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Abstract: In the work of Huang (2010) and Nguyen and Huang (2012) the linear quadratic
mean field systems and control problem is solved in the case where there is a major agent (i.e.
non-asymptotically vanishing as the population size goes to infinity) together with a population
of minor agents (i.e. individually asymptotically negligible). The new feature in this case is
that the mean field becomes stochastic and by minor agent state extension Nguyen and Huang
(2012) establish the existence of ε-Nash equilibria together with the individual agents’ control
laws that yield the equilibria. This paper presents results initially announced in Caines and
Kizilkale (2013); Caines (2013) where it is shown that if the major agent’s state is partially
observed by the minor agents, and if the major agent completely observes its own state, all
agents can recursively generate estimates (in general individually distinct) of the major agent’s
state and the mean field, and thence generate feedback controls yielding ε-Nash equilibria.

1. INTRODUCTION

Mean Field (MF) systems theory establishes the existence
of approximate (aka ε-) Nash equilibria together with the
corresponding individual strategies for stochastic dynam-
ical system agents in games involving a large number of
agents. The equilibria are generated by the local, limited
information feedback control actions of each agent in the
population, where the feedback control actions constitute
the best responses of each agent with respect to the pre-
computed behaviour of the mass of agents and where the
approximation error converges to zero as the population
goes to infinity.

The determination of an approximate equilibrium and
the corresponding individual agent control actions in the
complex, arbitrarily large finite population case (i.e. the
domain of application) is achieved by exploiting its rela-
tionship with the infinite population limit problem with
its far simpler description and solution. Specifically, the
solution to the infinite population problem is obtained via
the MF Hamilton-Jacobi-Bellman PDE and the (McKean-
Vlasov) Fokker-Planck-Kolmogorov PDE equations which
are linked to each other by the state distribution of a
generic agent, otherwise known as the system’s mean field.
This linked pair of HJB and FPK PDEs is referred to as
the Mean Field Game (MFG) equations.

The analysis of this set of problems originated in Huang
et al. (2003, 2006, 2007) and independently in Lasry and
Lions (2006a,b). In the important work Huang (2010) and
Nguyen and Huang (2012) analyse and solve the linear
quadratic systems case where there is a major agent (i.e.

non-asymptotically vanishing as the population size goes
to infinity) together with a population of minor agents (i.e.
individually asymptotically negligible). The new feature
in this case is that the mean field becomes stochastic
and by minor agent state extension the existence of ε-
Nash equilibria is established together with the individual
agents’ control laws that yield the equilibria (Nguyen and
Huang (2012)).

In the purely minor agent case the mean field is determin-
istic and this obviates the need for observations on other
agents’ states for the generation via recursive filtering of
estimates of the global systems state or the mean field.
(This is separate from an agent’s need to estimate its own
state (self-state, for short) if it is a partially observed (PO)
system, see Huang et al. (2006).) However, a new and
challenging problem for MF system theory is that since
systems with major agents have stochastic mean fields,
systems with PO major agents have mean fields which must
be recursively estimated together with the major agents’
partially observed states.

The main result of the present paper (first announced
in Caines (2013); Caines and Kizilkale (2013)) is that if
the major agent’s state is partially observed by the minor
agents they can recursively generate estimates (in general
individually distinct) of the major agent’s state and the
mean field, and thence generate feedback controls yielding
ε-Nash equilibria. An important assumption adopted here
is that the major agent has complete observations of its
own state (aka self-observation); this hypothesis is adopted
as a sufficient condition to avoid problems arising from
partially ordered major and minor agent information sets.
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2. MAJOR-MINOR AGENT LQG SYSTEMS

In this section we give a succinct summary of the LQG
major-minor agent MF framework together with the prin-
cipal ε-Nash Equilibrium result.

