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Abstract: This paper proposes a theory for optimizing the power generated from stationary
stochastic vibratory disturbances, using a resonant energy harvester. Although the theory is
general, the target application of the paper concerns ocean wave energy harvesting. The control
technique involves the use of a causal discrete-time feedback algorithm to dynamically optimize
the power extracted from the waves. The theory assumes that the input impedance of the
converter is known precisely, but that a priori models are unavailable for the characterization
of the stochastic behavior of the waves, as well as their hydrodynamic excitation of the system.
For these assumptions, we develop an adaptive control technique, which iteratively re-optimizes
the feedback law for the controller based on recursive subspace identification of the stochastic
disturbance dynamics. The technique is demonstrated on a simulation example pertaining to a
cylindrical surface-floating wave energy converter in heave.
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1. INTRODUCTION

It has long been recognized that control theory can be
used to optimize the power generated by ocean wave
energy converters [Evans, 1981, Falnes, 2002, Salter et al.,
2002, Falc̃ao, 2010]. The determination of the optimal
controller for a wave energy converter (WEC) system is
predicated on knowledge of its dynamic behavior, as well
as a characterization of the sea state to which it is to
be subjected. For WECs with linear dynamic models,
control designs typically presume harmonic waves, and
are designed according to the same network-theoretic
impedance-matching principles used in the design and
operation of antenna arrays and waveguides [Falnes, 1980].

However, true sea states are stochastic, with standardized
power spectra (such as Pierson-Moskowitz or JONSWAP
spectra [Faltinsen, 1990]) which exhibit significant avail-
able energy over a nontrivial band of frequencies. For
such cases, controllers derived via impedance matching
theory must impose a feedback law which is the Hermitian
adjoint (i.e., complex-conjugate transpose) of the driving-
point impedance matrix for the WEC, at all frequencies
[Nebel, 1992]. Such controllers are always anticausal, and
thus require some anticipatory technique in which present
decisions are made with future wave information. This can
be accomplished, for example, with the use of deployable
wave elevation sensors.
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Alternatively, WEC controllers can be optimized subject
to the constraint of causality. It was recently shown
in [Scruggs et al., 2013] that under the assumptions of
linear dynamics, a stationary stochastic sea state, and
unconstrained generator controllability, the optimal WEC
control problem is a special case of the Linear Quadratic
Gaussian (LQG) control problem, which has a well-known
solution. The optimal causal controller has a number of
features (besides, of course, causality) that differentiate it
from the optimal anticausal controller. Most importantly,
while the optimal anticausal controller does not depend
on the power spectrum of the sea state, the optimal causal
controller does. Moreover, the optimal causal controller
also depends on the hydrodynamic forcing functions for
the WEC; i.e., the transfer functions that characterize the
mapping from wave elevation to system forces.

In most realistic applications of control to wave energy
conversion, there will be uncertainty about the nature
of the wave excitation, both in terms of its stochastic
spectrum, as well as its propagatory direction. Causal
controllers that are optimized under an assumed distur-
bance model, which is markedly different from the true
disturbance, may perform quite poorly – so much so that
they may exhibit negative average power generation. It
is therefore essential that causal controllers be capable
of accommodating disturbance model uncertainties, either
through robust control techniques, adaptation, or some
combination of both.

In this paper, we consider the design of controllers that
are disturbance-adaptive; i.e., which presume a precise
a priori model for the driving point impedance of the
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Fig. 1. Diagram of a general energy harvesting system

system (i.e., the transfer function from current to voltage),
and which identifies a stochastic disturbance model in
real time, from response data. This approach falls into a
class of control theory which is sometimes called adaptive
regulation, to imply the situation in which the plant
model is assumed to be known, but the controller must
be made to adapt to unknown or variable disturbance
characteristics [Landau et al., 2011]. The approach taken
in this paper accomplishes adaptation indirectly; i.e., by
identifying a stochastic model for the disturbance, and
then re-optimizing the feedback law under the assumption
of certainty-equivalence.

For the majority of the paper, we develop the theory for
general energy harvesting systems, as shown in Figure 1. In
this diagram, i and v ∈ Rm are the colocated current and
voltage vectors for each transducer port of a generalized
harvester system, and a ∈ Rp is the vector of exoge-
nous disturbances, presumed to be stationary stochastic
processes. The control algorithm determines the current
vector i to apply at each time, based on present and past
measurements for v. Although the theory can be extended
to accommodate other feedback measurements besides v,
we will not pursue this here. It is also worth noting that
for some technologies, such as hydraulic power take-off
systems, it makes more sense to think about control of
mechanical colocated quantities instead of electrical quan-
tities. In such circumstances the theory here may still be
applied; in this case the control variable would become the
force (or torque) of the power take-off device, which would
be determined as a function of the linear (or rotational)
velocity over which it acts.

