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Abstract: Security issue has become a new hotspot in cyber-physical systems (CPS) research
field in recent years due to the vulnerability of CPS to security threats. This paper focuses
on stealthy deception attack in remote state estimation, which is one typical attack in CPS.
From the standpoint of deception attacker, we investigates how to design proper deception
attack strategy to degrade the state estimation quality with communication rate constraint.
We design an online attack strategy and prove that the proposed attack strategy can degrade
the estimation quality. To study the effectiveness of the proposed strategy, we analyze the cost
deviation, which depicts the difference between the estimation quality with and without the
proposed attack strategy. Our results show that the cost deviation will be maximum when the
communication rate is 0.75. A numerical example is presented to demonstrate the main results.
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1. INTRODUCTION

Cyber-physical systems (CPS), which smoothly integrate
information and physical elements, have a large spectrum
of applications, including smart grid (Bitar et al., 2011),
smart building (Novak and Gerstinger, 2010), intelligent
transportation (Qu et al., 2010), public health (Sarwate
and Chaudhuri, 2013), etc. Due to its importance, it is
of great research interests to investigate the vulnerability
of CPS under various threats launched in either cyber or
physical space (Zhang et al., 2014). A well-known example
is the Stuxnet worm, which attacked Iran’s nuclear facil-
ities and resulted in more than 1000 centrifuges (10 per-
cent) breakdown between November 2009 and late January
2010 (Wilson, 2013).

In this paper we focus on stealthy deception attack,
which compromises sensor nodes, aiming at degrading the
system performance without being detected (Cardenas
et al., 2009). A typical deception attacker can capture
the sensor nodes, exploit its unauthorized privileges to
inject malicious code or modify the program, and then
deteriorate the system performance stealthily (Bryant
et al., 2004; Song et al., 2007; Kavitha and Sridharan,
2010).

One basic issue in CPS security is to study the consequence
of attack actions (Shoukry et al., 2013). Zhang et al. (2013)
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has studied an optimal offline DoS attack strategy against
state estimation, where, subject to an energy constraint in
a finite time horizon, the attacker jams the transmission
channel without being detected. In (Zhang et al., 2013),
it was assumed that the sensor can always send the
data to the estimator and every data can be received by
the estimator with a certain probability. However, if the
sensor has energy constraint or communication bandwidth
constraint, it cannot send the data in every time slot.
Therefore needs to design its transmission schedule to
improve the estimation quality. Wu et al. (2013b) designed
an online transmission schedule under communication rate
constraint to minimize the state estimation error. It is
interesting and challenging to design an attack strategy
to maximize the attack effect under such communication
rate constraint.

Since the remote estimator may detect the attack behavior
if the communication rate constraint is violated, the basic
research direction is whether and how the attacker can
exploit the online information to degrade the system
performance as much as possible under the communication
rate constraint. Motivated by this, we focus on the online
attack strategy design in order to degrade the estimation
quality. Specifically, we consider deception attack strategy
against state estimation of a linear system with Gaussian
noises. In the viewpoint of attacker, we are interested in
design proper online deception attack strategy to degrade
the state estimation quality.

Our main contributions can be summarized as follows:
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(1) We propose an online attack strategy against state
estimation and prove that the proposed strategy can
degrade the estimation quality.

(2) We study the cost deviation under the proposed
attack strategy, and prove that there exists a sensor-
to-estimator rate to maximize this deviation.

(3) We obtain a closed-form expression of the sensor-to-
estimator rate which maximizes the cost deviation.

The remainder of the paper is organized as follows: Section
2 formulates the problem. Section 3 proposes an online
attack strategy and then evaluates the impact of this
strategy. Section 4 illustrates the effectiveness of our
proposed attack strategy. Section 5 concludes the whole
paper.

Notations: Sn+ is the set of n × n positive semi-definite
matrices. Rr is the r dimensional Euclidean space. E[X]
and D[X] stand for the mean and variance of random
variableX, respectively. E[X|Y ] stands for the the mean of
random variable X conditioned on Y . ϕ(·) is the probabil-
ity density function of Gaussian distributionN (0, 1). Tr(·)
is the trace operation of matrix. ∥ξ∥ stands for Euclidean
norm of a vector ξ. Ir represents r × r identity matrix.
diag(λ1, λ2, . . . , λr) stands for the diagonal matrix with
the diagonal elements λi, i = 1, 2, . . . , r. rank(·) is the rank
of a matrix. (·)′ is the transpose operation of a matrix.

