECT method (Khong et al.,
2013a) and Shubert method (Nešić et al., 2013). Such algo-
rithms are interconnected with the plant via synchronised
sampler and zero-order hold. Results from Khong et al.
(2013b) are summarised in this section and then applied
to the parameterised loop-shaping control problem in the
next.

3.1 Optimisation

Consider the optimisation problem:

y∗ := min
u∈Ω

Q(u), (2)

where Q : Ω ⊂ Rm → R is a Lipschitz continuous function
which takes its global minimum value on C ⊂ Ω, i.e.
Q(u) = y∗ for all u ∈ C. Let Σ be a discrete-time extremum
seeking algorithm for (2). The output sequence Σ generates
to probe Q is denoted {uk}∞k=0 and in the case of precise
(i.e. noiseless) sampling, the collected measurements are
yk = Q(uk−1), k = 1, 2, . . .. Define also the sequence

ȳN := min
k=1,...,N

yk. (3)

Let δ̂ be a non-negative real number. It follows from the
above definition that the sequence {ȳk}∞k=1 converges to

the closed δ̂-neighbourhood (δ̂-ball) of y∗ if for all ε > 0,
there exists infinitely many N ∈ N such that

uN ∈ {u ∈ Ω | |Q(u)− y∗| ≤ δ̂ + ε}.
By the Lipschitz continuity of Q, corresponding to the δ̂
above, there exists a δ > 0 such that the aforementioned
condition holds if a subsequence of {uk}∞k=0 converges to
the δ-neighbourhood of C. That is, for all ε > 0 and K ∈ N,
there exists an N ∈ N such that N > K and

uN ∈ C + (δ + ε)B̄, (4)

where B̄ denotes the closed unit ball in Rm.

In the presence of bounded additive perturbations on
the measurements as illustrated in Figure 1, i.e. yk =
Q(uk−1) +wk with |wk| ≤ ν for some ν > 0, the following
assumption is important to establish convergence of the
sampled-data extremum seeking scheme to be considered
in Section 3.2.
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ykuk−1 Extremum Seeking

Algorithm Σ

Q + wk

Fig. 1. Extremum seeking algorithm with noisy output
measurement.

Assumption 3.1. Let δ ≥ 0 be a small number which
characterises the accuracy of convergence as in (4). The
discrete-time extremum seeking algorithm Σ satisfies the
following: Given any µ > δ, there exists a ν > 0 such that
if |ŷk − Q(ûk−1)| ≤ ν for k = 1, 2, . . . and any sequence
{ûk}∞k=0 ⊂ Ω, then for every ε > 0 and K ∈ N, there
exists an N ∈ N, N > K for which uN ∈ C + (µ + ε)B̄.
In other words, the a subsequence of the output of Σ,
{uk}∞k=0 converges to a µ-neighbourhood of the set C of
global minimisers of Q.

Remark 3.2. Amongst others, the DIRECT algorithm (Jones
et al., 1993) is an example which satisfies Assumption 3.1
(Khong et al., 2013a). Operating on a compact bound-
constrained multi-dimensional domain of search

Ω := {u ∈ Rm | ui ∈ [ai, bi] ⊂ R, i = 1, 2, . . . ,m} ,
it is intelligently balanced between local and global search.
The trial points DIRECT samples in the input space al-
ways form a dense subset, whereby an output subsequence
of DIRECT converges to a global extremum. This algo-
rithm will be used for loop-shaping control design later in
the paper.

3.2 Extremum seeking

The main sampled-data extremum seeking framework
based on Khong et al. (2013b) is detailed in the following.
Semi-global practical convergence to global extrema is
established.

Let {uk}∞k=0 be a sequence of vectors in Ω and define the
zero-order hold (ZOH) operation

u(t) := uk for all t ∈ [kT, (k + 1)T ) (5)

and k = 0, 1, 2, . . ., where T > 0 denotes the sampling
period or waiting time. Furthermore, let the state and
output of a dynamical system in Definition 2.1 with respect
to the input u be respectively x and y and define the ideal
periodic sampling operation xk := x(kT );

yk := y(kT ) for all k = 1, 2, . . . . (6)

Figure 2 shows an extremum seeking scheme based on a
sampled-data control law with period T . The following
lemma on dynamical systems is needed to establish the
main result of this section.

Lemma 3.3. (Khong et al. (2013a)). Given any dynamical
system described in Definition 2.1 that satisfies Assump-
tion 2.2, ∆ > 0, and ν > 0, there exists a T > 0 such that
for any {uk}∞k=0 ⊂ Ω and ‖x0‖A(u0) ≤ ∆,

|yk −Q(uk−1)| ≤ ν for all k = 1, 2, . . . ,

where yk is as in (6) with y being the output of the system
for the input u given by (5).