Dynamics: Completely Observed Finite Population

Following Huang (2010), we consider a large population of
N stochastic dynamic minor agents

dx0 = [A0x0 +B0u0]dt+D0dw0,

dxi = [A(θi)xi +B(θi)ui +Gx0]dt+Ddwi,
(1)

t ≥ 0, 1 ≤ i ≤ N < ∞. Here xi ∈ Rn, 0 ≤ i ≤ N, are
the states, ui ∈ Rm, 0 ≤ i ≤ N, are the control inputs,
{wi, 0 ≤ i ≤ N} denotes (N + 1) independent standard
Wiener processes in Rr on an underlying probability space
(Ω,F , P ) which is sufficiently large that w is progressively

measurable with respect to the filtration Fw , (Fwt ; t ≥ 0)
on F . Note that the common agent A0 affects each
minor agent through its dynamics. The initial states are
defined on (Ω,F , P ), and {xi(0), 0 ≤ i ≤ N} are mutually
independent and also independent of Fw∞; Ewiw>i =
Σ, 0 ≤ i ≤ N , and E‖xi(0)‖2 < ∞, 0 ≤ i ≤ N .
We denote the minor agent population average state by

xN = (1/N)
∑N
i=1 xi.

We now introduce two admissible control sets. The σ-
field Fi,t, 1 ≤ i ≤ N, is defined to be the increasing
family of σ-fields generated by (xi(τ); 0 ≤ τ ≤ t), and by
definition F0,t is the increasing family of σ-fields generated
by (x0(τ); 0 ≤ τ ≤ t). FNt is the increasing family of σ-
fields generated by the set {xj(τ), x0(τ); 0 ≤ τ ≤ t, 1 ≤
j ≤ N}. By definition the set U0 consists of the feedback
controls adapted to the set {F0,t; t ≥ 0}. The set of control
inputs Ui, 1 ≤ i ≤ N , based upon the local information set
of the minor agent Ai, 1 ≤ i ≤ N , consists of the feedback
controls adapted to the set {Fi,t, F0,t; t ≥ 0} while UNg is

adapted to {FNt , t ≥ 0}, 1 ≤ N <∞.

Perfomance Functions

The individual infinite horizon performance, or cost, func-
tion for the major agent is then specified by

J0(u0, u−0) = E
∫ ∞

0

e−ρt
{∥∥x0 − Φ(xN )

∥∥2

Q0
+ ‖u0‖2R0

}
dt,

Φ(·) := H0x
N + η0,

and the individual infinite horizon cost for a minor agent
Ai, 1 ≤ i ≤ N , is specified as

Ji(ui, u−i) = E
∫ ∞

0

e−ρt
{∥∥xi −Ψ(xN )

∥∥2

Q
+ ‖ui‖2R

}
dt,

Ψ(·) := H1x0 +H2x
N + η.

Minor Agents’ Types

The minor agents are not necessarily uniform in their
parameters but are given in K types with 1 ≤ K <∞:

Ik = {i : θi = k, 1 ≤ i ≤ N}, Nk = |Ik|, 1 ≤ k ≤ K,

πN = (πN1 , ..., π
N
K ), πNk = Nk/N , 1 ≤ k ≤ K,

shall denote the empirical distribution of the parameters

(θ1, ..., θN ) sampled independently of the initial conditions
and Wiener processes of the agents Ai, 1 ≤ i ≤ N .

H1: There exists π such that limN→∞ πN = π a.s.

Introduce the (auxiliary) state averages:

xNk =
1

Nk

Nk∑
i=1

xi,k, 1 ≤ k ≤ K.

For each agent Ai of type k, 1 ≤ k ≤ K, we consider
uniform (with respect to i) feedback controls uk depending
upon: (i) time invariant linear functions of state xi,k; (ii)
bounded functions of time, and (iii) the major agent’s state
x0.

Then, conditioned on F0,t, for all k, 1 ≤ k ≤ K,

ExNk (t) =
1

Nk

Nk∑
i=1

Exi,k(t) =: x̄k(t), 0 ≤ t <∞,

satisfies the mean generic agent’s dynamical equation

dx̄k =

K∑
j=1

Ak,j x̄jdt+B(θk)ukdt+Gx0dt, 1 ≤ k ≤ K,

or

dx̄(t) = Āx̄(t)dt+ Ḡx0(t)dt+ m̄(t)dt,

where Ā, Ḡ, m̄, are to be solved for in the tracking solution.

