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Abstract: In this paper, we present a Bayesian framework for fault detection. Principal
component analysis (PCA) technique and quadratic test statistics are incorporated under a
Conditional Gaussian Network (CGN). The proposed network, given an observation, is able to
project it into an orthogonal space and to give a decision about the system state (faulty or
not). The paper demonstrate, the probability limits to use in order to match the decisions made
by quadratic statistics. The equivalence between our method and PCA based fault detection is
validated on the Tennessee Eastman process data sets.

Keywords: Fault detection, statistical inference, PCA, CGN, Tennessee Eastman process

1. INTRODUCTION

The growing demand for security and reliability of the
current industrial processes (or systems), which become
more and more complex, has made the Fault Detection
and Isolation (FDI)-Fault detection and Diagnosis (FDD)
an important and essential research topic. FDI-FDD com-
prises mainly two steps. First, the detection step seeks to
identify at any moment if the system is in control (IC) or
not. Once a change is confirmed (a fault has occurred: the
system is Out of Control (OC)), the second step tries to
explain it or to designate the responsible(s).

In the literature, we can find two main approaches for the
FDD-FDI: model-based and data-driven methods. Theo-
retically, in the presence of an analytical representation of
the system (detailed physical model), model-based meth-
ods are the best. However, obtaining this representation is
often not possible, very tricky or request a lot of time and
money. Unlike model-based methods, data-driven methods
use only system measures (e.g. sensors, actuators) taken
at different times (historical of data).

In this article, we focus only on data-driven methods
for fault detection. A lot of techniques has been pro-
posed in this research area Qin (2012); Yin et al. (2012);
Venkatasubramanian et al. (2003). Many of them are
based on rigorous statistical development of the process
data, which generally employ multivariate/univariate test
statistics (e.g. T2, a special case of MEWMA (Multivariate
Exponentially Weighted Moving Average), SPE (Squared
Prediction Error), and so on). Among them we can men-
tion Subspace Identification Methods (SIMs) and Sub-
space Aided Approach (SAP), tools developed to address
the problems of building an accurate model for complex
systems. They are directly designed utilizing the collected
system data without explicitly identifying a system model
(Ding, 2012). For fault detection purpose, techniques such
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as Fisher Disciminant Analysis, Independent Component
Analysis (ICA), Partial Least Squares (PLS), Principal
Component Analysis (PCA) and their variants could also
be used. PCA is a well-known multivariate linear technique
used in many fields due to its simplicity for model building
and efficiency to handle a huge amount of process data
(Tipping and Bishop, 1999).

Bayesian networks (BNs) have been also proposed for fault
detection (Verron et al., 2010a; Kawahara et al., 2005;
Schwall and Gerdes, 2002; Lerner et al., 2000). They are
powerful tools dealing efficiently with multivariate models.
BNs are designed by experts and/or learnt from data.
We can cite some advantages to use them: Probabilis-
tic/statistical frameworks, graphical representations of the
dependencies between variables, the capacity to handle
dynamics under dynamic BN’s and possible fusion and
integration of information from different sources.

In order to take better decisions, each information (e.g.
probabilistic fault detection decision, maintainability in-
formation, components reliability and so on) on the sys-
tem should be taken into account. In this perspective,
we propose to use a BN in order to model PCA based
fault detection. The major interests of this paper can be
described in these few points: 1) a Gaussian representation
of the PCA model 2) a generalization of the quadratic test
statistics under a probabilistic tool, 3) for fault detection
purpose, both PCA and quadratic statistics (T? and SPE)
are managed under a single BN using discrete and Gaus-
sian nodes (Bayesian framework).

The paper is structured in the following manner. In section
2, we introduce Bayesian Network (BN) and the particular
one we use in this paper, we also briefly discuss PCA and
its developments for fault detection. Section 3 presents an
original CGN for fault detection. This is followed by a
comparison study between the proposed network and PCA
on the Tennessee Eastman process. Finally, conclusions
and outlooks are given in the last section.
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2. TOOLS
2.1 Bayesian Networks

A Bayesian Network (BN) is a probabilistic graphical
model (Jensen and Nielsen, 2007), it is associated and
consists of the following :

e a directed acyclic graph G, G=(V, E), where V and E
are respectively its vertexes (nodes) and edges (arcs)
sets,

e a finite probabilistic space (2,Z,p), with Q a non-
empty space, Z a collection of the subspaces of 2 and,
p a probability measure (we use the same notation
for both probability distributions and probability
density functions. The meaning will be clear from the
context) on Z with p(2) =1,

e a set of random variables X = X, ..., X assigned to
V and defined on (€2, Z, p), such that:

l
p(X1, Xo, ..., X)) = Hp(Xi‘pa(Xi) (1)

where p,(X;) is the set of parent nodes of X; in G,
e a conditional distribution associate to each node,
given its parent nodes, describing probabilistic depen-
dencies between variables,
e 3 calculations named inference, used given the avail-
ability of a new information (evidence) about one or
several G nodes values, to update the network.