The notation used throughout the paper is mostly stan-
dard. However, here we note some terms that may not be
entirely commonplace. The sets R≥0 and Z≥0 refer to the
sets of nonnegative real numbers and integers, respectively.
We refer to a square matrix A as Hurwitz if each of its
eigenvalues has negative real component. We refer to a
square matrix A as contractive if each of its eigenvalues
has modulus less than 1. The notation tr{A} refers to the
trace of A. For a Hermitian matrix Q, we use notation
Q > 0 and Q > 0 to denote positive definiteness and
positive semidefiniteness, respectively. Analogous notation
is used for negative definiteness and semidefiniteness. For a
matrix A, we denote the transpose and complex-conjugate-
transpose as AT and AH , respectively. For a vector x

and (Hermitian) matrix Q > 0 of compatible dimension,
‖x‖2Q = xHQx. For a random variable u, we denote its

expectation as E{u}. Finally the set `2 denotes the set
of all infinite, discrete-time sequences {..., x−1, x0, x1, ...}
that are square-summable; i.e.,

∑∞
k=−∞ ‖xk‖22 <∞.

2. THE DISCRETE-TIME ENERGY HARVESTING
PROBLEM

2.1 Modeling assumptions

We assume the energy harvesting system can be modeled
as the linear dynamical system[

ẋ1

ẋ2

]
=

[
A11 A12

0 A22

] [
x1

x2

]
+

[
B1

0

]
i+

[
G1

G2

]
w (1a)[

v
a

]
=

[
C1 C2

0 E2

] [
x1

x2

]
+

[
R
0

]
i (1b)

where x ∈ Rn is the state vector, and w ∈ Rnw is
the white noise sequence that generates a, through the
disturbance model. Note that state vector x has been
partitioned such that x2 ∈ Rna is the largest subspace
which is uncontrollable from i. We refer to this subspace
as comprised of the disturbance states of the system.
The remaining states x1 ∈ Rnh are referred to as the
harvester states of the system 1 . We assume w has unit
spectral intensity; i.e., that Ew(t)wT (τ) = Iδ(t − τ).
The above model implicitly assumes that the mapping
w 7→ a is strictly proper, implying that a has finite
variance. The above model also makes the assumption that
w 7→ v is strictly proper. To simplify the presentation, we
will assume a single harvesting transducer; i.e., m = 1.
However, all the techniques discussed in this paper extend
easily to multi-transducer systems, merely at the expense
of more elaborate notation.

The transfer function Z1 : i→ v, equal to

Z1(s) , C1 [sI −A11]
−1
B1 +R (2)

is called the input impedance of the harvester; i.e., it is
the driving point impedance across the terminals of the
transducer. Assuming the harvester is dissipative (i.e.,
is stable, contains no internal energy sources and no
undamped modes) then we may presume Z(s) to be
positive-real in the weakly-strict sense (WSPR) [Brogliato
et al., 2007]. This condition implies any of the three
equivalent conditions:

(1) ∃ W ∈ Rnh×nh with W = WT > 0 such that

(A11,
√
W ) is observable and[

AT
11W +WA11 WB1 − CT

1

BT
1 W − C1 −2R

]
6 0 (3)

(2) A11 is Hurwitz, and
∫∞

0
i(t)v(t)dt > 0, ∀i ∈ L2.

(3) A11 is Hurwitz, and Z(s) + ZH(s) > 0, ∀<{s} > 0.

As shown by Scruggs [2010], the WSPR condition is nec-
essary in order for the optimal energy harvesting control
problem to be well-posed. If it does not hold, then the

1 Note that it is possible to achieve further specificity in the above
dynamical model by choosing a basis resulting in G1 = 0; i.e., a
basis in which a is determined solely from x2, which then partitions x
into orthogonal subspaces corresponding to physical and disturbance
models. However, such a partitioning is unnecessary.
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optimal feedback law to maximize harvested energy is
destabilizing.