2. PROBLEM FORMULATION

Consider the following linear system (Fig. 1)

xk+1 = Axk + wk,

yk = Cxk + vk,
(1)

where xk ∈ Rn is the state variable with n ∈ N, yk ∈ Rm

is the measurement variable with m ∈ N, wk ∈ Rn is
the process noise, vk ∈ Rm is the measurement noise, wk

and vk are uncorrelated zero mean Gaussian noises with

covariance Σw and Σv, respectively. The pair (A,Σ
1
2
w) is

stabilizable and (A,C) is assumed to be detectable .

Fig. 1. System architecture

2.1 System architecture

The sensors, which have sufficient computational capabil-
ity to estimate the system state xk after reading the mea-
surement yk, are referred to as smart sensors. We assume
a smart sensor is used. Its local estimate is calculated
by a Kalman filter, i.e., x̂s

k = E[xk|y0, . . . , yk]. Sensor’s
estimation error is defined as esk = xk−x̂s

k, and its error co-
variance matrix is defined as P s

k = E[(esk)(esk)′|y0, . . . , yk].
It is assumed that x̂s

0 = 0 and P s
0 = Π0 ≥ 0. From

(Anderson and Moore, 1981), one can see that error
covariance matrix P s

k converges to a steady-state value P

exponentially. We shall ignore the transient period and
assume that Π0 = P .

The sensor then decides whether or not to send this
state estimate to the remote estimator. We denote γ =
(γ1, γ2, . . . , γN ) as the sensor’s decision vector in a finite
time horizon [1, N ], i.e., γk = 1 if the sensor sends x̂s

k, and
γk = 0 otherwise.

Denote the data set at remote estimator as D(γ). Then,
its state estimate and corresponding error covariance are
given by

x̂k(γ) = E[xk|D(γ)]

and
Pk(γ) = E[(xk − x̂k)(xk − x̂k)

′|D(γ)].

For simplicity, we write x̂k(γ) as x̂k, etc., when the
schedule γ is given.

From (Shi et al., 2011b), it can be seen that

x̂k =

{
x̂s
k, if γk = 1;

Ax̂k−1, otherwise.
(2)

The estimation quality is measured by the cost

J(γ) = lim sup
N→∞

1

N

N∑
k=1

Tr{E[Pk]}.

From the sensor’s point of view, it aims to find transmis-
sion strategy which minimizes J for a given average sensor-
to-estimator communication rate 1 γ, where

γ = lim sup
N→∞

1

N

N∑
k=1

E(γk).

It is assumed that the sensor runs an online scheduler θs

(cf.(Wu et al., 2013a)) in the sensor as follows:

γs
k =

{
0, if k is even and ∥E′ϵk∥ < δ;
1, otherwise.

(3)

where ϵk = x̂s
k − Ax̂k−1, and δ is event-triggering thresh-

old which is determined by the given average sensor-to-
estimator communication rate γ ∈ [ 12 , 1]. The matrix E
will be defined shortly.

This schedule can improve the estimation quality with
the sensor-to-estimator communication rate constraint (cf.
(Wu et al., 2013b)).

2.2 The objective of attacker

In our scenario, the deception attacker intrudes the sen-
sor, stealing the compromised sensor’s codes to learn its
online transmission strategy. It then tampers the sensor’s
program by implanting its designed codes to the sensor.

Here we assume that the estimator knows that the sensor’s
online schedule is of the form given by (3). It means
that the attacker can only recompose the transmission
schedule in even time since no transmission at odd time
can be easily detected by estimator. The estimator can
estimate the communication rate from its prior knowledge

1 The communication rate is defined due to sensor’s energy con-
straint or the limitation of communication bandwidth (cf.(Wu et al.,
2013a)).
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about sensor’s energy budget and communication chan-
nel’s bandwidth constraint.

