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Abstract: Motivated by a practical problem, in this work we investigate the problem of
simultaneous estimation of state and parameters of an Hidden Markov Model with a particular
structure. The motivating application is the problem of automatic counting of bubbles or
droplets flowing into a microfluidic channel, where the noisy output of a photodiode has to be
processed in order to detect the transit of bubbles. The goal is achieved through the recursive
computation of a pseudo-max-likelihood estimate.
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1. INTRODUCTION

Hidden Markov Models (HMM) are effectively used in
many applications for modeling systems with discrete
state space and observation space. Speech processing and
recognition is one of the first applications where HMM
have been successfully applied (see eg. Rabiner (1989)).
More recent audio applications are listed in Pikrakis et al.
(2006). In general, HMM have revealed useful in many
pattern recognition problems, such as radar image classi-
fication, text processing, active learning, image segmenta-
tion, and others (see the recent paper Zhang et al. (2013)
and references therein). Estimation problems oh HMM are
investigated in Elliot et al. (1995), White and Carravetta
(2011).

In this paper we consider the state estimation problem
on a class of HMMs that we have developed for dealing
with a specific microfluidic application. The problem is
the automatic counting of bubbles or droplets flowing
into a microfluidic channel. The microchannel is made of
transparent material, and the transit of bubbles causes a
change in the transparency of the fluid in the channel. A
photodiode can be mounted on the external wall of the
microchannel in order to detect the transit of bubbles
by capturing the variations of luminosity. We have been
inspired by the experimental setup described in Sapuppo
et al. (2011) and Schembri et al. (2012)
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Theoretically, three levels of light are detected: high level
when there is no bubble, low level when the border of
the bubble is in correspondence with the diode position
(entering or outcoming bubble), intermediate level when
the bubble is in transit. The problem is to elaborate an
algorithm that processing the low-resolution and noisy
output of the phothodiode correctly detects the passing
bubbles or droplets.

In this paper the problem is formulated as a state and
parameter estimation problem in a HMM, and the bubble
detection goal is achieved through the recursive computa-
tion of a pseudo-max-likelihood estimate.

2. THE CLASS OF HMM AT ISSUE

We consider a physical system characterized by a finite
number of states that evolve according to a finite state
Continuous-Time Markov Chain (CTMC) model. We as-
sume that sensor captures noisy and quantized measure-
ments on the system at discrete times k7T, k € IN. The
behavior of the CTMC at the discrete times k7T can be
modeled as a (discrete-time) Markov Chain (MC). Le
n € IN denote the number of states of the MC, and let
us encode the n states using the n vectors of the canonical
basis of R", i.e. {e1,...,en}. Let X € {e1,...,e,} denote
the state of the MC a time k£ € IN. It is known that the
MC behavior can be stochastically described by means of
the vector po = [po.1,---,Po.n]? of the initial probabilities
of the states, i.e. po; = P{Xo = e;}, and by the matrix
of the conditional probabilities P{X, 11 = ;| X = €;},
i,7 = 1,...,n. As well known, Elliot et al. (1995), the
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chain obeys a difference stochastic equation of the follow-
ing kind:

X1 = Ap Xk + Vi, (1)
where the n x n matrix Ay = {a;;(k)}ij=1,...n is such
that a,J(k) = P{Xk-l—l = ei|Xk = ej}, and Vk is a white
noise (Vi = Xpi1 — E{Xk41|X%}). We assume that at
each state e;, ¢ = 1,...,n correspond an intensity L; of
a physical quantity to be measured. In the ideal case of
measurements taken at discrete-times k7T by a noisefree
analog sensor, we would have the following output signal