We presume that the current i(t) is controlled in discrete-
time, and mapped to continuous-time via a zero-order-hold
D/A conversion; i.e.,

i(t) = ik , t ∈ Tk (4)

where Tk = [kT, (k + 1)T ) and where T is the sample
time. There then exists a discrete-time sampled system
with sample times Ts = {...,−T, 0, T, ...}, of the form[

x1,k+1

x2,k+1

]
=

[
Φ11 Φ12

0 Φ22

] [
x1,k

x2,k

]
+

[
Υ1

0

]
ik +$k (5a)

vk = [C1 C2]

[
x1,k

x2,k

]
+Rik (5b)

where xk = x(kT ) and vk = v(kT ), $k ∈ Rn is a
discrete-time white noise sequence with zero mean and
E$k$

T
k = Ω. The discrete-time parameter matrices are[

Φ11 Φ12

0 Φ22

]
= exp

{[
A11 A12

0 A22

]
T

}
(6)

Υ1 =A−1
11 (exp {A11T} − I)B1 (7)

To determine the appropriate covariance matrix for $k,
first define xo(t) as the open-circuit state response; i.e.,
the component of the response of (1) due to w. Then the

stationary covariance matrix E{xo(t)xTo (T )} , X is the
solution to the continuous-time Lyapunov equation

0 = AX +XAT +GGT (8)

and G =
[
GT

1 GT
2

]T
. For the discrete-time system, we

choose a noise covariance matrix E{$$T } , Ω that
results in the same state covariance matrix for the discrete-
time open-circuit state; i.e., E{xo,kxTo,k} = X. This implies
that Ω is

Ω = X − ΦXΦT (9)

The instantaneous continuous-time power is

Pgen(t) = −i(t)v(t) (10)

In stationary stochastic response, we denote the mean
power generated by the harvester by an overbar; i.e.,

P̄gen = −E {iv} (11)

In discrete time, the feedback system maps Vk 7→ ik, where

Vk = {vk−1, vk−2, ...} . (12)

Consequently, ik is uncorrelated with the residual rk|k−1 =
xk − E{xk|Vk}. For t ∈ Tk, the unbiased estimate for
Pgen(t) over t ∈ Tk, given Vk, is therefore

P̂gen(t|Vk) (13)

, E {Pgen(t)|Vk} (14)

= −ikE {v(t)|Vk} (15)

= −ikC exp {A(t− kT )} E {xk|Vk}
− ik

(
Rik + CA−1 (exp {A(t− kT )} − I)Bik

}
(16)

Consequently, the expected mean power generation over
interval t ∈ Tk, given Vk, is

ˆ̄Pgen(k|Vk) ,
1

T

∫ (k+1)T

kT

P̂gen(t|Vk)dt (17)

=− ikFE{xk|Vk} −Di2k (18)

where F is

F =
1

T
C

∫ T

0

exp {At} dt , [F1 F2] (19)

where

F1 =C1A
−1
11

1
T (Φ11 − I) (20)

F2 =C1A
−1
11

1
T Φ12 + (C2 − C1A

−1
11 A12)A−1

22
1
T (Φ22 − I)

(21)

and

D =R+
1

T
C

∫ T

0

A−1 (exp {At} − I)Bdt (22)

=R+ C1A
−1
11

(
1
T Υ1 −B1

)
(23)

Finally, P̄gen is then obtained as the expectation of
ˆ̄Pgen(k|Vk) over Vk

P̄gen =E
{
−ikFE{xk|Vk} −Di2k

}
(24)

=E
{
−ikFxk −Di2k

}
(25)

It will be advantageous to use an approximation of F2

which does not require A12 and A22 to be solved from
Φ. We note that if T is small, the integral in (19) can
be approximated as the average of the integrand at the
boundary values; i.e.,

1

T

∫ T

0

exp {At} dt ≈ 1

2
(Φ + I) (26)

As such, F2 can be approximated to high accuracy as

F2 ≈ 1
2C1Φ12 + 1

2C2 (Φ22 + I) (27)

We finish this section on modeling assumptions by noting
that the continuous- to discrete-time conversion above
preserves the WSPR property, as explained in the theorem
below. This property is essential to the well-posedness of
the optimal discrete-time energy harvesting problem.

Lemma 1. Let G1(z) be defined as

G1(z) = F1 [zI − Φ11]
−1

Υ1 +D (28)

If Z1(s) is WSPR in continuous time, then G1(z) is WSPR
in discrete time, which is defined by any the equivalent
conditions:

(1) ∃W = WT > 0 such that (Φ11,
√
W ) is observable

and [
−W −FT

1
−F1 −2D

]
+

[
ΦT

11

ΥT
1

]
W

[
ΦT

11

ΥT
1

]T
6 0 (29)

(2) Φ11 is contractive, and
∞∑
k=0

ikvk > 0, ∀ik ∈ `2

(3) Φ11 is contractive, and G1(z) +GH
1 (z) > 0, ∀|z| > 1.