When it exists at any t, 0 ≤ t ≤ ∞,

x̄(t) := [x̄1(t), ..., x̄t(t)],

will be termed the system’s mean field.

We now consider the major agent’s state extension [x0, x̄]
by the mean field and obtain the major agent’s dynamics
in the infinite population case as[

dx0

dx̄

]
=

[
A0 0nK×n
Ḡ Ā

] [
x0

x̄

]
dt

+

[
B0

0nK×m

]
u0dt+

[
0n×1

m̄

]
dt+

[
D0dw0

0nK×1

]
,

where

A0 =

[
A0 0nK×n
Ḡ Ā

]
, B0 =

[
B0

0nK×m

]
,

M0 =

[
0n×1

m̄

]
, Qπ0 =

[
Q0 −Q0H

π
0

−Hπ
0
>Q0 H

π
0
>Q0H

π
0

]
,

η̄0 = [In×n,−Hπ
0 ]>Q0η0,

Hπ
0 = π ⊗H0 , [π1H0 π2H0 ... πKH0].

Similarly we introduce the minor agent’s state extended
by the major agent’s state and the mean field to obtain
[xi, x0, x̄]>. Then each minor agent’s dynamics in the
infinite population case is given by[
dxi
dx0

dx̄

]
=

[
Ak [G 0n×nK ]

0(nK+n)×n A0

][ xi
x0

x̄

]
dt

+

[
Bk

0(nK+n)×m

]
uidt+

[
0n×1

M0

]
dt[

0n×m
B0

0nK×m

]
u0dt+

[
Ddwi
D0dw0

0nK×1

]
,
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with the matrices above defined as follows:

Ak =

[
Ak [G 0n×nK ]

0(nK+n)×n A0 − B0R
−1
0 B>0 Π0

]
Bk =

[
Bk

0(nK+n)×m

]
M =

[
0n×1

M0 − B0R
−1
0 B>0 s0

]
η̄ = [In×n,−H,−Hπ

2 ]>Qη Hπ
2 = π ⊗H2.

In the infinite population case, the individual cost for the
major agent is given by

J∞0 (u0, u−0) = E
∫ ∞

0

e−ρt
{∥∥x0 − Φ(x̄)

∥∥2

Q0
+ ‖u0‖2R0

}
dt,

Φ(·) = Hπ
0 x̄+ η0,

and the individual cost for a minor agent i, i ∈ N is given
by

J∞i (ui, u−i) = E
∫ ∞

0

e−ρt
{∥∥xi −Ψ(x̄)

∥∥2

Q
+ ‖ui‖2R

}
dt,

Ψ(·) = H1x0 +Hπ
2 x̄+ η.

We then have the major agent tracking problem solution:

ρΠ0 = Π0A0 + A>0 Π0 −Π0B0R
−1
0 B>0 Π0 + Qπ0 ,

ρs∗0 =
ds∗0
dt

+ (A0 − B0R
−1
0 B>0 Π0)>s∗0 + Π0M0 − η̄0,

u0
i = −R−1

0 B>0
[
Π0(x>0 , z̄

>)> + s∗0
]
,

and analogously the minor agent tracking problem solu-
tion:

ρΠk = ΠkAk + A>k Πk −ΠkBkR−1B>k Πk + Q,

ρs∗k =
ds∗k
dt

+ (Ak − BkR−1B>k Πk)>s∗k + ΠkM− η̄,

u0
i = −R−1B>k

[
Πk(x>i , x

>
0 , z̄

>)> + s∗k
]
.

Now define: Πk =

[
Πk,11 Πk,12 Πk,13

Πk,21 Πk,22 Πk,23

Πk,31 Πk,32 Πk,33

]
, 1 ≤ k ≤ K,

and ek = [0n×n, ..., 0n×n, In, 0n×n, ..., 0n×n], where the n×
n identity matrix In is at the kth block.