Sk = LXk, where L = [Ll R Ln} (2)
Thus, the row vector L collects the discrete admissible
output levels. The output levels L; are not necessarily
distinct (it can happen that L; = L; for some pairs
(i,7) € IN?). We assume that the signal S(t), corrupted
by an additive white noise sequence Wy, is measured by
a coarse sensor, that provides a discretization of the noisy
signal (quantizer). Let m € IN be the number of possible
output values of the quantizer. We encode such finite
output values of the quantizer by means of the canonical
basis of R™, denoted {f1,--, fm}. Thus, the considered
model of generation of the output sequence Yy, k € IN, is

Vi = Q(Zk), (3)
Z, = S + Wy. (4)

Q in (3) is the quantizer, ie. @ : R — {f1,..., fm}-
For a given partition {I1,...,I,,} of IR (i.e. such that
R =U"I; and I; N [; =0, Vi # j € IN) the quantizer is

such that:
Q(z)=f;, if zel, CTR. (5)
We assume that the set {I;}7, of subsets I; € IR, is a
partition of IR, i.e. it is a set of m disjoint intervals as
follows:
L = <_OO’21]a I, = (Zm—l,‘f'oo)

Ii+1 = (Zi,ZH_l], 1= 1,...,m—2. (6)

In (4), Wy is a zero mean, signal-independent, Gaussian
noise, such that E{W?} = o2, for all k € IN, and
E{W;, W)} = 0, for k # h. Thus, the distribution of the

noise Wy is pw, (w) = (2mo)~1/2e " 207,

We assume that the transition probability matrix Ay is
constant (let’s say A) but unknown, and that the m levels
L; are unknown too. The additive noise variance o2 is
assumed known. Even the initial state distribution pq is

unknown.

Fig. 1 represents schematically the states of the MC, the
output levels L; associated to the states, the additive noise
and the quantization process.

The model given by egs. (1) and (2)—(4) can be trans-
formed into a standard HMM as follows. Consider the
random variable Zj, (analog sensor noisy output), and let
us denote with pz(z;k|E) the probability density of Zj,
conditional to some event £. As for pz(z; k| X\ = e;) one
has, using the Gaussian assumption on the noise Wy:

Pz, (2| Xk = €i) = pz, (2|Sk = Li) = pw, (2 — Li)
1 _(Z*qu)Q (7)

= e 202
V2o
From this, we can compute all the conditional output
probabilities:
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Fig. 1. Schematic of the HMM under investigation

cij(L) = P{Yry1 = fi| Xp = e}
_(z—Ly)?

202 dz. (8)

1
= | —e
/Ii V2mo
Also, we need to define the following quantity:

_(z-Lj)?

202 dz. (9)

A
di;(L) = / e

Note that from the definitions we have

m m
Y cig=1 Y diy =L
i=1 i=1

as the first summation results in the integral of a proba-
bility density over IR, and the second summation in the
expectation of the probability density given in (7). Under
the above setting the posterior observation satisfies the
conditional independence property:

(10)

k
P{Yig1,. .. Vi[Xp, .. Xo} = [[P{Vina|Xi}. (11)
=0

and the observation satisfies:
Vi1 = C(L) Xy + Ni1, (12)
where C'(L) is the m x n matrix collecting the coefficients

¢i,; defined in (8), and Ny is a zero mean, white sequence
(Ni+1 = Vi1 — E{Yi41| Xk }).

3. THE FILTERING AND IDENTIFICATION
PROBLEMS

The problem we aim to solve is the optimal (in the least
square sense) filtering of the MC {X} under the discrete
observations Y} given in (3). Also some variables such as
the occupation times of all states, or the number of jumps
from i to j (for any pair (i,7) € IN?) are to be estimated.
We want to solve this estimation problem without the
knowledge of the transition matrix A in the model (1)
or of the conditional output matrix C in (8)

The estimation task will be accomplished by simultane-
ously identificating the parameters a; ; (i.e. the matrix A)
and the components of the row vector L (i.e, the levels
L;). Note that the choice of estimating the row vector
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L € RY™ and then computing C'(L) is more efficient that
the choice of directly estimating the matrix C' € R™*".