2.2 Optimal discrete-time energy harvesting

We seek a discrete-time feedback law Vk 7→ ik which
maximizes P̄gen. Toward this end, we have the following
theorem. In the interest of brevity, this theorem is pre-
sented without proof. However, it is the direct analogy for
discrete-time, of the theory presented by Scruggs [2010]
for continuous time.

Theorem 1. Let φ : Vk → ik be any stabilizing feedback
law, and assume the G1(z) is WSPR. Then in stationary
discrete-time response,

P̄gen = P̄max
gen − E‖i−Kx‖2∆ (30)

where Pmax
gen = − tr{PΩ}, ∆ = D + ΥTPΥ, K =

−∆−1
[

1
2F + ΥTPΦ

]
, and P is the unique stabilizing

solution to the discrete-time Riccati equation

P = ΦTPΦ−KT ∆K (31)
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A few remarks are important regarding this theorem, and
its implications:

Certainty-equivalence controllers A class of sub-optimal
energy harvesting controllers can be generated via the
certainty-equivalence principle, through the use of a sta-
bilizing Luenberger observer; i.e.,

x̂k+1 =Φx̂k + Υik + L (Cx̂k − vk) (32a)

ik =Kx̂k (32b)

where ΦL = Φ + LC is contractive. Observer matrix L
can be designed by any standard technique (e.g., pole
placement, etc.). The resultant performance is then

P̄gen = P̄max
gen −KSKT ∆ (33)

where S is the stationary estimation error covariance; i.e.,

S = ΦLSΦT
L + Ω (34)

Performance optimization via Kalman filter P̄gen is
optimized by minimizing the expectation in (30); i.e., by
imposing the feedback law

ik = Kx̂k (35)

with prior estimates x̂k = E {xk|Vk} reconstructed via a
discrete-time Kalman filter, i.e., by a Luenberger observer
with L = L0, the Kalman gain, equal to

L0 = −ΦS0C
T
(
CS0C

T
)−1

(36)

where S0 is the solution to the discrete-time Riccati
equation

S0 = ΦS0ΦT + Ω− ΦS0C
T
(
CS0C

T
)−1

CS0ΦT (37)

The physical limit on generated power (i.e., the value of
(30) attained by (35)) is then (33) evaluated with S = S0.

Partitioned solutions to state feedback gains In the above
theorem, we note that due to the special structure of Φ and
Υ, the solutions to P and K also have special structure.
Specifically, we have that if we similarly partition these
matrices as P =

[
P11 P12

P21 P22

]
and K = [K1 K2] then the

parameters {P11,K11,∆} can be solved independently of
P12 and P22, and depend only on the parameters of G1(z);
i.e.,

P11 =ΦT
11P11Φ11 −KT

1 ∆K1 (38)

K1 =−∆−1
[

1
2F1 + ΥT

1 P11Φ11

]
(39)

∆ =D + ΥT
1 P11Υ1 (40)

With these terms solved, P12 is solved via a (linear)
Sylvester equation:

P12 − Φ̄T
11P12Φ22 = Φ̄T

11P11Φ12 + 1
2K

T
1 F2 (41)

where Φ̄11 = Φ11 +Υ1K1. By the conditions of Theorem 1,
we know that this Sylvester equation has a unique solution.
(Indeed, this is ensured merely by the fact that Φ̄11 is
guaranteed to be contractive.) With P12 found, K2 is a
linear function of it, as

K2 = −∆−1
[

1
2F2 + ΥT

1 (P11Φ12 + P12Φ22)
]

(42)

Note that to determine K1 and K2, it is not necessary to
find P22 explicitly.

2.3 Isolating disturbance-dependent feedback terms

For convenience define

D = {Φ11, C1,Υ1, R} (43)

ID (51)

(52)

C1

R

v

v

i

i

x

K1
+ +

+

+

+

−

i

v

Fig. 2. Block diagram of feedback partitioning

as the state space parameters that depend only on the
discrete-time harvester impedance model. In this paper,
we consider D to be known with certainty, and expressed in
a convenient (and fixed) state space basis. Now, we define
the deterministic feedback system H̄ as

H̄ :


x̄k+1 = Φ11x̄k + Υ1ik[
v̄k
īk

]
=

[
C1

K1

]
x̄k +

[
R
0

]
ik

(44)

We note that the evolution of {v̄, ī} is deterministic in real-
time, because the system parameters are all contained in
D (or, in the case of K1, derived from D) and its input ik
is known precisely at time k.