This notation permits a compact description of the Major-
Minor MF Equations determining Ā, Ḡ, m̄: via the consis-
tency requirements

ρΠ0 = Π0A0 + A>0 Π0 −Π0B0R
−1
0 B>0 Π0 +Qπ0 ,

ρΠk = ΠkAk + A>k Πk −ΠkBkR−1B>k Πk +Qπ, ∀k,
Āk = [Ak −BkR−1B>k Πk,11]ek −BkR−1B>k Πk,13, ∀k,
Ḡk = −BkR−1B>k Πk,12, ∀k, (2)

ρs∗0 =
ds∗0
dt

+ (A0 − B0R
−1
0 B>0 Π0)>s∗0 + Π0M0 − η̄0,

ρs∗k =
ds∗k
dt

+ (Ak − BkR−1B>k Πk)>s∗k + ΠkM− η̄, ∀k,

m̄k = −BkR−1B>k s
∗
k, ∀k.

Finally one defines:

M1 =

A1 −B1R
−1B>1 Π1,11

. . .

AK −BKR−1B>KΠK,11

 ,
M2 =

 B1R
−1B>1 Π1,13

...
BKR

−1B>KΠK,13

 ,
M3 =

A0 0 0
Ḡ Ā 0
Ḡ −M2 M1

 ,
L0,H = Q

1/2
0 [I, 0,−Hπ

0 ].

The final set of hypotheses is as follows:

• H2: The initial states are independent, Exi(0) = 0 for
each i ≥ 1, with supj≥0 E|xj(0)|2 ≤ c.

• H3: The pair (L0,H ,M3) is observable.
• H4: The pair (La,A0 − (ρ/2)I) is detectable, and

for each k = 1, ...,K, the pair (Lb,Ak − (ρ/2)I)

is detectable, where La = Q
1/2
0 [I,−Hπ

0 ] and Lb =

Q1/2[I,−H,−Ĥπ]. The pair (A0 − (ρ/2)I,B0) is sta-
bilizable and (Ak− (ρ/2)I,Bk) is stabilizable for each
k = 1, ...,K.

• H5: There exists a unique stabilizing solution Π0, s∗0,
Πk, Āk, Ḡk, s∗k, m̄k to Major-Minor MF equations
(2).

Theorem 1. (Huang, 2010) Nash Equilibria for Major-
Minor Agent MF Systems

Subject to H1-H5 the MF equations generate a set of
stochastic control laws UNMF , {u0

i ; 0 ≤ i ≤ N}, 1 ≤ N <
∞, such that

(i) All agent systems S(Ai), 0 ≤ i ≤ N, are second order
stable.

(ii) {UNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for
all ε, i.e. for all ε > 0, there exists N(ε) such that for
all N ≥ N(ε)

JNi (u0
i , u

0
−i)− ε ≤ inf

ui∈UN
g

JNi (ui, u
0
−i) ≤ JNi (u0

i , u
0
−i).

2

3. PARTIALLY OBSERVED MAJOR-MINOR AGENT
LQG SYSTEMS

We now formulate the partial observations problem for
the Major-Minor LQG MF problem by specifying the
partial observation equation for a generic Minor agent with
respect to its extended state for the fully observerd Major-
Minor LQG MF problem above, and then similarly for the
Major agent:

dxi = [A(θi)xi +B(θi)ui +Gx0]dt+Ddwi,

dx0 = [A0x0 +B0u0]dt+D0dw0.

The observation process for any minor agent Ai is defined
to be:

dyi(t) = Lx0,x̄
i dt+ dvi(t) ≡ L

[
xi
x0

x̄

]
dt+ dvi(t), (3)

where
L = [L1 L2 0],
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while the complete observations process for the major
agent A0 is defined to be

dy0(t) = dx0(t).