2.2 Conditional Gaussian Networks

One particular form of Bayesian networks is the Condi-
tional Gaussian Network (CGN). Each node in the net-
work represents a random variable that may be discrete
or Gaussian (univariate/multivariate). However, to ensure
availability of exact computation, discrete variables are
not allowed to have continuous parents (see (Lauritzen
and Jensen, 2001)). Thus, the Conditional Probability
Distribution (CPD) for each discrete node given its par-
ents, follows a multinomial distribution, outlined generally
under a conditional probability table.

Unlike discrete nodes, Gaussian nodes are allowed to have
Gaussian nodes as parents. Each Gaussian node, given
its Gaussian parents follows a Gaussian linear regression
model with parameters depending on the values of its
discrete parents. In this paper, we restrict our attention
to two kind of nodes.

First, the Gaussian linear node Y, a Gaussian node with
only parents Zi,...,Z., its conditional distribution is
written as p(Y|Zy = z1,...,2Z. = z.) = N(p+ Wiz +
<o+ Weze; X)), where p is the parameter governing the
mean and X the covariance matrix of Y, Wy,..., W, are
the regression coefficients.

The second node is the Gaussian node Y having only
discrete parents II = (O1,...,04). Its conditional distri-
bution could be written as below for each value i of its
parents II:

p(YII =ir) = N (ptig; i), i € I (2)
where p;, and ¥, are respectively the mean of Y and

its covariance matrix given the value iy of its parents. Iy
represent all the values that the parents of Y can take.

2.8 Principal Component Analysis

Principal component analysis (PCA) is a famous mul-
tivariate statistical technique (Jackson, 2005). Consider
X e RVX™ g normalized set of N collected samples of
input and output variables x of a given system. PCA
maps linearly X, the original space, given a transformation
matrix P to an orthogonal space T', and it separates it into
two parts: the systematic part X and the noise part X.

T=XP, PcR™™ pPTp=1 (3)

X=X+X=TP" +TP" (4)

The procedure to determine the matrix P and the two
parts of X can be achieved as below:

Step I: Form the covariance matrix of X:

1
Y~ —XTX 5
N1 (5)

Step II: Find the eigenvalues A; and the eigenvectors P;
of ¥ (see (Bishop et al., 2006)):
Y =PAPT P=[P,...P,)] (6)

A = diag(o?,...,0%), 02 > - > a2 >0, 0']2,:)\j

) m

Step III: Determine a (many methods exists see (Valle
et al., 1999)), the number of dominant eigenvectors of ¥ in
which the retained variance under projection is maximal,
and the principal axes P C P with the largest associated
eigenvalues A:

A= [/8 ﬂ A eRrRe p—[P PP ecR™ (7)

Step IV: Deduce T and T, and the parts of X:
T=[TT), T=XP, TeRV*e, T eRV*(m=a) ()
X = 7PT, X = TP (9)
Once P and a determined, PCA could be used for fault
detection. It is generally associated to quadratic statistics

(Ding et al., 2010). Based on T? and SPE statistic, fault
detection using PCA could be done as below:

Step I: Define the control limits of T? and SPE for a given
significance level a:

a(N? —1)

2. — _
T°:CLp2 = NN —a) F,(a,N —a) (10)
SPE :CLspg = gx%z,avei = Z (0_]2_)1’2 =1,2 (11)
j=a+1

9292/91,h:9%/92 (12)
where y? and F are respectively chi-squared distribution

and Fisher distribution.

Step II: For each new and normalized (given the mean and

variances of X') measurement sample € R™, compute T2
and SPE as below:

T? = 2T PA P e = iTAY
SPE =27(I — PPT)2x = 2T PPz =71
Step III: Finally, compare the calculated T2 and SPE To

their corresponding control limit and make a decision using
this logic rule: if 7% < CLy2 and SPE < CLgpg then the
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system is declared fault-free (IC), otherwise the system is
faulty (OC).