Let © = {pg, 4, L}, denote the set of unknown parameters
that characterize the system (1) and (12)

The max-log-likelihood estimation of ©, namely 0 =

[Po, A\, Z]T, is defined by:
pO,A L= arg max L(po, A, L) (13)
Po,A,L
L(po, A, L)
:E@{IOgP@{Y]H_l,...,Yl,Xk,...,Xo}D)k}, (14)

where Eg, Pg are the expectation and probability corre-
sponding to a given parameter’s set of values and ) is
the o-algebra generated by Y%, ..., Yy. Notice that the es-
timate defined in (14) actually depends on k, and improves
as k increases, with new observations.

We can obtain a significant computational simplification
with a slight modification of the likelihood functional given
in (14) as follows. let us denote ©(**+1) the parameters’ set
estimated at step k, i.e. with respect to )i, and obtained
by maximization of the functional Li(pg, 4, L) defined as:

Lk(p07AaL)
:E@<k){10g P@{Yk+1, ey Yl, )(V]€7 e ,X()}|yk} 5 (15)
with !

Lo(po, 4, L) = Eg) (P (Y1)). (16)

We call the estimate O%) a pseudo max-likelihood (PML)
estimate. In the following Theorem we show that the
sequence of PML estimates {©®)} can be calculated re-
cursively.

Before doing so, let us recall some known facts about
optimal filtering of Markov chains that can be found in
the literature. There are many ways indeed for build up
an optimal filter of a Markov chain X under observa-
tions Y satisfying the conditional independence property
(11). Bayesan methods allows the recursive computation
of the joint probability P{Yxi1,...,Y1, X} for given
MC’s transitions P{Xj;1| Xy} and posterior observations
P{Yy+1| Xy}, from which both the LS as well as the MAP
(maximum a posteriori) estimates can be obtained Elliot
et al. (1995). Also, within the Bayesan framework, a
smoothing algorithm, for the more general class of recip-
rocal chains (including the Markov case) can be found in
White and Carravetta (2011). As for methods relying on
a state-space approach, we here report the recursive algo-
rithm for the computation of the conditional distribution
(CD) of a MC X generated by a model as in (1), under the
observation model (12), namely pg(e;) = P{Xk = e;|Vx}
(details and proofs can be found in Elliot et al. (1995)).
The algorithm consists in finding first an unnormalized
conditional distribution (UCD) namely gx(-), which satis-
fies the recursive equations:

=m > anjqile;) (Vi1 Cy),
j=1

Qr+1(er) (17)

1 note that Lo is constant with respect to A

where C; denotes the j-th column of the output matrix
C, and then p; by normalization: pi(e;) = %
. k
Equation (17) is the optimal filter of the HMM (1)-(12)
provided the parameters are given. It is the finite-range,
discrete-time- version of the well known Zakai equation
for stochastic differential equations. In addition to the
filter, we need to introduce three functionals of the MC
{Xi} that will play a role in the identification procedure:
Number of jumps in k steps (of the MC X) from e, to e,
namely 7,
k
= Z <Xl—17 67‘><Xl7 es>~

=1

7 (18)

the Occupation time (of a state e,., for the MC X)), namely
O

k+1

Z <Xl717 €r> .
1=1

and the state-to-observations transitions number, namely

T

Opy1 = (19)

k
=Y (i fo)(Ximrsen),
1=1
which is the number of times, up to time k, that Y is in
the state 8 given the underlying MC X, at the preceding
step, is in e,.. Notice that

T (20)

n

YT =1 =0}
=1

s=1

(21)

Let Hy be one of the above functionals Z, Oy, Tr. For
known values of parameters, it is possible to compute

recursively the least-square estimate H), = E{H;|Vx} by

Elliot et al. (1995):
Hy = E(Hy|Vr) = (v (Hy), /ZQk (22)
W(Zy*) =m Y (ViECs) (ma (T e5) A,
=1
m (YkTCr) <Qk71, er>asres> (23)
Ww(OF) =m > (VC)) (-1(Of_1), €5) A,
j=1
m (YkTCT) (qr—1,er)Ar. (24)
(T = m Yy (G C) e (), e5) 4
j=1
+m(qr—1, €)Yk, fp)cprAr.  (25)

where A; denote (similarly to C;) the j-th column of A.