We then consider the subtraction of the deterministic sys-
tem outputs from {vk, ik}, resulting in the perturbations

ṽk =vk − v̄k ĩk =ik − īk (45)

x̃k =xk −
[
x̄k
0

]
ˆ̃xk =x̂k −

[
x̄k
0

]
(46)

As illustrated in the block diagram in Figure 2, the
perturbed system H̃ as

H̃ :

{
ˆ̃xk+1 = (Φ + LC) ˆ̃xk − Lṽk
ĩk = K ˆ̃xk

(47)

In addition to D, knowledge of H̃ requires the parameter
set

N = {Φ12,Φ22, C2,Ω} (48)

as well as parameters {K2, L}, which is derived from
{D,N}. (Depending on the chosen design technique for L,
Ω may not need to be known.) In this paper, we presumeN
to be uncertain and unmodeled. As such, its contents must
be estimated from the system response, to indirectly adapt
H̃. We note that in the estimation of N , any basis which
preserves the known block structure of Φ and C (i.e, the
fact that their first nh columns are known) is equivalent.
Thus, identified parameter sets are equivalent under any
similarity transformation T with the block structure

T =

[
I T12

0 T22

]
(49)

for any T12 and any invertible T22.

To eliminate the ambiguity related to the basis of the
identified N , it will be useful to refer to the transfer func-
tion representation of the mapping H̃ : ṽ → ĩ directly in
terms of its input/output coefficients. Define {a0, ...an−1}
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as the coefficients of the characterisitc polynomial for the
observer system in (47); i.e.,

zn +

n∑
`=1

an−`z
n−` = det {zI − Φ− LC} (50)

Then

H̃(z) =

∑n−1
`=0 b`z

`

zn +
∑n−1

`=0 a`z
`

(51)

where the numerator coefficients {b0...bn−1} can be found
easily by exciting the state space (47) with the sequence

ṽk =

{
0 : k < 0
1 : k = 0
an−k : k ∈ {1..n}

(52)

which produces the numerator coefficients as the transient
output of the state space simulation; i.e.,

ĩk =

{
0 : k < 1
bn−k : k ∈ {1..n} (53)

Combining H̄ and H̃ as in Figure 2 gives the energy
harvesting feedback controller in (32) as

x̄k+1 = (Φ11 + Υ1K1) x̄k + Υ1ĩk (54)

ĩk+1 =

n∑
`=1

(
bn−`ṽk−`+1 − an−`ĩk−`+1

)
(55)

ṽk =vk − (C1 +RK1) x̄k −Rĩk (56)

ik =K1x̄k + ĩk (57)

Although this representation is not minimal for time-
invariant H̃, it isolates the disturbance dependent param-
eters {a`, b`, ` = 1..n} and permits them to be adaptively
re-evaluated at each time step in response to an update in
N .

3. OPTIMAL ADAPTIVE ENERGY HARVESTING

3.1 Covariance realization algorithm for H̃

This subsection overviews the determination of N , assum-
ing certainty of D, and assuming adquate response data
to accurately evaluate expectations from time averages.
Subspace-based system identification techniques are used
[Katayama, 2005]. The primary justification for this is
that subspace-based techniques scale well to large system
models, and to systems with many transducers. Within
the subspace-based paradigm, our objective can be ac-
complished by any of several related algorithms, most
of which are variants of the methods of Faurre [1976]
or Akaike [1975]. Although Akaike-based methods offer
certain advantages for reliable estimation when the data
size is finite, we opt for a Faurre-based technique here. The
reason for this is that the technique is computationally
more efficient, because it is straight-forward to implement
recursively.

The linear stochastic state space characterizing the dy-
namic response of ṽ due to $ is

x̃k+1 =Φx̃k +$k (58a)

ṽk =Cx̃k (58b)

In stationarity, the state covariance matrix X = E x̃x̃T is
the solution to (9). Define the stationary autocorrelation
function R`, ` ∈ Z≥0 as

R` = lim
k→∞

E ṽk+`ṽk = CΦ`XCT (59)

Following the standard Faurre algorithm for stochastic
realization, define Hankel matrix H`,m as

H`,m =


R1 R2 · · · Rm

R2 R3 · · · Rm+1

...
...