We now introduce the family of partial observation infor-
mation sets Fyi , 1 ≤ i ≤ N, defined to be the increas-
ing σ-fields generated by agent Ai’s partial observations
(yi(τ); 0 ≤ τ ≤ t), 1 ≤ i ≤ N , on its own state and the
major agent’s state, as given in (3).

For each minor agent Ai, 1 ≤ i ≤ N , the set of control
inputs Uyi based upon the local partial information set of
that minor agent is defined to be the collection of feedback
controls adapted to the increasing σ-field {Fyi,t, t ≥ 0}.

The major agent is assumed to have complete observations
of its own state; namely, as in Section 2, its control
set U0 consists of feedback controls adapted to the set
{F0,t; t ≥ 0}.
The following important observation is to be made con-
cerning this formulation. Since the major agent is assumed
to have complete observations of its own state, the minor
agents are able to form conditional expectations of the
major agent’s MFG control action u0 since it is a (linear)
function of the major agent’s state.

To show why this is assumed, consider the situation where
the major agent’s controls were measurable with respect to
the σ-field F̃0 which was generated by partial observations
on the major agent’s state which are available only to
the major agent. Then conditional expectations of the
major agent’s control action could not be generated by the
minor agents since these would be conditional expectations
(with respect to Fyi ) of a conditional expectation x̂0|F̃0

,

computed with respect to F̃0.

The Riccati equation associated with the Kalman filtering
equations for x0,x̄

i , [xi, x0, x̄] is now given by:

V̇ (t) = AkV (t) + V (t)A>k −K(t)RvK
>(t) +Qw,

where

Qw =

[
Σi 0 0
0 Σ0 0
0 0 0

]
,

Ak =

 Ak [G 0n×nK ]

0(nK+n)×n

[
A0 0(nK×n)

Ḡ Ā

]  ,
and

V (0) = E
[
x0,x̄
i (0)− x̂0,x̄

i (0)
] [
x0,x̄
i (0)− x̂0,x̄

i (0)
]>

.

The innovation process is evidently

dνi = dyi − L

 x̂i|Fy
i

x̂0|Fy
i

ˆ̄x|Fy
i

 ,
and the Kalman filter gain is given by

K(t) = V (t)L>R−1
v .

Finally, adopting the additional assumption below yields
the infinite population minor agent filtering equations.

H6: The system parameter set Θ satisfies [Ak, Qw] control-
lable and [L,Ak] observable for 1 ≤ k ≤ K.

Minor Agent Filtering Equations:

 dx̂i|Fy
i

dx̂0|Fy
i

dˆ̄x|Fy
i

 =

 Ak [G 0n×nK ][
0n×n

0nK×n

] [
A0 0nK×n
Ḡ Ā

] 
×

 x̂i|Fy
i

x̂0|Fy
i

ˆ̄x|Fy
i

 dt+

[
Bk

0n×m
0nK×m

]
uidt

+

[
0n×m
B0

0nK×m

]
û0|Fy

i
dt+

[
0n×1

0n×1

m̄

]
dt+Kdνi.

Theorem 2. ε-Nash Equilibria for PO MM-MF Systems
Subject to H1-H6, the KF-MF state estimation scheme
plus MM-MFG equations generate the set of control laws
ÛNMF , {û0

i ; 0 ≤ i ≤ N}, 1 ≤ N <∞, given by

u0
0 = −R−1

0 B>0
[
Π0(x>0 , x̄

>)> + s∗0
]
,

û0
i = −R−1B>k

[
Πk(x̂>i|Fy

i
, x̂>0|Fy

i
, ˆ̄x>|Fy

i
)> + s∗k

]
{1 ≤ i ≤ N}, such that

(i) All agent systems S(Ai), 0 ≤ i ≤ N, are second order
stable.

(ii) {ÛNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for
all ε, i.e. for all ε > 0, there exists N(ε) such that for
all N ≥ N(ε)

JNi (û0
i , û

0
−i)− ε ≤ inf

ui∈Uy
i

JNi (ui, û
0
−i) ≤ JNi (û0

i , û
0
−i).

Proof.