2.4  Gaussian latent variable model and PCA

Based on a linear Gaussian model, (Tipping and Bishop,
1999) proposes a Probabilistic Principal Component Anal-
ysis (PPCA). It is a special case of statistical factor anal-
ysis and a generalisation of PCA (Kim and Lee, 2003). In-
deed, consider X with row vector xf eR™nel,...,N,
using PPCA we can obtain, for example as below, the
systematic part X:

Step I: Consider and use the following probabilistic input-
output model:
x = At + €
e~ N(0,%), t ~N(0,1), x|t ~ N(At, D)
U =0%I, 6>~ 0, x€ R™, AecR"™* {ecR®

where [ is the identity matrix, € is an x-independent noise.

Step II: Using X, find a and the matrix A equivalent to

P = [Py,...,P,] (step IT and III of PCA could be used,
for other methods see (Bishop et al., 2006))

Step III: Calculate, given (15), the posterior distribution
p(t|x = z™) according to:

p(tlx = z,) = N(MATx,, o®M), M ~ (ATA)~ (17)

" =E(tlx =x,) = MATx, (18)
Step IV: Given t,, calculate Z,:
in = EB(x|t =1,) = At,, 27 e X (19)

2.5 Discriminant Analysis and CGN

The discriminant analysis (DA) is a supervised statistic
technique used to solve classification problem (see (Duda
et al., 2001)), commonly under the assumption that the
classes are normally distributed. Consider a new observa-
tion vector z of x € R™ and k different classes C; ;e1,... k.,
DA affects = to the class C; having the maximal a pos-
teriori probability p(C;|z). This Maximum A Posteriori
(MAP) rule, using the Bayes formula can be developed
and written as below:

0:x € Oy, if i* = arg max p(C|x)

i=1,....k
—ar ;n;lx p(Ci)p(|C;)
= A M (20)
= arg maxp(Cy)p(z|C;)  (21)

1= EARAR]
where p(C;) represents the a priori probability of the
class C;,p(x) is the normalization factor which does not
affect the decision and p(z|C;) is the multivariate normal
probability density function of x given C;:

1
p(x = z|Ci) =

Ty —1
— efé(xiﬂi) Ei (xfl"/i)
22 |52

(22)

where p; and X; are respectively the mean vector and
the covariance matrix of the class C;, generally estimated
using the Maximum Likelihood Estimation (MLE) given
the available data.

From (20), many discrimination rules could be derived,
often by making assumptions on classes covariance matri-
ces. Quadratic Discriminant Analysis (QDA) arises when
the covariance matrix of each class C; is estimated given
its corresponding training set. QDA could be represented
in a CGN as shown in Figure 1. The network consists
of a discrete root D, node that represent the k classes,
and a multivariate Gaussian node x € R™ that takes
into account correlation that may exist between the m
variables. The D node value C; with the maximum a
posteriori probability is taken.

D
D [ [
p(C1) P(Ck)
D b

Ci | x~N(ue,;20,)

Cr | x ~N(pcy; Xc,)

Fig. 1. CGN for DA

3. THE PROPOSED PROBABILISTIC FRAMEWORK

In this section, we present an original CGN for fault
detection. The proposed network manages both PCA and
quadratic statistics. First, we show how a linear projection
(PCA) can be done under a CGN. After, we present the
proposed probabilistic framework for test statistics as 7
and SPE, and we give the final CGN for fault detection.

3.1 PCA and CGN

We have discussed in subsection 2.4 how PCA can be
thought a generative model (see (15)), where all the
variables are assumed Gaussian. This linear Gaussian
model could be transposed under the CGN given in Figure
2. In this acyclic directed graph, the linear Gaussian node
x correspond as in (15) to an m-dimensional observed
variable that follows a conditional GaussianA distribution
N (At,0%I), and the Gaussian parent node t correspond
to an a-dimensional Gaussian variable.

However, this CGN only manages the systematic part of
PCA (see (9)) and the last (m — a) components t of t
are not handled. To make possible the separation of the
original space into two subspaces, another Gaussian node
t, representing an (m — a)-dimensional variable is added.
The structure of the new network is shown in Figure 3, it
represents the following probabilistic model:

t ~ N(0;1)

A
@ x ~ N(At; 0%1)

Fig. 2. PCA under a CGN
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Sy = ARt )AT + AE(EE)AT + E(eeT) =
AAT + AAT + 021

(25)

3.2 T? and SPE under a CGN

In this subsection, we propose a probabilistic framework
to handle multivariate/univariate quadratic statistics (we
regroup them under the same notation A). Considering
a new observation z of a given variable x € R™, a
statistic A is first calculated and then compared to their
predefined control limit C'La. The system is declared out
of control (OC), once it is upper to its CLa. We want to
find an equivalent rule using a CGN (see subsection 2.5),
discriminating between the two classes: IC and OC.

t ~N(0;1) t ~ N(0;1)

A A

@ x ~ N (At; 0?1)

Fig. 3. PCA under a CGN

For that we have to find, for example, a probabilistic
control limit (¢R°) such that: if the p(OC|z) > (X° the
system is declared OC, where p(OC|z) is the posterior
probability of the class OC given a new observation x. To
achieve this aim, the parameters (u;c, poc, Xic, Xoc)
of the classes IC', OC need to be suitably defined.