From the viewpoint of attacker, it aims to design a proper
attack mechanism against remote state estimation without
being detected by estimator. Specifically, the attacker
modifies the transmission schedule as follows:

γa
k =

{
0, if k is even and ∥E′ϵk∥ ≥ δa;
1, otherwise.

(4)

Here ϵk is the online information in the sensor at time k,
and δa is a new event-triggering threshold tampered by the
attacker. The basic idea of our proposed attack strategy is
that if the difference of x̂s

k and Ax̂k−1 is big in even time
k, i.e., ∥E′ϵk∥ ≥ δa, the attacker will decide not to send
the data x̂s

k to the estimator.

This paper aims to answer the following two questions:

(1) How to design the parameter δa to avoid being
detected by the remote estimator?

(2) Whether the online attack strategy (4) with designed
parameter δa can degrade the estimation quality?

3. ATTACK STRATEGY DESIGN AND ANALYSIS

In this section, we first present the online attack strategy
and then prove the proposed strategy can degrade the
estimation quality. We also study the deviation of the
estimation quality under the proposed attack strategy. Our
result shows that there exists a sensor-to-estimator com-
munication rate such that the deviation reaches maximum.

3.1 Preliminaries

Before studying our proposed attack strategy, we present
some preliminaries in this subsection.

We define the functions h : Sn+ → Sn+ as

h(X) =AXA′ +Σw.

Define a matrixH in terms of steady-state error covariance
P as

H , h(P )− P,

and the rank of matrix H as r , rank(H). Then one can
see that H ≥ 0 from (Shi et al., 2011a).

One can see that there exists an orthonormal matrix F
such that

H = F

[
Λ 0
0 0

]
F ′,

where Λ = diag(λ1, λ2, . . . , λr) and the diagonal elements
λi, i = 1, 2, . . . , r are the positive eigenvalues of H. Let

E = F

[
Λ− 1

2 0
0 In−r

]
.

Then one has

E′HE =

[
Ir 0
0 0

]
.

Let ξ ∈ Rr be a random variable following Gaussian
distribution N (0, Ir). Define

ρ(δ),Pr(∥ξ∥ ≤ δ), (5)

Γ̂(δ),E[ξξ′ | ∥ξ∥ ≤ δ], (6)

Γ(δ),Λ
1
2 Γ̂(δ)Λ

1
2 . (7)

Lemma 3.1. Γ(δ) has following property:

Γ(δ) < Λ.

Proof. See Appendix.

From (Wu et al., 2013b), one can see that ϵk = x̂s
k−Ax̂k−1

follows Gaussian distribution N (0,H). Thus E′ϵk follows
Gaussian distribution N (0, E′HE).

3.2 Attack strategy design

Note that in order not to be detected, the threshold δa

needs to be designed to follow the sensor-to-estimator
communication rate γ.

The following theorem presents the relation between com-
munication rate and event-triggering threshold δa, which
can help the deception attacker to implement the attack
strategy without being detected by estimator.

Theorem 3.1. The communication rate γ and threshold δa

satisfy

γ =
1

2
+

1

2
ρ(δa). (8)

Furthermore the threshold δ and δa satisfy

ρ(δ) + ρ(δa) = 1. (9)

Proof. The communication rate under attack is given by

γ(δa) = lim
N→∞

1

N

N−1∑
k=0

E[γa
k ]

= lim
N→∞

1

N
(

∑
k is odd

E[γa
k ] +

∑
k is even

E[γa
k ])

=
1

2
+ lim

N→∞

1

N

∑
k is even

Pr(∥E′ϵk∥ ≤ δa)

=
1

2
+

1

2
ρ(δa).

Let γ(δ) = γ(δa), then from (A.1) in Appendix one can
see that

1− 1

2
ρ(δ) =

1

2
+

1

2
ρ(δa)

which leads to (9).

From Theorem 3.1, it can be seen that the threshold δa

is determined by the communication rate γ. When the
attacker obtains the value δ from sensor’s original codes,
the threshold δa can be computed by (9) which answers
the first question in Section 2.