Theorem 1. The PML estimates p°(k), A®) L®)  qgre
given by the following recursive algorithm:

step 0) 0 = {ﬁgo),é\(o),f(o)} s obtained by solving the
discrete optimization problem'

0 = arg max = Z Z

po,L ==

) (pog)?, (26)

9542



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

A©) s set to any value.
step k) Let C = C(LW), and a;; = =gk

ij s i the right
hand sides of (23)-(25), then we have:

A(k+1) Im A(k+1)_
_§a 0. = Ex{(Xo,e;)[ W}, (27)
k

whereas the estimate L*+1) is obtained by finding the zero
of the function:

(L)

Ar - d ,T<L)A r
= L,0p - Y Bl

= cor(L) 2

Proof. (Step 0)- Since P{Y;} = P{¥3|X,}p", by (16) it

is
Z Z P {1 =

=1 j=1

Lo(po, L) fil Xo = €5} (po,5)°
from which (26) follows. Moreover, since Ly does not
depend of A, the latter can be chosen at any initial value.
(Step k). By using (11), and the Markov Property of X:

Po{Yis1, .., Y1, Xk, . ..

) XO}

k
= Po{Xo} [[Pe(ViIXi-1}Po{Xi|X, 1}
=1

m
IR

k
HC Yi,fs) X’—l’8T>ag§l)es><xlfl7er>
=1

r,s,j=1p=1
and taking the log and the conditional expectation
Er(|Vk) = Egw (-|Vk):
L(po, A, L) = ZZTﬁ’ log ¢ . (t, L)
p=1r=1

+ 3 It logas + Y Ex{(Xo, ea)| Vi logpo,a

a=1

(29)
r,s=1

The above functional has to be maximized with respect to
the variables agy, po.,o, Lr, and 0;, with s,7,a0 =1,...,n,
i=1,...,q, with the followmg 2n+1 equahty constralnts
(the latter two for 7 = 1,...,n):

Zpo,a =1 Zasr =1 Z cﬁ,T(L)
a=1 s=1 B=0

Thus, let us introduce Lagrange multipliers: A, u, 7,: rel-
ative to the constraints (30) and build up the Lagrangian:

L(po, A, L, A\, u,v)= L(A,0, L)—i—ﬁ: Ar (f: Qgr — 1,)
r=1 s=1
+u <Zpa—1> +Z% ZCBT (t,0,L)—1], (31)

r=1 Bs=1

=1 (30)

Differentiating in ag, and setting to 0, we have

1 ~
i+ A\ =0,
ST
and since 22:1.1128 = O}, by using the second .of (30)
we can solve with respect to ., and then derive the

(32)

estimation at time k of ag., namely a( + ), which is

given by the first of (27). Similarly, by differentiating with
respect to p¥ ) we have p+Ex{(Xo, e )| Ve }/p% = 0, which,
on account of the first of (30), and ) Ex{(Xo,ea)|Vr} =
1, gives p = —1, and then the second of (27). As for the
remaining parameters, by differentiating (31) with respect
to L, and setting to zero, we obtain:

m

1 cgr ~ar " Jeg.r
) D i or. ="
B= lcﬂT ﬂ:]- T

From (8) an easy calculation leads to the following identi-
ties:

(33)

ocg.r 1
— = —dg, — —(Lr + F(t,0))ca,r, 34
B Sy = (Lo PO ()
By (34), using (10), one has
“ 8Cﬁ7r
o =0 (35)
B=1
Substituting (35) and (34) in (33) results in
AN d T ,T
w3 =3t e
B=1 g1 B
On account of (21), the above condition amounts to finding
a zero of the function defined in (28). .