The parameters of the class IC are estimated (if they
are unknown) from the available free-fault data, using e.g.
MLE. Regarding the class OC, as (Verron et al., 2010b)
we consider it as a virtual class representing the set of
observation that cannot be attribute to the IC class.
Its parameters are defined so that ux = poc = pic
and Yoo express more variability than ;o : XA =
Yro;X0c = ¢ X Xa, where ¢ > 1 (if ¢ = 1, the two
classes will be identical, which does not make sense).
This difference (c) making the variance of OC larger
than IC is quite used in fault detection using Bayesian
networks. It is generally estimated using faults data as in
(Kawahara et al., 2005; Schwall and Gerdes, 2002; Lerner
et al., 2000). However, faults data could not be available
or not enough to accurately estimate it, which may lead
increase false alarm and/or miss-detection rates. In this
subsection, using only free-fault data, we propose a CGN
able to provide decisions equivalent to those obtained
by quadratic statistics. To achieve this, we shall seek
probabilistic control limits (¢3°, ¢X) given any values of
c > 1 such as we keep the following decision rule:

xeOC: if A>CLa (26)

under one of this decision rules:
x € O0C: if p(OClz) > (X (27)
r€0C: if p(IC|x) < (X (28)

Consider (28) and let:
p(IC|z) = (X x 1 = (X[p(IC|z) + p(OC|z)]  (29)
where (3 = 1 — ¢¥. Using the Bayes formula, the a

posteriori probability of each class (IC or OC) can be
written as below:

p(Dlz) = p(D])j(gg(;D),D e {IC,0C} (30)
from (29) and (30) we obtain:
p(C)p(z|IC) _ cie p(IC)p(z|IC) + p(OC)p(x|OC)
=6A
p(z) p(z)
(31)
(Kp(OC)p(x|0C) = p(IC)[p(x|IC) — CXp(x|IC)]  (32)
_ p(00) ,
Let w = (10 then we have:
(Kwp(x|OC) = p(a|IC) — (Kp(a|IC)
p(@|1C) = ¢X[p(z|IC) + wp(x|OC)]

27 p(|IC) + wp(x]OC)
As in QDA, each class, IC and OC, follows a Gaussian
distribution, the conditional probability of this two classes
can be written as in equation (34) and (35):

— =) T2 (e p)

e 3
x|IC) = 34
PNITC) = = (34)
— (=) TE M- p)
e 2
p(x|0C) = (35)

2m% [Sal2cT
where p represents a multivariate Gaussian distribution of
dimension m, XA is the matrix assigned to x depending
on A, and (z — px)? X1 (z — px) is the squared form of
x when p(IC|x = 2) = (¥. Hereinafter we refer to it by
CLa, then we have:

N )
T m 1
27% |Sa|2
CZ’: = LA) ™ ‘ Al = LA) (36)
e 2 e 2c
20 % [Sa|2 2% |Sal2c
1
=N (37)
(s} c
Tto=—F—
Let ya = wm e(5e OLa) iy (37), we finally obtain:
C 2
1 )
AT Waqay G718 )
IC : p(IC)

| oc: po0)

|
®

Fig. 4. T? under CGN

IC : x ~ N(ux; X72)
OC : x ~ N (pix; cXr2)

Once the probabilistic limits (3%, (¥ found, we are able
given a ¢ >1 to reproduce the test statistic A in a
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CGN. In this paper, we require the probabilistic limits ya
corresponding to T2 and SPE. For that, it is sufficient
to calculate yA, with the C'La corresponding to each
statistic.

Let A = T?, based on (10) the probabilistic control limits
(38) can be obtained. Once (7= or (% determined, we are
able with the CGN presented in Figure 4 ,given a new

observation z, to decide in which state the system belong:
IC or OC.

IC : p(IC)

SPE| oc : p(00)

IC X NN([LX;ESPE)
OC : x ~ N(px;cXspr)

Fig. 5. SPE under CGN

SPE can be also done under a CGN similarly to T2
(see Figure 5). Indeed, the Mahalanobis norm of x is
identical to the Euclidean norm, when x is normalised
Ysprg = Y2 = 1.