In what follows, in order to show that the proposed attack
strategy is able to degrade the system performance, we first
present the following lemma which provides the analytical
expression of system cost J under the attack schedule θa.

Theorem 3.2. Under attack schedule θa, the cost J(θa) is
given by

J(θa) = Tr

[
P +

1

2
F

[
Λ− ρ(δa)Γ(δa) 0

0 0

]
F ′

]
. (10)
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Proof. When k is even and E′ϵk > δa, we have

P a
k =E[(xk − x̂k)(xk − x̂k)

′ | ∥E′ϵk∥ > δa]

=E[(esk)(esk)′ | ∥E′ϵk∥ > δa] + E[ϵkϵ′k | ∥E′ϵk∥ > δa]

= P + E[ϵkϵ′k | ∥E′ϵk∥ > δa],

where

E[ϵkϵ′k | ∥E′ϵk∥ > δa]

=
1

1− ρ(δa)

{
H − ρ(δa)E[ϵkϵ′k | ∥E′ϵk∥ ≤ δa]

}
=

1

1− ρ(δa)
F

[
Λ− ρ(δa)Γ(δa) 0

0 0

]
F ′.

Therefore

J(θa) = lim
N→∞

1

N

N−1∑
k=0

Tr[P a
k ]

= lim
N→∞

1

N

N−1∑
k=0

[1− Pr(γa
k = 0)]Tr[P a

k ]

+ lim
N→∞

1

N

N−1∑
k=0

Pr(γa
k = 0)Tr[P a

k ]

= Tr
[ (1

2
+

1

2
ρ(δa)

)
P
]
+ Tr

[(1
2
− 1

2
ρ(δa)

)(
P

+
1

1− ρ(δa)
F

[
Λ− ρ(δa)Γ(δa) 0

0 0

]
F ′

)]
= Tr

[
P +

1

2
F

[
Λ− ρ(δa)Γ(δa) 0

0 0

]
F ′

]
.

Theorem 3.3. Comparing the cost J under schedules θa

and θs with the same sensor-to-estimator communication
rate, one has

J(θa) > J(θs).

Proof. From Property A.1 in Appendix and Theorem 3.2,
it can be seen that

J(θa)− J(θs)

=
1

2
Tr

[
F

[
Λ− ρ(δa)Γ(δa)− ρ(δ)Γ(δ) 0

0 0

]
F ′

]
(11)

> 0.

The last inequality is true since

ρ(δa)Γ(δa) + ρ(δ)Γ(δ) < Λ[ρ(δa) + ρ(δ)] = Λ.

From Theorem 3.3, one can see that our proposed attack
strategy can degrade the estimation quality which gives
the answer to the second question in Section 2.

3.3 Effectiveness of attack strategy

It can be found that the threshold δa is determined by
the communication rate γ. Thus another problem is how
to drive the optimal communication rate which maximizes
the cost deviation under deception attack.

In order to study the effectiveness of our proposed strat-
egy, we define the cost deviation under proposed attack
strategy as

∆J(δa) , J(θa)− J(θs). (12)

In this subsection, we first focus on the problem how does
attack threshold δa impact the cost deviation ∆J(δa) and
then find out the optimal communication rate such that
∆J(δa) reaches its maximum.

Property 3.1. Cost deviation ∆J(δa) has the following
properties:

(1) ∆J(δa) is a continuous function of δa in [0,+∞).
(2) ∆J(0) = ∆J(+∞) = 0.

Proof. From (11) and (12), one has

∆J(δa) =
1

2
Tr

[ [
Λ− ρ(δa)Γ(δa)− ρ(δ)Γ(δ) 0

0 0

]
F ′F

]
=

1

2
Tr

[
Λ− ρ(δa)Γ(δa)− ρ(δ)Γ(δ) 0

0 0

]
=

1

2
Tr

[
Λ− ρ(δa)Γ(δa)− ρ(δ)Γ(δ)

]
,

where ρ(δ) + ρ(δa) = 1. Then one can easily confirm that
statements (1) and (2) are true.

Theorem 3.4. There exists δa∗ ∈ (0,+∞) such that

∆J(δa∗) = max
δa∈[0,+∞)

∆J(δa).