. . .
...

R` R`+1 · · · R`+m−1

 (60)

For `,m > n, define the extended observability and
controllability matrices as

O` =


C
CΦ

...
CΦ`−1

 Cm =


C̄

C̄ΦT

...
C̄(ΦT )m−1


T

(61)

where C̄ = CXΦT . We have that H`,m = O`Cm. It then
follows that the singular value decomposition for H`,m is

H`,m = U`ΣV
T
m (62)

where U` ∈ R`×n and Vm ∈ Rm×n are orthonormal ma-
trices (i.e., UT

` U` = V T
` V` = I) and Σ ∈ Rn×n is diagonal

and positive-definite, its main diagonal comprised of the
(nonzero) singular values of H`,m in descending order. It
then follows that there exists a similarity transformation
matrix T such that

O` =U`T Cm =T−1ΣV T
m (63)

It is then useful to partition O` as

O` = [O`1 O`2] (64)

where O`1 contains the leading nh columns of O`. Sim-
ilarly, we partition T as T =

[
T11 T12

T21 T22

]
, where T11 ∈

Rnh×nh . Then because the first nh columns of Φ and C
are

[
Φ11
0

]
and C1, both of which are available a priori,

O`1 is known a priori as well, as

O`1 =


C1

C1Φ11

...
C1Φk−1

11

 (65)

Any similarity transformation T that renders O`1 as its a
priori value will produce a state space realization with the
desired partitioning for x1 and x2. To assure this, we have
equations for T11 and T21:

U`

[
T11

T21

]
=

[
C1

O`1

]
(66)

If H`,m is known precisely then these equations should
permit unique solutions for T11 and T21. If H`,m is per-
turbed, then approximate solutions are obtained through
the orthogonal projection[

T11

T21

]
=
[
UT
` U`

]−1
UT
` O`1 = UT

` O`1 (67)

Meanwhile, any T21 and any invertible T22 represent a
valid choice for the identified model. As such, we choose
T21 = 0, T22 = I. This gives us the following equations for
C2, Φ12, and Φ22:

O`2 =

[
C2

O`1Φ21 +O`2Φ22

]
=

[
1 0 0
0 O`1 O`2

] [C2

Φ21

Φ22

]
(68)
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where O` denotes the truncation of last row of O`. If H`,m

is known precisely then this equation gives a unique solu-
tion for C2, Φ21, and Φ22. In the presence of perturbations
to H`,m we can find an approximate solution through the
orthogonal projection[

C2

Φ21

Φ22

]
=

[
1 0

0
[
OT

` O`

]−1OT
`

]
O`2 (69)

Using the solution above for T , Cm can then be determined,
and from it, C̄, as

C̄ = [1 0]VmΣ

[
T11 0
T21 I

]−T
(70)

Technically, to complete the identification of N , Ω must be
found. However, for some control design techniques, it may
not be necessary to find Ω. This is advantageous because
the determination of Ω (or equivalently, the determination
of the Kalman gain associated with the innovations model
for x̃) is numerically problematic when H`,m is not known
precisely. Because such methods are unnecessary to the
problem at hand, we will not discuss them here.

3.2 Observer gain adaptation

There many ways to adapt the observer gain L, based
on the identified N parameters. One obvious technique
would be to set L equal to the Kalman gain, L0, associated
with the identified system. However, this approach is not
robust to perturbations in H`,m, making it unreliable in
practice. Although there may be techniques to enhance its
reliability, we take a simpler course of action in this paper
for adapting L.

It turns out that the following observer gain

L = −ΦΘCT
(
CΘCT +R0

)−1
(71)

where Θ is the solution to Riccati equation

Θ = ΦΘΦT + C̄TR−1
0 C̄ − L(CΘCT +R0)LT (72)

performs extremely well in all case studies examined by
the authors in the context of this work, usually resulting
in a stationary performance which is within 10 or 15%
of the theoretical optimal performance achievable with
the Kalman gain. Although the approach is an ad-hoc
solution to the determination of a suitable observer gain,
the technique does have a few compelling justifications:

• It is realization-independent.
• It can be calculated directly from estimations for Φ,
C, and C̄, and a solution will not fail to exist as a
consequence of perturbations in estimations for these
parameters.
• It is straight-forward to show that the above L results

in a stable estimation error residual for the optimal
ĩ, irrespective of the accuracy of Φ, C, and C̄.