The sequence of steps to this result are now a combination
of standard Separation Theorem methods and the LQG
Major-Minor agent LQG MF method applied to the con-
trolled estimated state equations.The sequence of steps is
the following:

(1) The major agent and individual minor agent state
estimation recursive equations schemes are given by
the MM KF-MF Equations above (for size N finite
populations and infinite populations).

(2) One next applies the Separation Theorem strategy for
reducing a partially observed SOC problem to a com-
pletely observed SOC problem for the controlled state
estimate processes beginning with the re-expression
of the perfomance functions in terms of the state
estimation proceses.

(3) The control law dependent summand of the individual
cost for the major agent A0:

JN0 (u0, u−0) = E
∫ ∞

0

e−ρt
{∥∥x0 −H0x̂

N
|F0
− η0

∥∥2

Q0

+ ‖u0‖2R0

}
dt,

where x̂N|F0
= (1/N)

∑N
i=1 x̂i|F0

.

(4) The control law dependent summand of the individual
cost for a minor agent Ai, i ∈ N:

JNi (ui, u−i) = E
∫ ∞

0

e−ρt
{∥∥x̂i|Fy

i
−H1x̂0|Fy

i

−H2x̂
N
|Fy

i
− η
∥∥2

Q
+ ‖ui‖2R

}
dt.
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Fig. 1. State trajectories

It is to be noted that this step transforms the J0 and
Ji MM performance functions into LQG MM tracking
performance functions on the controlled state estimate
processes in both the infinite and finite population
cases.

(5) The problem in (2) for the state estimate processes is
next solved using the completely observed LQG MM-
MFG methodology (Huang (2010)) which yields the û0

and ûi control laws and the J∞0 and J∞i performance
function values.

(6) The major agent’s performance value J∞0 and the
minor agents’ performance value functions J∞i nec-
essarily correspond to an infinite population Nash
equilibrium.

(7) We conclude by applying the infinite population con-
trols in the finite population game case where the
standard approximation analysis (Huang et al. (2007);
Huang (2010)) gives ε-Nash equilibria with respect to
J∞0 and J∞i for JN0 and JNi in finite N populations.

4. SIMULATION

Consider a system of 100 minor agents and a single major
agent. The system matrices {Ak, Bk, 1 ≤ k ≤ 100} for the
minor agents are uniformly defined as

A ,

[
−0.05 −2

1 0

]
, B ,

[
1 0
0 1

]
,

and for the major agent we have

A0 ,

[
−0.05 −2

1 0

]
, B0 ,

[
1 0
0 1

]
.

The parameters used in the simulation are: tfinal =
30s, ∆t = 0.01s, σw = 0.05, σv = 0.05, ρ = 0.01, η =
[0.25, 0.25]>, η0 = [0.25, 0.25]>, Q = 100 × I2×2, Q0 =
100 × I2×2, R = 1, R0 = 1, H = 0.6 × I2×2, H0 = 0.6 ×
I2×2, Ĥ = 02×2, G = 02×2, and the mean field equation
system is iterated 100 times. The state trajectories of a
single realization can be seen for a population of all agents
with their estimates. Only 10 minor agents are displayed
for clarity. The effect of the major agent’s state on minor
agents’ states is seen on the horizon. In the case when the
minor agents are not allowed to directly observe the major
agent, they apply Kalman filtering, and their estimates
are also plotted in the graph. As expected, the estimates
closely follow the true state values on the whole horizon.

5. CONCLUDING REMARKS

Building upon the MM-LQG-MFG theory for partially ob-
served MM systems and the Nonlinear MM-MFG theory,
one important next step is to generate a MM-MFG theory
for partially observed nonlinear MM systems. In terms of
significant applications, the application of these methods
to power markets has been initiated in Caines and Kizilkale
(2013); this formulation builds upon application of MM-
MFG Theory to markets where minor agents (customers
and suppliers) receive intermittent observations on active
major agents (such as utilities and international energy
prices) and on passive major agents (such as wind and
ocean behaviour) (Kizilkale et al. (2012)).
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