Plant

Sampler

yk = y(kT )

ZOH

u(t) = uk

t ∈ [kT, (k + 1)T )

ykuk−1

yu

Extremum Seeking

Algorithm Σ

Fig. 2. Sampled-data extremum seeking control.

The main extremum seeking convergence result is stated
next. The feedback configuration in Figure 2 of a dynam-
ical plant satisfying Definition 2.1 and Assumption 2.2
and an extremum seeking algorithm Σ satisfying Assump-
tion 3.1, interconnected through a T -periodic sampler (6)
and a synchronised zero-order hold (5), has the following
convergence property.

Theorem 3.4. Given any (∆, µ) such that ∆, µ > δ, where
δ ≥ 0 is given in Assumption 3.1, there exists a sam-
pling/waiting period T > 0 such that for any ‖x0‖A(u0) ≤
∆, a subsequence of {uk}∞k=0 converges to C + µB̄, where
C is the set of global minimisers for Q : Ω ⊂ Rm → R,
the steady-state input-output map of the plant, as in
Assumption 2.2.

Proof. By Assumption 3.1, there exists a ν > 0 such that
if the input to Σ, ŷ satisfies

|ŷk −Q(ûk−1)| ≤ ν (7)

for k = 1, 2, . . . and any {ûk}∞k=0 ⊂ Ω, then Σ generates
an output {uk}∞k=0 of which a subsequence converges to
C + µB̄. Furthermore, Lemma 3.3 ensures the existence of
a sampling period T > 0 such that the above-mentioned
condition (7) holds for any initial plant’s state ‖x0‖A(u0) ≤
∆.

4. LOOP-SHAPING CONTROL DESIGN

In this section, two approaches to parameterised loop-
shaping control synthesis problem are shown to satisfy Def-
inition 2.1 and Assumption 2.2. Sampled-data extremum
seeking methods in Section 3 are then applied to perform
the task of loop-shaping. Tuning guidelines with regards
to the sampling period are provided to guarantee global
practical convergence to the desired loop shape.

4.1 Estimation based on impulse response

Let C(u) : yc 7→ uc denote a SISO LTI controller with
a transfer function that is continuous on jR ∪ {∞}, and
is Lipschitz continuous in parameter u ∈ Ω ⊂ Rm. C(u)
can be distributed-parameter (Curtain and Zwart, 1995),
or may admit a finite-dimensional state-space realisation:

ẋc = Ac(u)xc +Bc(u)yc, xc(0) = 0

uc = Cc(u)xc +Dc(u)yc,

such that eig(Ac(u)) ∩ jR = ∅ for all u ∈ Ω. Let
P : up 7→ yp be a SISO LTI plant that is possibly
infinite-dimensional and admits a transfer function that
is continuous on jR ∪ {∞}.
Consider now the return ratio or loop gain,

L(u) := PC(u) : yc 7→ yp.
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In this paper, loop-shaping control design involves finding
a u ∈ Ω such that L(u) has a desired shape. The loop-
shaping paradigm is a well-known method for synthesising
a controller which gives rise to non-conservative closed-
loop robustness and performance; see (McFarlane and
Glover, 1992; Vinnicombe, 2001). In general, the magni-
tude of the loop gain is chosen to be large at frequencies
where tracking performance or output disturbance rejec-
tion is important, i.e. sensitivity attenuation is required,
and small at frequencies where measurement noise or mod-
elling uncertainty could pose a problem, i.e. complemen-
tary sensitivity reduction is required. These often occur in
low frequency range for the former and high frequency
range for the latter. A gentle slope of the loop is also
required at crossover frequency to ensure internal stability
by the Bode’s phase formula (Doyle et al., 1992, Chapter
7).

For any fixed u ∈ Ω, the frequency response of the loop
may be estimated by applying an impulse yc to the system
and taking the Fourier transform F of its corresponding
output/impulse response yp, i.e.

L(u)(jω) = (Fyp)(jω) = lim
T→∞

∫ T

0

yp(t)e
−jωt dt.

Let

x(T, u) :=

∫ T

0

yp(t)e
−jωt dt T ≥ 0.

The value of T serves as a waiting time: the larger T is, the
closer x(T, u) will be to L(u). Note that x(0) = x0 = 0. It
follows that there exists a β ∈ KL such that for any u ∈ Ω,

‖x(t, x0, u)‖L(u) = ‖x(t, x0, u)− L(u)‖∞
≤ β(‖L(u)‖∞, t) ∀t ≥ 0.