For the purposes of the present paper, we motivate the use
of this technique based on the above justifications. Further
theoretical justification of this choice of L will be published
in a forthcoming journal paper.

3.3 Recursive identification of N from data

For time k, define the vectors

y+
k = [ṽk−`+1 ṽk−`+2 · · · ṽk]

T
(73)

y−k = [ṽk−` ṽk−`−1 · · · ṽk−`−m+1]
T

(74)

Then in stationary response, we have that H`,m =
Ey+

k (y−k )T . For the purposes of using the above-described
technique to identify N at time k from response data
{ṽk, ṽk−1, ...}, we use the sampling approximation

H`,m ≈Ĥ`,m(k) (75)

=(1− β)

k∑
j=−∞

βk−jy+
j (y−j )T (76)

where β ∈ (0, 1) is a forgetting factor. The above can be
computed recursively as

Ĥ`,m(k) = βĤ`,m(k − 1) + (1− β)y+
k (y−k )T (77)

Similarly, R0 can be estimated as

R0 ≈ R̂0(k) =(1− β)

k∑
j=−∞

βk−j ṽ2
j (78)

=βR̂0(k − 1) + (1− β)ṽ2
k (79)

Using these sampled estimations, one can then consider
the re-identification of N via the procedure in Section 3.1
at each time step k, each time using the latest estimates
Ĥ`,m(k) and R̂0(k). Such an approach produces a time-

indexed sequence of parameter identifications; i.e., N̂ (k).

Although conceptually straight-forward, this described ap-
proach requires some modifications to make it numerically
reliable and efficient:

• For stochastic disturbances with high quality factor,
estimation errors in Ĥ`,m(k) and R̂0(k) may result

in an estimation Φ̂22(k) which is not asymptotically
stable. To guard against this, we resort to the com-
mon ad-hoc practice of reflecting these poles into the
unit circle. To make the derivations consistent, this
pole reflection is imposed on Θ directly following its
evaluation from Û`(k).
• The requirement to solve singular value decomposi-

tion (SVD) in (62) at each time step becomes compu-
tationally intensive as the Hankel dimensions {`,m}
are made large. However, larger {`,m} can also lead
to more accurate identifications. In order to make
it numerically practical to repeatedly re-solve the
SVD, we make use of the iterative subspace-tracking
algorithm proposed by Goethals et al. [2004]. Let the

true SVD for Ĥ`,m(k) be denoted

Ĥ`,m(k) = Û`(k)Σ̂(k)V̂ T
m (k) (80)

Then Û`(k) satisfies

Û`(k) = argmin
W∈R`×n

∥∥∥(I −WWT
)
Ĥ`,m(k)

∥∥∥2

F
(81)

Assuming the forgetting factor β to be sufficiently
close to 1 such that the changes in Û`(k) from
one iteration to the next are small, the above is
approximately equivalent to

Û`(k) = argmin
W∈R`×n

∥∥∥(I −WÛT
` (k − 1)

)
Ĥ`,m(k)

∥∥∥2

F

(82)
which has the solution
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Fig. 3. Diagram of example WEC

Û`(k) ≈ Ĥ`,m(k)
(
ÛT
` (k − 1)Ĥ`,m(k)

)†
(83)

Implementing this approximation successively pro-
duces a sequence W`(k), as

W`(k) = Ĥ`,m(k)
(
WT

` (k − 1)Ĥ`,m(k)
)†

(84)

for which Û`(k) ≈ W`(k). Additionally, we may

approximate V̂m(k)Σ̂(k) ≈ ĤT
`,m(k)W`(k).

• Ideally, an estimate N̂ (k) would be used immediately
to update the controller parameters at time k + 1.
However, in reality this was found not to be viable.
The reason is that the values of N̂ (k) are strongly

correlated with the inputs to H̃; i.e., {ṽk−1, ...ṽk−n}.
This correlation can introduce “hidden” positive feed-
back into the dynamics of H̃, causing the value of ĩ
to destabilize. To remedy this, it was necessary to
introduce a delay in the parameter updating, such
that the controller at time k is evaluated using N̂ (k−
δ), for δ > 0 being the delay shift. For the example
described in the next section, it was found that δ
had to be quite large (i.e., around 104) in order to
avoid instabilities. The reason for this is that, due to
extremely low damping in the closed-loop system, the
autocorrelation function for ṽk decays very slowly.