Proof. Using Property 3.1 and Lemma C.2 in Appendix,
one can obtain this result directly.

Although from Theorem 3.4, the maximum of deviation
∆J(δa) exists, how to find out this maximum value and
the corresponding variable δa∗ is still difficult, due to the
implicit expression of ∆J(δa). Hereafter, we will show how
to calculate the explicit expression of ∆J in terms of δa.

From (7), it can be seen that

Tr
(
Γ(δa)

)
= Tr

(
Λ

1
2 Γ̂(δa)Λ

1
2

)
= Tr

(
Γ̂(δa)Λ

)
=

r∑
i=1

λiΓ̂i,i(δ
a),

where Γ̂i,i(δ
a) is the (i, i)-th element of matrix Γ̂(δa). From

(6), one can see that Γ̂i,i(δ
a) can be calculated as

Γ̂i,i(δ
a)

= E[ξ2i | ∥ξ∥ ≤ δa]

=
1

r
E[ξ21 + ξ22 + · · ·+ ξ2r | ∥ξ∥ ≤ δa]

=
1

rρ(δa)

∫
r∑

i=1

u2
i
≤(δa)2

(

r∑
i=1

u2
i ) ·

r∏
i=1

ϕ(ui)du1 · · · dur,

where G(r) =
∫∞
0

ure−u du
u is the Gamma function (cf.

(Lanczos, 1964)). From polar coordinates transformation
u1 = ν sin θ1 · · · sin θr−2 cos θr−1,
u2 = ν sin θ1 · · · sin θr−2 sin θr−1,
· · ·
ur−1 = ν sin θ1 cos θ2,
ur = ν cos θ1,

where (ν, θ1, . . . , θr−1, θr) ∈ [0, δa] × [0, π] × · · · × [0, π] ×
[0, 2π] , one can see that
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Γ̂i,i(δ
a) =

1

rρ(δa)

∫ δa

0

∫ π

0

· · ·
∫ π

0

∫ 2π

0

ν2

·ϕ(ν sin θ1 · · · sin θr−2 cos θr−1)

·ϕ(ν sin θ1 · · · sin θr−2 sin θr−1)

· · ·ϕ(ν cos θ1)νr−1
r−2∏
k=1

(sin θk)
r−k−1

·dθ1 · · · dθr−1dν,

=
1

rG( r2 )ρ(δ
a)

∫ δa

0

νr+1e−
ν2

2 dν,

Then one has

d

dδa

[
Tr

(
ρ(δa)Γ(δa)

)]
=

d

dδa

[∑r
i=1 λi

rG( r2 )

∫ δa

0

νr+1e−
ν2

2 dν
]

=

∑r
i=1 λi

rG( r2 )
(δa)r+1e−

(δa)2

2 .

From Lagrange multiplier method, we define

L(δ, δa, µ) , ∆J(δ, δa)− µ(ρ(δ) + ρ(δa)− 1).

Let

∂L

∂δ
=

∑r
i=1 λi

rG( r2 )
δr+1e−

δ2

2 − µ
2−

r
2+1

G( r2 )
δ2r−1e−

δ2

2 = 0,

∂L

∂δa
=

∑r
i=1 λi

rG( r2 )
(δa)r+1e−

(δa)2

2 − µ
2−

r
2+1

G( r2 )
(δa)2r−1e−

(δa)2

2

= 0,
∂L

∂µ
= ρ(δ) + ρ(δa)− 1 = 0.

(13)
Then one can obtain that the solution to (13) is

δ = δa. (14)

Theorem 3.5. ∆J will reach maximum when γ = 3
4 .

Proof. From (14) one can see that ∆J will reach maxi-
mum when δ = δa. Thus ρ(δ) = ρ(δa). From (8) and (9)
one has γ = 3

4 .

4. EXAMPLE

Consider system (1) with

A =

[
1.2 0.1
0 1

]
, C =

[
1 0
0 1

]
,Σw =

[
1 0
0 2

]
,Σv = 0.5C.

By running a Kalman filter at the sensor, one can obtain
the steady-state error covariance P as

P =

[
0.3776 0.0020
0.0020 0.4143

]
.