4. A MARKOV CHAIN BASED MODEL OF
BUBBLE-MOTION IN A MICRO CHANNEL

The problem is the automatic counting of bubbles or
droplets flowing into a microfluidic channel. The mi-
crochannel is made of transparent material, and the transit
of bubbles causes a change in the transparency of the fluid
in the channel. A photodiode can be mounted on the exter-
nal wall of the microchannel in order to detect the transit
of bubbles by capturing the variations of luminosity. More
details on this experimental setup can be found in Sapuppo
et al. (2011) and Schembri et al. (2012).

4.1 Simulation results

The following numerical simulations have been carried
out in order to show in silico the effectiveness of the
proposed theoretical approach. A 4-state Markov chain is
here proposed

e absence of drop (AD, in short), corresponding to a
high value coming from the sensor

e presence of drop (PD, in short), corresponding to a
low value coming from the sensor

e border of entering drop (BED, in short), correspond-
ing to the lowest value coming from the sensor

e border of outcoming drop (BOD, in short), corre-
sponding to the lowest value coming from the sensor

It is assumed that only the following change of states are
allowed (bubbles never come back in our experiments)

AD — BED — PD — BOD — AD
with the following Markov probabilities (unknown to the
filter)
P(BED|AD) = 0.05,
P(BOD|PD) = 0.05,

P(PD|BED) = 0.01,

P(AD|BOD) —0.01  (36)

9543



19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

By ordering the states as (AD,BED,BOD,PD), the
Markov transition matrix is:
099 0 0.05 0
A= 0.01 0.95 0 0
— 10 0 0.950.01
0 0.06 0 0.99

As far as the measurements, we assume the four Markov
states provide the sensor the following signals:

AD+ 60, PDw45,  BED,BOD s 45

and the sensor provides a 32 levels quantized signal within
the range [0.75,12]. The values coming from sensors are
affected by an additive noise, modeled by a zero-mean
Gaussian distribution with standard deviation equal to the
quantization bit 2.5.

(37)
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Fig. 2. Original Markov chain values and the output
coming from the noisy digital sensor.

In order to test the performance of the identification
algorithm, we assume the following initial estimate for
matrix A:

05 0 05 0
~ 0505 0 0
A=10 00505 (38)
0 05 0 05
and an initial estimate for matrix L given by:
Lo=[70 30 30 50] (39)

The proposed algorithm provides very nice estimates of
the model parameters:

09883 0 02 O
0.0117 0.9582 0 0

A=1"0" "0 08 0046 (40)
0 00418 0 0.9954
Lo = [58.8635 30.1832 34.6028 43.8772]  (41)

As far as the state estimate, we have about the 90% of
success, as it can also appreciated by Fig.1.

In case of a priori knowledge of matrices A and L, the
filtering algorithm improves the percentage of fitting to
about 98%.
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5. CONCLUSIONS

In this work we investigate the problem of simultaneous
estimation of state and parameters of a class of Hidden
Markov Models. The structure of the model is such to
solve a specific problem in the area of microfluidic: the
problem of detecting and counting the bubbles flowing in
microchannels. A photodiode detects changes of intensity
of light caused by the presence or not of a bubble. The
problem is that, unfortunately, such changes are not very
significant and do not alow to discriminate the presence
of a bubble. Moreover there is a good amount of sensor
noise, and the analog to digital conversion is made with
a coarse quantization. Thus, it is not easy to detect the
transit of bubbles with simple processing of the signal
from the photodioe. For this reason, we investigate an
estimator scheme, that perform on line identification of an
HMM in order to improve the quality of the estimation.
The proposed signal processing scheme is based on the re-
cursive maximization of a pseudo-Log-likelihood function.
Computer simulation provide satisfactory results. Future
work could be the test of the algorithm on real data.
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