4. EXAMPLE

Consider the simple single-degree-of-freedom WEC shown
in Figure 3, comprised of a cylindrical buoy coupled to a
floor-mounted generator through a pre-tensioned tether.
We assume that the buoy’s response is predominately
in heave. For the model parameters chosen, the heave
response of the buoy has a natural period of approximately
5.5s.

We presume electromechanical power conversion through
the reciprocal relationships

f =κi e =κż (85)

where κ is the effective back-EMF constant of the gen-
erator, and v = e + Ri. The most useful parameter to
characterize the generator capability is actually the short
circuit viscosity, equal to

ce = κ2/R (86)

i.e., the effective linear viscous damping imposed on the
buoy as a consequence of setting v = 0. For our example,
we assume the hardware is designed to yield a value of
ce = 105kg/s. Theoretically, it can be shown that any
combination of κ and R producing a given ce value will
perform identically. Thus, we arbitrarily choose R = 1Ω.

To model the mechanical dynamics of the buoy, identical
techniques to those reported in [Scruggs et al., 2013] were
used. The infinite-dimensional transfer functions mapping
{a, i} into v were solved, accounting for all linearized fluid-
structure interactions. Model reduction techniques were
then used to determine high-fidelity finite-dimensional
models for these transfer functions. For the simulation,
a Pierson-Moskowitz spectrum was assumed, with a mean
wave period of 7s, and a significant wave height of 1m. (Be-
cause the response of the system will be homogeneous, the
particular value of the significant wave height is immaterial
to the analysis.) For simulation purposes, this spectrum
was approximated by a rational spectrum, and modeled
as filtered white noise. The buoy and wave dynamic state
space models were then augmented, and a balanced trun-
cation was performed to eliminate common dynamics. The
resultant reduced system is six-dimensional, with nh = 2
and na = 4.

For the adaptive controller, a sample time of T = 0.5s
was used. For this sample time, the true value of P̄max

gen =
2.33kW (for a significant wave height of 1m.) We assumed
na = 4. The forgetting factor β was taken to be such that
the system memory had a half-life of 5× 104 samples; i.e.,

β = 0.51/(5×104).

Figure 4 shows a transient plot of the output power
for this system, over a time duration of 5 × 104s. For
the first 104s, the identification algorithm is operational
but the generator is not (i.e., ik = 0). During this
time the algorithm develops a preliminary model for the
stochastic disturbance, which is later refined after power
generation comes online. It is perhaps undesirable that
the algorithm requires such a long duration for initial
identification. However, we note that during this duration,
N̂ was required to be estimated with no prior information.
This stands in contrast to the steady-state adaptation of
the controller due to shifting sea state conditions, in which
the parameters in N̂ are recursively updated.

The true value of P̄gen for the control design (with the
sub-optimal observer) is 2.02kW. The actual mean power
generation over the interval during which the control loop
is closed is 2.09kW, which is well within the estimation
error for the simulation data size. Thus we conclude
that the adaptive controller converges to its theoretical
performance, as desired.

5. CONCLUSIONS

It has only been very recently that the connection between
stochastic energy harvesting and optimal stochastic con-
trol has been well understood. The fact that the optimal
causal feedback law turns out to be the solution to an
associated LQG problem, motivates the use of the many
existing techniques from this theory in energy harvesting
problems. The aim of this paper has been to investigate the
implications of indirect adaptive LQG control techniques,
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Fig. 4. Simulation of power generation output for example
scenario. In the top plot, the power output is lowpass
filtered with a cutoff frequency of 1mHz

in this new context. The scope of the paper has been
somewhat modest, in that we have focused only on the
adaptive regulation problem, in which our knowledge of the
plant is precise, while the knowledge of the disturbance is
limited. However, even for these assumptions, the develop-
ment of controllers that can be shown to perform close to
the theoretical stochastic power generation limit, proved
nontrivial. Clearly, the next step is to examine the case in
which the plant (i.e., input impedance G1) is also unknown
a priori. This case seems likely to be a significantly greater
challenge.

We have focused the application of this paper on an ocean
wave energy application, for a few reasons. Firstly, ocean
energy applications provide strong incentive for the de-
velopment of optimal control algorithms, as a means of
maximizing the available resource. Secondly, it constitutes
an application for which the levels of generated power
are large enough to offset the parasitic losses associated
with the implementation of sophisticated control adapta-
tion algorithms. This places WEC control in contrast to
many smaller-scale energy harvesting applications, such as
energy scavengers for embedded sensing, which generate
only a few milliwatts of power. Nonetheless, the control
algorithms discussed in this paper may be of some use in
some smaller-scale applications.
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