Then one obtains r = rank(H) = rank(h(P )− P ) = 2.

The effectiveness of attack strategy θa is evaluated by
simulation in this section. From Fig.2, one can see that
both J(θa), the cost under attack θa, and J(θs), the cost
without attack, decrease with the increase of sensor-to-
estimator communication rate γ. The cost under attack
is always larger than that without being attacked which
verifies that the proposed attack strategy can degrade the

estimation quality. The deviation ∆J is firstly increasing
and then descending as communication rate γ increases.
From Fig.2, one can also see that ∆J reaches maximum
when γ = 0.75. It means that when the communication
rate is less than 0.75, a larger communication rate will
result in more obvious cost deviation, and when the com-
munication rate is more than 0.75, larger communication
rate will result in the decrease of cost deviation.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

γ

J

 

 

J = J(θa)
J = J(θs)
J = ∆J
γ = 0.75

Fig. 2. An example to illustrate the effectiveness of pro-
posed attack strategy.

5. CONCLUSION

In this paper, we investigate online deception attack
strategy against remote state estimation with sensor-to-
estimator communication rate constraint. We design a new
deception attack strategy which can degrade the estima-
tion quality without being detected by the estimator. In
order to study the effectiveness of proposed attack strat-
egy, we define the cost deviation as the difference between
the cost under attack and that without attack. Our results
show that the cost deviation varies with communication
rate and reaches the maximum when communication rate
is 0.75.

REFERENCES

Anderson, B. and Moore, J. (1981). Detectability and sta-
bilizability of time-varying discrete-time linear systems.
SIAM Journal on Control and Optimization, 19(1), 20–
32.

Bitar, E., Khargonekar, P.P., and Poolla, K. (2011). Sys-
tems and control opportunities in the integration of
renewable energy into the smart grid. In Proceedings
of World Congress of the International Federation of
Automatic Control, volume 18, 4927–4932.

Bryant, E., Atallah, M., and Stytz, M. (2004). A survey
of anti-tamper technologies. crosstalk. The Journal of
Defense Software Engineering, 17(11), 12–16.

Cardenas, A.A., Amin, S., Sinopoli, B., Giani, A., Perrig,
A., and Sastry, S. (2009). Challenges for securing cyber
physical systems. In Proceedings of Workshop on future
directions in cyber-physical systems security.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

132



Kavitha, T. and Sridharan, D. (2010). Security vulnera-
bilities in wireless sensor networks: A survey. Journal of
information Assurance and Security, 5(1), 31–44.

Lanczos, C. (1964). A precision approximation of the
gamma function. Journal of the Society for Industrial
& Applied Mathematics, Series B: Numerical Analysis,
1(1), 86–96.

Novak, T. and Gerstinger, A. (2010). Safety and security
critical services in building automation and control
systems. IEEE Transactions on Industrial Electronics,
57(11), 3614–3621.

Qu, F., Wang, F., and Yang, L. (2010). Intelligent
transportation spaces: vehicles, traffic, communications,
and beyond. IEEE Communications Magazine, 48(11),
136 –142.

Sarwate, A. and Chaudhuri, K. (2013). Signal processing
and machine learning with differential privacy: Algo-
rithms and challenges for continuous data. IEEE Signal
Processing Magazine, 30(5), 86–94.

Shi, L., Cheng, P., and Chen, J. (2011a). Sensor data
scheduling for optimal state estimation with commu-
nication energy constraint. Automatica, 47(8), 1693 –
1698.

Shi, L., Johansson, K.H., and Qiu, L. (2011b). Time and
event-based sensor scheduling for networks with limited
communication resources. In Proceedings of World
Congress of the International Federation of Automatic
Control, volume 18, 13263–13268.

Shoukry, Y., Araujo, J., Tabuada, P., Srivastava, M.,
and Johansson, K.H. (2013). Minimax control for
cyber-physical systems under network packet scheduling
attacks. In Proceedings of the 2nd ACM international
conference on High confidence networked systems, 93–
100.