Let Ld(jω) be a desired loop shape and is defined in the
frequency range of interests ω ∈ [0,W ]. Define for any
function K that is continuous on jR ∪ {∞}:

‖K‖W := sup
ω∈[0,W ]

|K(jω)− Ld(jω)|.

For the purpose of extremum seeking, let the plant input
be u and output be y(t) := ‖x(t, x0, yc)‖W for t ≥ 0; see
Figure 3. As such,

Q(u) := lim
t→∞

‖x(t, x0, yc)‖W
= sup
ω∈[0,W ]

|L(u)(jω)− Ld(jω)|

is a well-defined steady-state input-output map that is
Lipschitz on Ω. It is also clear that the global minimum is
achieved when L(u) = Ld. It is straightforward to verify
that the nonlinear, possibly distributed-parameter plant
mapping from u to y satisfies Assumption 2.2, as required.
In view of this, the following corollary to Theorem 3.4 is
in order.

C(u) P

∫ T

0

·e−jωt dt ‖ · ‖W
yc yp

u

yx

Fig. 3. Dynamical plant u 7→ y for extremum seeking
constructed from impulse response based estimation.

Corollary 4.1. Consider the feedback interconnection in
Figure 2 of a dynamical plant u 7→ y described by
Figure 3 and an extremum seeking algorithm Σ satisfying
Assumption 3.1. Given any µ > δ, where δ ≥ 0 is
the accuracy of Σ as in Assumption 3.1, there exists a
sampling/waiting period T > 0 such that a subsequence
of {uk}∞k=0 ⊂ Ω converges to u∗ + µB̄, where u∗ satisfies
L(u∗) = Ld, a prescribed loop shape. Note that the period
T in both Figures 2 and 3 are the same.

4.2 Estimation based on frequency sweep

Now suppose one is only interested in estimating the mag-
nitudes of the frequency response of L(u) at frequencies
{ω1, ω2, . . . , ωN}. Then the input yc can be defined to take
the form

yc := a1 sin(ω1t) + a2 sin(ω2t) + . . .+ aN sin(ωN t),

where a1, . . . , aN > 0. That is, yc sweeps constant-
amplitude pure-tones/harmonics through the bandwidth
of interest. By the superposition principle of linear sys-
tems, it holds that

yp = b1(u) sin(ω1t+ φ1) + . . .+ bN (u) sin(ωN t+ φN ),

for some b1(u), . . . bN (u) ∈ R and φ1(u), . . . , φN (u) ∈ R.
Thus, |L(jωi)| is given by bi(u)/ai, for i = 1, . . . , N . Define

`(u) := [b1(u)/a1, . . . , bN (u)/aN ]T , (8)

x(0, u) := 0, and

x(T, u) :=

{
|
∫ T

0
yp(t)e

−jωit dt|
|
∫ T

0
yc(t)e−jωit dt|

∣∣∣∣∣ i = 1, . . . , N

}
T > 0.

It follows that there exists a β ∈ KL such that for any
u ∈ Ω,

‖x(t, x0, u)‖`(u) = ‖x(t, x0, u)− `(u)‖2
≤ β(‖`(u)‖2, t) ∀t ≥ 0.

As before, let Ld(jω) be a desired loop shape and define

S := [|Ld(jω1)|, . . . , |Ld(jωN )|]T .
Let the targeted plant for extremum seeking with input
u have the output y(t) := ‖x(t, x0, u)‖S for t ≥ 0; see
Figure 4. Notice that

Q(u) := lim
t→∞

‖x(t, x0, yc)‖S = ‖`(u)− S‖2
is a well-defined steady-state input-output map that is
Lipschitz on Ω. It achieves its global minimum when
`(u) = S. As such, the nonlinear plant mapping from u
to y fulfills the conditions in Assumption 2.2. Similarly to
the previous subsection, one has the following corollary to
Theorem 3.4.

C(u) P
|
∫ T

0
yp(t)e

−jωit dt|
|
∫ T

0
yc(t)e−jωit dt|

‖ · ‖S
yc yp

u

yx

Fig. 4. Dynamical plant u 7→ y for extremum seeking
constructed from frequency sweep based estimation.

Corollary 4.2. Consider the feedback interconnection in
Figure 2 of a dynamical plant u 7→ y described by
Figure 4 and an extremum seeking algorithm Σ satisfying
Assumption 3.1. Given any µ > δ, where δ ≥ 0 is
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C(s, u) P (s) yp
uc

u

Extremum
Seeking

Algorithm

Signal
Generator

Loop Gain
Estimator

Parameterised Controller Tuner

r
+ −

e

Ld

Fig. 5. Parameterised controller tuning using an extremum
seeking framework.

the accuracy of Σ as in Assumption 3.1, there exists a
sampling/waiting period T > 0 such that a subsequence
of {uk}∞k=0 ⊂ Ω converges to u∗ + µB̄, where u∗ satisfies
L(u∗) = Ld, a prescribed loop shape.