3.8 CGN for fault detection

IC :p(IC)
OC : p(0OC)

IC :p(IC)

SPE| | T | o¢ : p(0C)

IC :t ~ N(pg; 1)
OC : t ~ N(ug;cl)

IC’:EN./\/'(/,L,;;[\)A
OC : t ~ N (pg; ch)

A A

@ x ~ N (At; 0?1)

Fig. 6. PCA for fault detection under CGN

Previously, we have demonstrated the possibility to im-
plement PCA and statistics test as 72 and SPE under
different CGN’s. For fault detection purpose, we propose
to join them under a single CGN (probabilistic framework)
as shown in Figure 6. Given the structure of the proposed
network, the nodes t and t follows a conditional Gaussian
distribution depending each on they discrete parents val-
ues IC, OC. Moreover, as they are respectively monitored
by T2 and SPE, their covariances matrices Y2 and Yspg
are respectively defined equal to A (see (10)) and I (see
(13)). Concerning the remaining nodes, the Gaussian node
x follows a Gaussian linear regression model given its
Gaussian latent parents t and t, and the discrete nodes
(decisions nodes with two states IC, OC') are defined each
given their states (values) prior probabilities.

4. APPLICATION

In this section, in order to compare our method to PCA
(see section 2.3), we have tested it on the Tennessee East-
man Process (TEP). The TEP is an industrial chemical

process, (see Figure 8) with five major units namely, re-
actor, condenser, compressor, separator and stripper as
described in (Downs and Vogel, 1993). The process has 52
variables, 41 are the observed process variables and 11 are
the manipulated variables. Its simulation provided by the
Eastman Chemical Company is a well-known benchmark
widely used for fault detection and/or diagnosis.

In this paper, as in (Yin et al., 2012) we consider 22
observed variables and 11 manipulated variables. Given
the training fault-free data set (500 samples), 9 principal
components are retained. The two methods are compared
using the two indices: FAR (False Alarm Rate) and MDR
(Miss Detection rate) on 21 test data sets (1 for normal
operating conditions and others for 20 different faults).
The network and its inferences was made under BNT
(BayesNet toolbox (Murphy, 2001)). The results obtained
shown that the both methods give same and identical
results. In this paper, due to pages limitation, all the
results can not be presented. However, Figure 7 shows the
statistics 72 and SPE and their equivalence under a CGN
for the last 100 instants of the fault 4 data set. In this
Figure, for the statistics 72 and SPE, an upper violation
of their respective control limit C'Lp2 and C'Lgpr means
that a fault has occurred in the process. The opposite for
the CGN, a lower violation of it respective probabilistic
control limit ({j2and (§py). It can be seen that the two
approaches provide the same decisions at any instant.

@) ®
= : cws. b :IETT-
® , @ T8
@ Condenser B ﬁ"
D
@, |o0@ 18
E—& =) S--
@m o U-©
§ e |G @
gkl % v =
ST
(D @i‘ —@

Fig. 8. Tennessee Eastman Processs

5. CONCLUSIONS AND OUTLOOKS

The main interest of this paper is the presentation of a
new tool for fault detection. Firstly, we have transposed
the PCA model in a BN, more precisely a CGN. Secondly,
we have proposed an original probabilistic framework for
squared statistics as T2 and SPE. For that, it has been
necessary to define probabilistic control limits in order
to match the decisions made by the comparison of the
squared statistics to their thresholds. Finally, we have
integrated principal component analysis and its associated
test statistics used for fault detection in a single CGN.
The proposed method has been tested on the TEP and
compared to PCA. The obtained results demonstrate that
the two methods produce the same decisions.

This work lead to numerous outlooks such as handling
missing values, integrating other information about the
system e.g. data reliability, modeling others projection
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T2 statistic

0 10 20 30 40 50 60 70 80 90 100
instants
IC Probability of the node T2

p(ICIx)

p(IClx)

42

100

instants

SPE statistic
80 T T T

60 B

w
o
@
40+ 1
20**i**ﬁ**f**T**f**f**f*i**ﬁ**’CLSPE
0 10 20 30 40 50 60 70 80 90 100
instants
IC Probability of the node SPE
0.52 T T T T T
7777777777777777777777777777 ] 7ic
0.5f CspE

0.48

0.46
0 10 20 30 40 50 60 70 80 90 100

instants

Fig. 7. Comparison between PCA and the proposed method (with ¢ = 1.005)

models and finally, managing temporal behaviors and non-
Gaussian data hypothesis.
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