Song, H., Xie, L., Zhu, S., and Cao, G. (2007). Sensor
node compromise detection: the location perspective.
In Proceedings of the 2007 international conference on
Wireless communications and mobile computing, 242–
247.

Wilson, C. (2013). Cybersecurity and cyber weapons:
Is nonproliferation possible? In Cyber Security, 11–24.
Springer.

Wu, J., Jia, Q., Johansson, K.H., and Shi, L. (2013a).
Event-based sensor data scheduling: Trade-off between
communication rate and estimation quality. IEEE
Transactions on Automatic Control, 58(4), 1041–1046.

Wu, J., Yuan, Y., Zhang, H., and Shi, L. (2013b). How can
online schedules improve communication and estimation
tradeoff? IEEE Transactions on Signal Processing,
61(7), 1625–1631.

Zhang, H., Cheng, P., Shi, L., and Chen, J. (2013). Opti-
mal dos attack policy against remote state estimation.
In Proceedings of IEEE Conference on Decision and
Control, 5444–5449.

Zhang, H., Cheng, P., Shi, L., and Chen, J. (2014). Op-
timal denial-of-service attack scheduling against linear
quadratic gaussian control. In Proceedings of American
Control Conference, to appear.

Appendix A. ONLINE SCHEDULE WITHOUT BEING
ATTACKED

From (Wu et al., 2013b), we have the following result for
online schedule without being attacked:

Property A.1. Consider the sensor’s schedule when the
sensor-to-estimator communication constraint γ ∈ [ 12 , 1] is
given. Under sensor’s online schedule θs (without attack),
the expected sensor communication rate is given by

γ(δ) = 1− 1

2
ρ(δ), (A.1)

and the corresponding cost J(θs) is given by

J(θs) = Tr

[
P +

1

2
ρ(δ)F

[
Γ(δ) 0
0 0

]
F ′

]
. (A.2)

Appendix B. PROOF OF LEMMA 3.1

Proof. [Proof of Lemma 3.1] From Lemma 3.3 (Wu et al.,
2013b), we have

Γ̂(δ1) < lim
δ2→∞

Γ̂(δ2) = I.

Then it leads to

Γ(δ) = Λ
1
2 Γ̂(δ)Λ

1
2 < Λ.

Appendix C. PRELIMINARIES FOR PROVING
THEOREM 3.4

In order to prove Theorem 3.4, the following lemmas are
needed.

Lemma C.1. (Weierstrass Extreme Value Theorem ). If a
real-valued function f is continuous in [a, b], then f must
attain a maximum and a minimum, i.e., there exist c, d ∈
[a, b] such that

f(c) = max
x∈[a,b]

f(x), f(d) = min
x∈[a,b]

f(x).

Lemma C.2. If a real-valued function f is continuous in
[0,+∞), and satisfies f(0) = f(+∞) = 0 and f(x) > 0 for
all x > 0, then f must attain a maximum in (0,+∞).

Proof. [Proof of Lemma C.2] The proof process consists
of three steps:

Step 1. Consider the existence of maximum of f(x) for
x ∈ [0, 1]. From Lemma C.1, one can see that there
exists a1 ∈ [0, 1] such that

f(a1) = max
x∈[0,1]

f(x).

Since f(0) = 0 and f(x) > 0 for all x > 0, it can
be seen that a1 ∈ (0, 1].

Step 2. Consider the existence of maximum of f(x) for
x ∈ [1,+∞). Let x = 1

y for x ∈ [1,+∞) and

g(y) =

{
f(

1

y
) = f(x), y ∈ (0, 1];

0, y = 0.

One can see that g(y) is continuous in [0, 1] with
g(0) = 0 and g(y) > 0 for y ∈ (0, 1]. Then
from Step 1 it can be seen that there must exist
y1 ∈ (0, 1] such that g(y1) = maxy∈[0,1] g(y). Thus

there exists a2 = 1
y1

∈ [1,+∞) such that

f(a2) = max
x∈[1,+∞)

f(x).

Step 3. Consider the problem in [0,+∞). Integrating Step
1 and Step 2, one can see

max
x∈[0,+∞)

f(x) = max{f(a1), f(a2)},

which completes the proof.
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