5. APPLICATION IN SELF-TUNING PID CONTROL

In this section, an example in self-tuning PID control
design is shown, where the idea is to employ extremum
seeking approach to tune PID parameters such that the
loop gain approaches a desired loop shape. The plant is
LTI and of infinite dimension. A feature of the proposed
scheme is that the models of controller and plant are not
needed for the tuning of controller parameters.

A plant model is borrowed from Schei (1994), where it is a
stable third-order minimum phase system with time-delay,
given by

P (s) =
1− 10s

(1 + 60s)(1 + 20s)(1 + 20s)
e−10s.

Note the plant is an infinite-dimensional system due to the
time-delay term, e−10s. A PID controller is adopted

C(s, u) = Kp

(
1 +

1

Tis
+

Tds

1 + (Td/Nf )s

)
(9)

where it is parameterised by u = [Kp, Ti, Td, Nf ]T . Fur-
thermore, the bounds of PID parameters are given in
a compact set, Ω = {u := [Kp, Ti, Td, Nf ]T | Kp =
[1, 5], Ti = [1, 100], Td = [0, 50], Nf = [0.1, 50]}. The feed-
back structure of the plant and self-tuning controller is
depicted in Figure 5.

The loop transfer function of the controlled system is

L(s, u) = G(s)C(s, u).

Suppose a desired loop shape is given by

Ld(s) =
0.033

s(s+ 2)
, (10)

and the system behaviour within ω ∈ [0.001, 0.01] Hz
is of interest. Note there is no assumption made on the
attainability of the desired loop shape, and exact matching
to the desired loop shape may not be possible. Extremum
seeking is used to find controller parameters, u ∈ Ω
such that L(s, u) be sufficiently close to Ld(s) within the
frequency range of interest without using models of plant
and controller.

A constant-amplitude pure-tones at frequencies {ωi =
i/1000 | i = 1, . . . , 10} Hz is used to probe the open loop
transfer function, L. The magnitude of L is estimated
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Fig. 6. True and estimated magnitudes of L with different
length of Ts.

Table 1. Controller parameters obtained with
different waiting periods, Ts.

Waiting Period [s] Kp Ti Td Nf

300 1.22222 94.4444 41.6667 41.6833
700 1.22222 94.4444 41.6667 41.6833
1000 1.22222 72.2222 25 41.6833
2000 1.66667 94.4444 19.4444 41.6833

using (8), where ai are known and bi are calculated
using fast fourier transform (FFT) algorithm (Cooley and
Tukey, 1965). Figure 6 shows that the estimation accuracy
of |L(s, u)| improves as the data length used for the
estimation, Ts is increased.

The PID parameters are tuned using the proposed ex-
tremum seeking framework and the estimated loop shape,
|L|, where the controller tunings are updated every Ts.
The controller parameters obtained with different waiting
periods are listed in Table 1. Note that the parameters
for Ts = 300 s are the same for Ts = 700 s. However,
Figure 7 shows that the smallest cost value obtained by
extremum seeking decreases with increasing Ts. Compar-
ing Ts = 300 s and Ts = 700 s, the decrease in cost is
due to the improvement in |L| estimation. Figure 8 shows
the loop L approaches the desired loop Ld as the waiting
period is increased from 300 s to 1000 s, indicating that the
longer waiting period improves the optimised result. Unit
step responses obtained using the parameters in Table 1
are shown in Figure 9, where a more responsive response
is obtained for Ts = 2000 s.

6. CONCLUSIONS

An online loop-shaping design of parameterised controller
is presented, where extremum seeking is adopted to tune
the parameters. One motivation of the proposed method
is the need to fine-tune parameters of a fixed structure
controller online to accommodate for continuous changes
in the plant and environment. The control design problem
is formulated and shown to be a special class in the global
extremum seeking framework (Khong et al., 2013b). The
proposed method is applied to self-tuning PID control,
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Fig. 8. Loop shape for different waiting period, Ts.
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Fig. 9. Unit step responses for different waiting period, Ts.

where the magnitude plot of the compensated open-loop
transfer function is close to the desired loop shape.

A novelty of the proposed method is that the models
of both plant and controller are not required during the
tuning process. Admittedly, if the controller model is ex-
ploited, the tuning may be accelerated. A more general
design framework including controller model will be con-
sidered in the future. Additionally, alternative methods for
the estimation of loop gain will be investigated.
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